


}. INTRODUCTION

The importance of the restoration of the total nucleus Ha-
miltonian symmetries spontaneously violated by the average nuc-
lear field has been pointed out in literature several times
(see, e.g., ref./1,2/ ), But almost all up to date papers con-
cerning this problem have worked with nonrotating nuclei and
the restoration of translation symmetry of total Hamiltonian
of rotating nucleus hasn”t been discussed at all.

In refs./3:4/ and/5/the microscopic nuclear model was propo-
sed describing the positive parity vibrational modes of nuclear
motion near the yrast line within the random phase approxima-
tion (RPA) method based on the self Consistent Cranking Model
(SCCM). In these refs. the attempts were made to clear up the
relatiun between the positive parity solutions of RPA equations
of motion and the spurious Goldstone modes connected with ro-
tational symmetry of the total Hamiltonian of rotating nucleus.
Negative parity vibrational states near the yrast line hasn’t
been investigated.

Taking intn acconnt the farte given ahove we have concluded
that the translation symmetry violation in rotating Hamiltonian
and its relation to the negative parity states near the yrast
line deserve a separate investigation. Namely, this paper is de-
voted to the following problems:

i) to construct residual interactions consistently with the
restoration of the translation symmetry of the rotatlng nucleus
Hamiltonian of SCCM (sections 2,3);

ii) to determine structure and energies of the RPA phonons
using the residual interactions obtained from restoration of
the translation symmetry of nucleus Hamiltonian (sections 4,
5,6);

iii) to clear up the relation of the solutions of RPA equations
of motion to the spurious states (Goldstone modes) connected
with translation symmetry of the nuclear Hamiltonian (sections
4,5,6).

In solving the problems above we have followed the ideology
of the SCCM+RPA method proposed by Marshalek/3/ and Jaussen with
Mikhailov/5/ for a nucleus rotating around a fixed axis (statio-
nary rotating). This method consists of two separate steps: In
the first, the SCCM solution is found, which describes the yrast
line states (using the Hartree-Fock-Bogolubov diaginalization
(see, e. g./ﬁ/» In the next ste *_bggh_;haupgrlty vibrations
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about the SCCM solutions are determined by the RPA. In this

paper only the negative parity vibrations are treated (sec—
tions 4,5,6).

2. SYMMETRY OF THE SCCM HAMILTONIAN

In the SCCM the nucleus is supposed to rotate round the
stable axis (axis X) and the number of nucleons has to be con-
served. Therefore the Hamiltonian of the SCCM is taken in the
form (see, e.g.,/34/):

H'-H-0J, - W (2.1a)
i ety ok (2.1b)

where H and H are the total nucleus Hamiltonian in the lab.
and intrinsic-fixed body system, respectively. J is an X —com-—
ponent of the total angular momentum, Q 1is the rotating frequ-
ency, N 1is the particle number operator and the Lagrangian
multiplies A can be interpreted as the chemical potential. The
total Hamiltonian H contains the deformed average nuclear
field, pairing and the residual interactions. Solving the Hart-
ree-Fock-Bogolubov equatiog, the SMMC Hamiltonian can be re-
written in the form/3.4/

'H[9>+2(E a a; +E-i-a,ltaT)+ (2.2)
+ Hp g+ mzs(+)+ Vres(-) -

where <Q1|H|Q> denotes the mean value in quasiparticle vacuum
(yrast state with given Q ), E; are the quasiparticle ener-
gies, ar and g, are the qu351part1cle creation and annihilation
operators, respectively. The symbol : : represents the normal
product with respect to quasiparticle vacuum, Hy,j, is the
pairing interactions. From the point of view of the space ref-
lection symmetry, the residual interaction can be divided into
. two parts: a part containing the positive parity single particle
operators(VRes(+))and a part with the negative parity single
particle (VRgs(-))-

The total nuclear Hamiltonian fulfils the following conser-
vation laws:

H,N] =4, J1-4, Pl-0, (2.3)

d -»> . .
where J is the total spin operators, and P is the total linear
momentum operator. Using the well-known commutation relations.
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Uy Jp 1=teppn I

B, NP ,Nl=[B,Pyl=0

- - (2.4)
Uy PplaieypmPy
l;k = el'l"Ql _iJ'Ql, k,, m=x,y, z
from (2.3) it follows (see’3 and Appendix A):
M, N =0 , (2.5a)
H,J.1=0, M, I])=-i0],, [H,],1=107 (2.5b)
M, P, 1-0, [H,P]--10P , [H,E]-i0P . (2.5¢)

The conditions (2.5c) and (2.3) are used in the following sec-
tions to determine negative parity residual interactions.

3. RESTORATION OF THE TRANSLATION SYMMETRY

The violation of the translation invariance of nuclear Ha-
miltonian leads to the appearance of the admixtures connected
with the center of mass motion in the odd parity states. Since
itue vdd parity states near the yrast line are the subject of
investigation in this paper, the nearest task is to construct
the residual interactions which restore the translation in-
variance of the deformed average nuclear field. A possibility
of the nonaxial average nuclear field is taken into account
for the rotating nucleus.

According to/!/ the separable residual interaction can be
looked for in the form (we must have in mind that our nuclear
average field rotates with the nucleus)

- o~ K -~ =~

HaHy, - = ZJk(H,, B ] ()P (3.1a)

L=X,y,Z

H, =eiJ’QlHOB_'J’Ql,
where Hy is the Hamiltonian of the average nuclear field with
the pairing interaction (in_lab.system), x, are arbitrary con-
stants for the time being, P, are the components of the nuc-
leus total linear momentum (see sect.2). The requirement of the
translation symmetry of nuclear Hamiltonian H can be expressed

by the last commutator in (2.3). Substitution of (3.1) into
(2.3) yields:



[, P,] = Hy. B,) - = —2"1:1[1{0.?”], (Hy.B,1. P,1i=0, (3.2)
where the symbol { ]} denotes the anticommutator. From (3.2) one

can see that if the double commutator is a ¢ -number:
H P 1P 3.3
HHO.ﬂJfPu]-OHSu ( )

it is possible to obtain the precise restoration of the nuclear
Hamiltonian translation symmetry in the framework of the se-

. Un-

parable residual interaction,

fortunately, the condition (3.3) holds odiy for the oscillator
average nuclear field. Since the oscillator is rarely used as

a nuclear average field, there is no possibility to restore pre-
cisely the translation symmetry for average fields usually used
in nuclear theories. Because the problem of the nucleon motion
in an atomic nucleus is never solved exactly, it is necessary
for condition (2.3) to be fulfilled at the same stage of accu-
racy as the equation of motion is solved. In this paper the

RPA is used for the description of the excited states near the
yrast line, and therefore, the translation invariance condition
(2.3) can be rewritten in the form:

H. P, 1= H. P, T a4 H, P 1 3.4)

where U{ P, IrPa is the part of the commutator, which contains
the boson operator in the linear order (see the next section

and refs./3:4/ ) and SD{,P Jrpa 18 the remaining part of the
commutator constructed from the second and higher order in bo-
son powers. Neglecting the higher than linear terms in the boson
expan51on (3.4), one expressed the translation invariance con-
dition in the RPA by:

(H, ﬁu] RPA=0 (u=x,9,2). (3.27)

Substituting (3.1) into (3.2°) we obtain:

[H, B, lnpa [Ho'P Jrpa-2 K'=‘[ﬁo'§';]v (B,. (. B llgpa=

V=X,Y,2

(3.5)
[y B lgpa-2 «,<0I(B,, [H,. B, 110> Hy B Inpa=0,

V=X,Y,Z

where <0|H|0> denotes the boson (quasiparticle) vacuum (see/a/)
From the reflection symmetry of the average nuclear field, one
can get:
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<0|[PL.[H P 110>= 8- (3.6)
Assumingcu - 1., the RPA translation invariance condition

K

n
(3.5) is automatically fulfilled.

Further, the structure of the nuclear average field will

be discussed in detail. Suppose that the average field has
the Saxon-Woods form/®/ with the following isotopic structure:

Z . A-Z
Ve Elrv(p) r B + .21 V( )(ri : B (3.7)
where
(n) (-. B)=V [0] (?iB) [l]( B, +V( )(r B), (3.8a)
vPE g - VOIE g V@ By, s PE V@ B (38b)

In (3.7) and (3.8) symbol 8 denotes the set of deformation
parameters, r, 1s the z —component of isospin for a given nuc-
levn. Since the spinorbit interaction does not play the substan-—
tial role in the restoration of translation symmetry, it will

be neglected in a further consideration. The restoration of the

translation symmetry of the average nuclear field (3.8) can be
made senaratelv far tha iencralar icnvantar and Conlamh  intor—
- - - I —-_—— - - = ——— fathatadat it

actions. Therefore, the residual interaction can be written in
the form:

[.

Ve -3 —%’.—-:Q:[r]Qv[r], (3.9)
u..x,y_,z
r=0,1,c
where
A [0]* -~
Q00=[2 V" @8NP, (3.10)

A -~
Q,[l=[ 'Zl-dl](ri; B)r, () B1,

Z ~
QV[OI = E’l‘v{c}‘('i;v B). Pv]'
[r]

In accordance with (3.6) the strength constants k= are

~ [r]
:h..,=<0|[P,,,Q,,' 110>. (3.1
v
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The residual interactions given by (3.9), (3.10), (3.11) are
further used for constructing the negative parity vibrational
states near the yrast line.

4, RPA HAMILTONIAN AND THE CONSERVATION LAWS

Introducing the two—quasipartic1e+boson creation and annihi-
. . . L.+ 4 +
lation operators as in papers/3:4/ b7 =aag, by = la: aa',

bEY:=iaE a% and taking into account the behaviour of the single-
particle operators (involved in the residual interactions) un-—
der the space reflections and the rotation around the x -axis

by angle n, the nuclear Hamiltonian of the SCCM (2.2), can be
divided in the framework of the RPA (i.e., up to the second
order in the boson expansion) into mutually commuting parts

(see /3,7,8/ )

—+1
H'-<Q|H|Q> +H (” *
Y

< n e hn oothyom o, Gl
p=+1 yp=+1 Yp =1 yp=-1

where y. and yp are quantum numbers characterizing the pro-
perties of the single-particle operators, involved in residual
interactions, under a rotation of angle 7 around the X -axis
and space retlection, respectively. Because the problem of
searching of eigenvalues and corresponding eigenvectors of the
Hamiltonian (4.1) for the positive parity part(yp=+1) has
been solved in refs./3 45/, only the negative parity part
(yp=-1) of (4.1) is treated in this paper. With respect to
(3.9) the negative parity part of the Hamiltonian (4.1) can
be expressed in the form:

[7] +
HO: o3 Epvgog - 3 ZodDinap, (4.2a)

Yp ik ik o0,
«b7l

+

H )=LSE b*b, +E--btb)- S QY 10, 4.2b)

(Yp—':) 5 = E by By + Epbiben) ool §-Q, 119, 1)
h=Y,Z

where E;; =E; + E, Qﬂ)[d(7=0.l,c; u=Xy,2) are the linear
boson parts of the single-particle operators (3.10). The ex-
plicit forms of Qﬂ)[ﬂ‘ together with the linear boson part of
linear momentum components and their conjugated coordinates
are given in Appendix B. '
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In the Hartree-Fock-Bogolubov representation the Hamilto-
nian H* does not contain the linear boson part, therefore up
to the second order in bosons (see /3,4/)

H’=<0|H|0>+H" D, (4.3)
Substituting (4.3), (4.2) into (2.4) and (2.5c) and using the

boson expansions for the angular momentum components given ip
ref./3/ one can get:

[H,(2)' Px(lhao' [H'(z),Pil)] i Pz(l)' [}‘l,(2)’l:,z(l)]‘= iQP;l) ,  (b.4a)
() p()7 _ (D p(1) 1) p(l) (H ()

(B ,Pj‘]—[N 'Pi =3 BT =10 H l=0, (4.4b)
(1} (1) :

Uy 3, 1=1<013_|0>. (4.4¢)

Since all parts of the Hamiltonian H’ (4.1) mutually commute
the problem of searching its eigenvalues and corresponding ei- ’
genvectors can be solved independently for each part of the Rpa
Hamiltonian (see/3,7/)

H, H1=ialX,, (4.5a)
M, X]1=-i%,, (4.5b)
[jx, EPA’] = ISAA" (4 -SC)

where X) and P, represent canonical conjugate coordinates ang
momenta in the state A with energy wy ( X) and P, are sup~
posed in the linear boson order). In this canonical represen-
tation the Hamiltonian (4.1) can be rewritten (see/7/):

;1 2 252 1 2
H e )% % +mAfXA)+? Eo ?)‘o' (4.6)
(@)d 0 @) g=0)

From the comparison of (4.4a) with the RPA equation of motion
(4.5) it follows

o =VELEM. (4.7)

where the constant g, ('"mass" parameter) will be discussed
later (see section 5). Therefore, the negative parity part of
Hamiltonian (4.1) has the form:

9 . .
, 1 2 2452 1 (1) (1) _(1) (1) (1)
H‘“’S“'a E.: % (9A +wkik) + ?:gxP + HC.m.(Py ' l:,z ’Xy ’Xz ) (4-8)

(oAJO



where He.m. (P;”, Pz(l),X(l), X‘;)) is the part of Hamiltonian connec-
ted with the center of mass motion modes (X ,P(”),(Xél),Pgn)
which cannot be interpreted as the solutions of 'RPA equations
of motion. These modes are discussed in detail in section 5.2.
The structure of the odd parity vibrational states (i.e.,

canonical conjugated coordinates X, and momenta ), and cor-
responding energies «, ) near the yrast line for a given an-
gular momentum is determined in the following sections.

5. RPA EQUATIONS FOR THE NAGETIVE PARITY PART
OF THE HAMILTONIAN H

The RPA equations (4.5) with negative parity part of the Ha-
miltonian H” can be solved by the method proposed by Kvasil
et al./7/, where the way of extraction of the spurious states
from the solution is also described.

=+1
5.1. Diagonalization of H(,, z}{(:‘_+l)
p="

The linear boson part of canonical conjugated coordinates
and momenta can be looked for in the form

2, =—;iii§:}) (% -b.), (5.1a)
9, - %‘?iim(b}f +b), (5.1b)
(X, Fy-1=2i & 1N 2R s, (5.1c)

Substituting expressions (5.1a), (5.1b), and (4.2a) into (4.5)
and using the commutation relation of boson operators (see /3:4/),
one can obtain equations of motion in the matrix representation:

\) 7). [r] E.‘k [r]
L =2r_20 e Ay B2 2 (5.2a)
e ik A
Erq. [r]
oM gy S A} Zi T (5.2b)
r=0,1,c E2 _o2
’ ik A
where
(A)~ x

The summation in (5.2) is over the isoscalar, isovector, and
Coulomb part (see (4.2a) and Appendix B). Constructing the
corresponding linear combinations of equations (5.2a,b) and
using the way described in ref./?/ one can get the following
system of the linear homogeneous algebraic equations for three
unknowns A[)r] (r=0,1,c)

2 [r) Al7] (A
wp T ok AV(E W )0,
)‘r=o,1,cx A 7=0,1,c 'ilx[fl,qx[r‘].
s JVAT Oy O y_o 5.
re0,1,ct A q*[clg*[r]. 2K,[(c ‘
s K[;]A[):] &Ny o 2 )-0,
r=0,1,c qx[c]qx[r] .2Kix01 .
where
E-a_ b N
Sao‘ﬁ @) = Ek-...._.._..‘z" ik 2“‘ LW ) a“‘:ik (5.5)
Em:_wk l Eﬁ(%trnﬁ)

The conditions for existence of nontrivial solutions nf the
equation system (5.4) lead to the secular equations for the
eigenvalues w) in the form

wilD(+)(mA)l=0v (5_6)

where H¢kaﬂ is the determinant of the equation system (5.4)
for nonspurious solutions. The equation system (5.4) has to be
solved taking into account the condition (5.l1c).

The strength constants «/(r=0,1,¢) are determined by
eq. (3.11) which can be rewritten by the quasiparticle matrix
elements Gy [r] using the condition (4.4a): [H"(®), P -0
in the form:

1 - T s Gik[rl aik [T’]
T i R e (5.7)

K
X

As the Hamiltonian H() commutes with the x -component of
the total linear momentum Fﬁl) (see eq. (4.4a)), among the solu-
tions of the equation system (5.4) the spurious one withe,=0
appears, which is connected with the center of mass motion
along the x -axis (see (4.7)). The "mass" parameter g, con-



nected with this spurious mode can be determined from the nor-
malization condition (5.1¢). Using (4.7), (5.2), (5.3), and
(5,7), one gets for mode:

~X
—. B3 —
Ly (‘”,\ =0) = Vg —— rpaa ?ik(“’/\0=0)=\/gxpixk' (5.8)
ik

Then from (5.1c) the '"mass" parameter can be obtained

Bx 5!
Lo_ps ZEEK (5.9)
By ik Eikb

The completeness of all solutions (ix7?x) of the H,, Hamilto-
nian can be expressed by

bﬂ*P —i?\l(b;ﬁ, 18 19, bgﬁl]fx,\)ﬁ»
(5.10)

ot (D p() L rp() gty (D)
TG AU NS

5.2. Diagonalization of H )_[{(yx—ﬁl)

( =w1
. . P .
Thie canounical conjugated coordinates and momenta for this
part of the Hamiltonian (4.1) are assumed to be in the form

(linear boson terms only):

A ~

Xy = 2; (i(ik)(b;‘k +b;) + ‘i:k)(bf +b.0)), (5.11a)
9, =i§((?i( (bt ~b )+ ”f;\’(b b)), (5.11b)
A, Pleais X 9 L1 F

Xy, Il =4 2 (X Fyy +fxik ?ik). (5.11c)

Similarly as in the preceding section the RPA equations of mo-
tion (4.5) for the part H_) of the Hamiltonian (4.1) can be
expressed in the matrix representation:

W\ Ey dlrl 0[]
AW ,K[y’] gl’!} __2'.'.‘...‘.",2._ +3 el 2q"‘ ’..2_ (5.12a)
7=0,1,¢ Bl - oy =0l B o)
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gy Jgl @ Tl L1l Budgll 5.12b)
i« r=0,1,c y E2 —1(1)A r=0,l,c Elzk _wi
where the unknowns B[d [d (r=0,1,¢) are introduced
(M
N -3 @ gAg - %)
(5.13)

[T]; TZ 0, (A) ; ?(/\)
ol x G Y G mR.

For iiﬁ) and ?ﬁ?) a relations similar to (5.12) can be ob-
tained. Substitution of (5.12) into (5.13) leads to the homo-
geneous system of linear equations for six unknowns B;’ and
C[A’](r= 0,1,¢):

[ r1g g™ J [7] 1 (V) _ (5.14)
) s () T+ 3 v o,
r’=01p‘/ (qv[,(]q[ 1w [}~ +~olo z ¢’ [r}q”l7}.
y
w2 8 LT 3 (Uhelhgy _jf.:_..): 0

Ao, Le Y &l 7] 7=0,Le * a“i71q707] . K[Zfl
with the corresponding secular equatlon for the eigenvalues Q)A‘
In (5.14) the following assignment is made

E a_ b E_a b
S()\)( )=8 " (u))\)= s ( ik ik ik 4+ _1k_ik ik ),
ik Ez _wz E2 wz
ik A ' A (5.15)

U:/:,) _.U (m)\)— 2 ( 2|kb|l(2 + Zik ik2 ).
i Bl —ox Erk’“’/\

The_sign (-) holds in the case when one of the quantities 2
or b isq’[r] for allr.

If it is assumed that all conservation laws are exhausted by
(2.5),‘H(_) (for Q£ 0) has no Goldstone modes connected with
zero energy w) =0. (] (] )

The strength constants x_ °  and «, in (5.14) are given
by (3.11). Using the symmetry conditions (4.4a) these constants
can be expressed by means of the quasiparticle matrix elements:
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1 ’ .
———— 2 - S 0 =Q 2 - U » ﬂﬂ » .
T e A= 2 Uy o@D In the same way we can obtain
2 1)
(1_9_2)[?)\,?(’ 1=0, (5.17b)
1 “x
P 2 S (w:ﬂ):ﬂ EU ((0=-Q).
a2 v=0.1,c 9 Lr1g%[]. 7=0.1.c 171 q7[7], 2 My _o (5.17¢)
< 1, 1, (1__)m)‘,xy]_ ,
o]

The only question which remains uncleared for H_) is ’ & ) 7d)
wheather the canonical conl%ugated coordinates and linear mo- a- -.-.)[?)‘ , X, j=0. (5.1
menta: (X(ﬁl)' Py“)) , (X;”, Pz( ) of the nucleus center of mass mo- wf
tion in the rotation plane represent the spurious states of the: ) . : =+, in general case from
Hamiltonian H(_). From comparison of (4.4a) with (4.5) one Since H(_Lhas no solut}on wjl:_thlal))‘RP; éoiutjons of H() to the
could expect that (P}fl), Pz(l;)) is a mode of H(.)with energy (5211)7)1;(1t))e Ortgo(giio(r}?l;':(}l,)()) zi?ollows. We see, that t-l-le total

=*Q (similarly as the y - and z -components of an ular mo- X7 an z ', 2 : ith
Eentum were treated in paper of Marshale/a/). But s%nce spdce Jf canonical 9011]ngegfczﬁzd;g:zzsoznih:o:(e):;:lw;odes
(P, P(D]_0, such a mode would be non-normalisable. In can yx ==1 and yp=-118 a £ d the four-dimensional space
J z . () p(1) (RPA solutions) (Xy, ?)) of H) an .
be shown -that for the same reason neither &y, PaY)  nor M) b ) ’}1) P (1)), Therefore the completeness of this
(X(z“, Pz(”) represents the RPA mode of Hamiltonian H_) for of X", Py) » (X7, Py ;.d by:
1 £.0. In the case of =0 (non-rotational nucleus) all linear total® space can be express y:
momentum components commute with the Hamiltonian H’ (see + P pt 1%, + N X 1%) +
(4.4a)), and therefore (X{(1), P(1))and XD, P ) are zero-spu- blp =1 f @y fp "7 A fp" A" A

rious modes of H_). Although the (X)fl), Pg)) and (X(zl), P(l)
don"t belong to the ansamble of all RPA solutions with Hamil-

i i i ifP ,b 1X +[b ,X P )
tonlan H(-) in general case Q#0, we give the proof of the +1( .
orthogonality of the modes (X(1),P(l)y and (x(1), P()) to all | (5 1R)
solucions or the equation system (5.14), “ “ v b I%. [bEo. A 19 )+
Using the Jacobi identity one can obtain b-[p-— iz (%, oA A PRIESY
' D+ oD
PP bt XD apt xD1PMy Liqr® pF 1xDerxDpt 1pWy,
[X ,P(l)]=(see @sa)=—1__[m .91 Py +1(Py Dy, Xy +[b?p Xy 1Py +i0P, 7 0g, 1K, 2 lp "z
Az N 0 2
lw
A
1 (n 1 (1) ,
B R Ut KL L T
=T .1 2 [PV, H )l 9,1 = (see (4.40)) - (5.17a) 5.3. Parameters of the SCCM+RPA Method
lg
' ‘ Our SCCM+RPA treatment of the vibrational statesbne::r the
. a-
--Zr®, F\1 = (see (4.50)) = —. 2D m, X0 = yrast line has no free parameters (we don”t speak abou pi]ﬁ
wz)\ Y iwi ' meters of the average nuclear field). The form and streng 4
constants of the residual interactions are wholly det:(larm]];nek y
= L ui tion of the spontaneously broken
= —5-X P(l)-H —H_,, [X,,pD] the requirement of the restora t ! C
) St ’ e i} Mot ’ ! symmetgies of the average field. As is shown 1n.the.preced1r‘1g
__)\_, - ' 2 sections, the odd part of the residual interaction 1s unaml;1—
.0 Xy [P(l),H(__)]]=.(see (4.4a))-_-_.9.....[51)‘ ,p(zl)]. guously given by the translation symmetry of the totalbnug Sar
iwi ’ “’i Hamiltonian. The corresponding strength constants can be de

termined in terms of relations (5.7), (5.19).
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6. THE EIGENVECTORS OF THE NUCLEUS HAMILTONIAN

In section 5 the procedure for searching the negative parity
part (yp=-1) of the Hamiltonian (4.1) eigenvalues and the cor-
responding pair of conjugated coordinates X) and momenta %)
is given. For the states with w) #0 it is possible to introduce
the phonon creation and annihilation operators/7/

Cr ==~ (Var X, - —— 9, ) 6.1
Y N 6.1)

+

[G,\, OA'] =8\,
Taking into account the fact that the modes (X%),P(”) and
(X(i),P;” ) do not belong to the normal modes (ik-?&) and that
the conditions (4.4a) must be fulfilled, one can rewrite the
negative parity part of (4.1) in the form:
DM () (1)

1 Nk
P, =X, Py )46.2)

’ + 1 (
Hnegat.='\2 w)t(ol\el\ +—2_)+-2—gxpx _Q(XY

hk£o)

where we have explicitly extracted the terms connected with
the center of mass motion.

The positive parity (v. =+1)part of the Hamiltonian is ou-
pressed in a similar way'(see /34 ) in terms of the phonon ope-
rators for positive parity.

Since the Hamiltonian H’ commutes with J; -component of the
angular momentum, with operator of the number of nucleons (for
protons and neutrons separately), and with P -component of the
linear momentum (see (4.4a)), the wave function describing the
nucleus state near the yrast line is characterized by quantum
numbers {ny, |, fn, | , N, Z, P ,J , where n, and 0 )

) (+) (+) -)
are numbers of both parity phonons of positive and negative
signature, respectively. For the states near the yrast line with
high spin it is possible to add to these quantum numbers the to-
tal angular momentum J, Using the method proposed in paper of
Marshalek /3/ for constructing the eigenstates of H’, which ge-
neralizes the RPA results for collective modes of H”’, one can

write:
IIA n
(€,) (+) ©€,) -)
|in)t an LN, Z, P LM>= I e I o -
A A
N @) Vel oo Vel
(+) (=)
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HN=Ng) X n UZ=Zo)x p 1Py X 1J~Jo) ¢
€ e e

x e —_— . — . —_— . —_— )(
\/27 V2 Ven Vv en 6.3
J-M
r*

X

v 10,0, Ng»Zg, 0, &+ 39>,
J-M!

where Xp; Xps9 and X are the yaFiables conjugated to the
N, Z, [‘ans P, respectively (N 1is the neutron nymber opera-
tor, and Z- the proton number operator). Notation in (6.3).15
the same as in ref. The ket |0,P,Ng,2Z4.0, Jg, Jp> descr%bes
the yrast line state with the angular momentum Jo(vith projec-—
tion J, onto x -axis), without the translation motion of nuc-
leus along x-axis and for nucleus with Ng neutrons énd Zo
protons. In analogy with/3/ we assume the.wave function )

l{n A }, {n I, N, Z, px, J, M > to be invariant under rotation
of(;Lgle(;J about the x-axis. This assumption leads to the con-
dition (see’/3/):

(-1) = =1, L (6.4)
This allows us to conclude: if a nucleus state contains the
even number of the negative signature phonons, the total angular
momentum must be even, and if the state is formed by the o@d
number of negative signature phonons, the total momentum J 1is

odd. This conclusion is independent of parity of phonons.

7. SUMMARY

The way of determination of the negative parity part of the
residual interaction given in section 3 of this paper is general
from the point of view of the form of nuclear average field. It
can be used for the axial symmetry form as well as for the non-—
axial one. )

The SCCM+RPA method, used in sections 4,5,6 to determine the
structure and energies of the nuclear states near the yra%% s
line, works well in the high-spin region where J,=J (see’™™ ).
However, the question remains at what spins does this region
begin. The first numerical calculaticns by this method,lzgich
have-been done for low-lying positive parity states in Er
and 138Dy in paper of Kvasil et al. 9/ show that SCCM+RPA method
provides quite good results for relatively small spins. The nu-
merical calculations for negative parity states are to be pre-
pared in the nearest future.
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APPENDIX A:
LINEAR MOMENTUM IN THE LAB. AND FIXED ROTATING SYSTEM

We suppose that the nucleus rotates in the lab. system around
the stable axis. This axis of stable rotation can be chosen as
axis X for the laboratory as well as for rotating system of
coordinates. The origin point for both systems can be fixed in
the center of mass of the nucleus in the ground state. It means.
that the total linear momentum in both systems is equal to zero
for the nuclear states on the yrast line. When the intrinsic
vibrational modes are excited in nucleus, the center of mass
can be shifted from the origin point of both systems of coordi-
nates and the total linear momentum in both systems can be non-
zero. Since the rotation of the fixed system takes place around
the x-axis, one can write

X=X

Y’ = Ycost + Z sinQt, (A1)

Z’ = -Y sinQt + Z cos{it,

where (X, Y’,Z2)and (X, Y,Z) are the center of mass coordinates

in the rotating 'and laboratory system, respectively. From the
point of view of the classical physics the relation (Al) yields
for the components of the total linear momentum:

P.=P,
X P4
Py,= F'y cosdt + Pz sinQt + MQZ°, (A2)

P =—Py sinQt + P, cosQt - MQY’ .
In the lab. system there is no strength acting on the nucleus
centre of mass, and therefore, the classical Lagrangian for the
center of mass has the form:
P+PI4Pl BZ (P .-MZ)? (P, +MOY)?
L = J = + =7 + . (A3)
2M 2M. 2M 2M

The generalized momenta corresponding to coordinates in the ro-
tating system are:

p - _p
*oxr ot

16

P _p .- MQZ’ =P _cosit + P, sinOt,
y aY'
' (a4)
B -9 _p..MaY’ = -P, sinQt+ P, costt,
z K z Yy
4z’
From the Lagrangian equation one can get
> . dP, : ~ 4P JL -
dpx = aL = 0 Y = aL = ﬂP ’ z =——:=“np . (AS)
a  9x- T da  9Y’ z' 4 9z Y

In quantum mechanics we must have in mind that P,, P, , P,
are the canonical conjugated to coordinates X’, Y’ , 2 (§ee
(A4)). The transition from classical to quantum mechanics is:

' Y
ﬁ. —_ -—i-pé—— = einnt PX e Jx ’
x
). 4
p - - 8 - e‘an" p e"”xﬂt , (A6)
y v’ Y
: i —J_{t
p, - —i2 o oM p T
z aZr

The quantum mechanics generalization of relations (A5) gives
then the conditions (2.5¢) for Hamiltonian H°’,

APPENDIX B:
LINEAR BOSON PART OF SINGLE-PARTICLE OPERATORS

Every single-particle operator can be expressed in the form
of an expansion in the two-quasiparticle bosons (see /% ).A par-
ticular form of each term in this expansion depends on the sym-
metry of a given single-particle operator under t':ime reversion,
complex conjugation, space reflection, and rotation of = around
X —axis. The positive parity single-particle cperators c?nnected
with (}/p=+1) part of the Hamiltonian H’ are discussed in
ref.’* therefore we give only the bgoson representation of the
operators Qulrl, Py(u=1x,y,2) and XX, E’.’,‘]= 1) , which are
connected with (yp=~1) part of the Hamiltonian H'.. Since the
negative parity operators have no zero-order term in the boson
expansion, we can write:

2 - (1) (2) = () (2)
Q,‘(f)=Q(,1‘)[_r] + Q(“)[r] #oevey Py =P+ Pplbi, X=X 0 Xyt e
(B1)
17



The explicit expressions for the linear boson part of the ope-

rators_ Pu, X# and Q#[r] are:

1) _ g =x,*t
P! = 2 p” (b“—+ b“"')v

m g -y 4 =y o+

W _14 5 (T2 +y, 5= +

P, = ) ﬁ [p’l (b y - b”) + P” (bl—j-- b'-j—)], (B2)
x(l)

=123 0eb ),
y oy ll)

x

(l-)_ -1 =Y o+
X VW= e 3 [x” (b” +b

y 2y if

=Yy +
) - x” (bl"j-" b--)] '3

1]

~Z
xu = Ez(x')"' (“'kl vtj + ulj vh).

a0 = @by wV g~V g)e

xu = S(XZ)U(UHV!I + ulj v“),

-y'
9; Tl- Et(qy,z[r])ke(uklvli + vuufj)'

BY L o - - =
ay [r] = 3 (Qy,z['])kl (u“vll Ay ),

where (P )y, (X )¢ and (@ 0r]) g
the Goodman basis (see )

Uyy and Vi

are the matrix elements in
are the matrices of

the Bogolubov transformation from the single-particle operators
to the single-quasiparticle operators (assignment as in ref./3/),
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