


At present an enormous experimental material on the proper­
ties of giant multipole resonances (GMR) is accumulated and 
continuously widened with the new data. For a most complete 
classification of the GMR properties see the reviews /1,21. In 
recent years much progress has been achieved in describing the 
GMR widths. It has been favoured by the understanding of the 
key role in describing the GMR properties of the coupling of 
simple one-phonon states with complex configurations. An im­
portant role of the quasiparticle-phonon interaction for the 
fragmentation of one-phonon states and thus for the formation 
of the G~ffi widths has been pointed out as far back as 1968-
1971 18• 41• Now this view-point is generally accepted. The basic 
theoretical works on the description of the GMR are reviewed 
in paper/51. Note, that it is in paper /6/ that the first quanti­
tative results on the properties of electric GMR taking into 
!lroron11nr rho n11!:lc~n!3rrirolP-nhnnnn int-Pr~rt-inn h~VP hPPn oht::tined. 
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Equations, allowing for the quasiparticle-phonon interaction, 
for the fragmentation of one-quasiparticle and one-phonon states 
have been derived in papers 17,8/. To calculate the GMR widths, 
one should take into account both the spreading widths r • and 
the escape widths r'. However, the latter have a smaller value 
as compared to the first ones in medium and heavy nuclei, there­
fore, the main problem is to calculate r. by taking into ac­
count the 2p-2h configurations. Within the quasiparticle-phonon 
nuclear model (QPM) 191 this problem is solved by introducing 
the two-phonon components into the wave function. General equa­
tions of this type are given in papers/9,101. The GMR properties 
of many spherical nuclei (magic and nonmagic) ,.,ith 58~ A~ 208 
have been studied in detail within the QPM in papers /11·14/. In 
describing the electric Grm in spherical nuclei, the 2p-2h con­
figurations have been taken into account in 115"211.As a rule, 
the calculations are performed for twice magic nuclei. 

The present paper is a sequel of the study of the electric 
GMR: the characteristics of the isoscalar quadrupole resonances 
are calculated, the QPM is compared with the nuclear field theo­
ry (NFT) 116• 191 and the influence of corrections due to the Pau­
li principle in the two-phonon components of the GMR wave func­
tions on the GMR excitation probabilities is studied. 
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I. BASIC FORMULAE AND DETAILS OF CALCULATION 

Within the QPM the fragmentation is calculated by using as 
a basis the one-phonon states, the wave functions of which are 
calculated in the RPA. While constructing the basis, all the 
model parameters are fixed. The strength function method is 
u~e~, and the r~duced transition probabilities, transition den­
S1t1es, scatter1ng cross sections and other nuclear characte­
ristics are calculated immediately without solving the corres­
ponding secular equations/9/, 

The QPM Hamiltonian contains the terms describing the ave­
rage n~clear field as the Saxon-Woods potential, pairing in­
t~ract1~ns, multipole:nultipole and spin-multipole - spin-muf­
t1p~le 1soscalar and 1sovector including charge-exchange inter­
act1ons. The general properties of the Hamiltonian are presented 
. /9/ I . 1n paper • n the g1ven paper we shall dwell upon the particle-
hole channel alone. 

The excited state wave function of a doubly even spherical 
nucleus can be written down as 

where '1'0 is the phonon vacuum and the ground state wave func­
tion. By calculating an average value of the QPU Hamiltonian 
over the states (I) and using the variational principle one can 
get a system of eauations for determining the coefficie~ts R 
~nd P. ~n paper 11 . 1 t~e secular equation in the two-phonon space 
1s obta1ned, and 1t 1s shown that a large set of diagrams is 
summed. In this case many diagrams are used which influence 
slightly the fragmentation of one-phonon states. By rejecting 
them, one can pass to approximate equations. In this case the 
secular equation is written down in the one-phonon space as 

(2) 

where 
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,,,Atit d .~,.>-tit . "'J j an .., are the phonon amphtudes determined from the 
1 e J tie 

solution of the RPA equation, and ~(>. 1i 1 ,>.2 i 2) is the two-lho­
non pole shift, the explicit form of it is given in ref.

110
• 

As has been shown in papers122<this shift should be taken into 
account calculating the low-lying states. In calculating the 
GMR the shift is small and it can be neglected. 

The wave function (I) is normalized as follows: 

<'I'; (JM)'I'v (JM) > = I. (R pv ))2 
+ 2 I. 

i .\1 11 

,\2 1e 

X 

(4) 

Within the QPM the diagrams given in fig.l (a,b,c) are taken 
into account in the one-phonon space. The diagrams in figs. lb 
and lc correspond to the corrections due to the exact inclusion 
of the Pauli principle in the two-phonon components of the wave 
function (1). It is shown in paper7191 that only particular cases 
of the diagram in fig.la, given in fig.ld, are taken into ac­
count in the calculations within the NFT. Namely, when one d 
the intermediate phonons is changed by the two-quasiparticle 
states and strongly collectivized phonons are used as the oth~r 
phonon. It should be noted that in all modern theoretical calcu­
lations allowing for the 2p-2h configurations 110'

201 
only the di­

agrams of the type of fig.la are used for practical calculations 
(for the discussion of this problem see papers 

10
·

191
). 

Consider eq. (2). The rank of the determinant is equal to 
the number of one-phonon states in the first term of the wave 

functj.on (1). The factor ll + ~ K
1

(>.1il'.\2i 2)1 is the result 

of the Pauli principle corrections in the two-phonon components 
of the wave function (1). For the components forbidden strictly 
by the Pauli principle KJ = -2 and the corresponding terms are 
excluded from the sum in formulae (2) and (4), With K1 

= 0, the 
secular equation (2) transforms into the well-known equation 

3 



Ji 

A4i, ~zi.2. 

Ji' 

a) 

:Ji :Ji 

I ~ 

:Ji' 
d) 

j i' 

Ji Ji 

~ziz A1i1 Aziz 

ftziz Az iz A1i 1 

1 i' Ji' 

b) C) 

Fig.l. Diagrams included in the 
QPM (a,b,c) and NFT (c). 

d . 111-14/ . 
use 1n papers for the study of the fragmentation of one-
phonon and two-quasiparticle states. For this purpose the GIRES 
program1231 was used, in which the two-phonon components with two 
~oncollective phonons violating the Pauli principle were excluded 
1n the process of numerical solution of eq. (2) with KJ = 0. Un­
der.such a procedure, the shift of two-phonon poles, which may 
be 1mportant for some low-lying states, was not taken into ac­
c~unt, and a part of the components permitted by the Pauli prin­
C1ple was excluded. Below, by the numerical example, we shall 
compare the results of an approximate and exact inclusion of the 
Pauli principle. 

The strength function method frequently used in the calcu­
lations within the QPM allows one to calculate the strength 
distribution of any physical quantity averaged over the energy 
interval A without solving eq. (2). In the general case the 
strength function has the form 

b(A, 71) = .!. 1m ll: d 
11

, (71 + iA/2) "'
11 

:Ill Ji ,/~ (71 + iA/2) I , 
, ii' 

(5) 

where (f 11 , are cofactors of the determinant (2) at complex ener­
gy values. A concrete form of the matrix elements :Ill Ji depends 
on the process under consideration191. In the present paper :lll.rt 
correspond to the matrix elements of the EA -transitions from 
the ground to the one-phonon states. 

The method of choosinl, the constants of the QPM Hamiltonian 
is described in papers 1 ' 11"141. In this paper we use the same 
set of parameters as in papers /12, 14, 24/. 

2. THE RESULTS OF CALCULATION 

Now we study the influence of a more exact inclusion of the 
Pauli principle in the two-phonon components of the wave func­
tion (1) as compared to an approximate procedure used within 
the QP~ 110" 141• The strength distributions of the isoscalar giant 
quadrupole resonance in 118sn are shown in fig.2. For the cal­
_,,,~+-~~~ ~f' +-1-.~ ~t-.-on<>t-1-. f'11nrt-innc, hfF.2. n) with an exact inclu-
;i~~-~f-·th~ P~~li -~~i~~iple, we have -us.ed the function 5(71) 
determined by formula (2) at Aw=O, as for the GMR the renorma­
lization of two-phonon poles is smalli22~As one can see from 
fig.2, a more exact inclusion of the Pauli principle somewhat 
diminishes the b(E2,71) -value at maximum, whereas the integral 
strength decreases only by 5% in the interval from 5 to 14 MeV. 
On the whole, an approximate procedure of elimination of the 

. 1' . . 1 1' d . 1281 states forb1dden by the Pau 1 pr1nc1p e, rea 1ze 1n paper , 
is almost equiyalent to an exact inclusion of the diagrams 1b 
and 1c, though it is much simpler from the computational point 
of view. For the states, which are not strictly forbidden by the 
Pauli principle, the interaction renormalization due to the Pauli 
principle corrections turns out to be weak. The neglect of the 
requirements following from the Pauli principle may lead to the 
appearance of many spurious two-phonon components in the wave 
function (1). 

LeD us consider how strong is the difference of the results 
of calculations within the QPM, when the diagrams of the type 
of figs.la-lb are summed, in comparison with the results of 
calculations within the NFT, when the diagrams shown in fig.1c 
are summed. Within the NFT in the diagrams 1a a collective and 
a noncollective phonons are used as the intermediare phonons 
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Fig,2. Strength functions 
b(E2, '1/) in 118 Sn (.1 = 0. 2 MeV). 
Solid line is the calcula-
tion with an exact inclusion 
of the Pauli principle, da­
shed line is the calculation 
with an approximate inclu­
sion of the Pauli principle. 
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(the two-quasiparticle state, in fact). The division of phonons 
into collective and noncollective or weakly collective is some­
what arbitrary. We consider the one-phonon state to be collec­
tive if in the normalization of its wave function there are no 

. components giving a more than so:~ contribution. The states that 
do not satisfy this criterion are thought to be weakly collec­
tive. The results of calculations within the QPM and NFT are 
given for the giant isovector dipole resonance in 118 Sn ( .1 = 
= 0.2 MeV) in fig.3 and for the isoscalar quadrupole resonance 
in 

118
Sn (.1 = 0.5 MeV) and 208 Pb (.1= 0.2 MeV) in fig.4. It is 

seen from these figures that the QPM and NFT provide similar 
results, though within the QPM calculations the GMR strength 
is fragmented somewhat stronger. Though the amplitude of peaks 
obtained with the inclusion of the diagrams lc is a little lar­
ger, on the whole both the calculations give the same gross­
structure of the E2-strength distribution. This indicates that 
the most important diagrams are taken into account within the 
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Fig.S. Strength function b(E2) 
and B(E2) -values calculated 
in the RPA for 144 Nd. 

14 ~.MeV 

N~~ N0~~. ~ho~ ~h~ ~~nr~-mo~~ ~nn~ln~inn~ remain Valid if a 30%­
Value is taken as a criterion of the phonon collectivity. In 
this case the values of strength functions change very slightly. 

A possibility of making calculations in nuclei with open 
shells is one of the advantages of the QPM. This is demonstrated 
in paper112/ in calculating the total cross sections of the dipole 
photoabsorption in 124 Te and 14° Ce. The results of calculations 
of the strength functions b(E2,~ in 144 Nd are presented in 
fig.S. The RPA calculations, given in this figure, show that 
the total isoscalar E2 resonance strength is concentrated on 
two solutions at the excitation energies of about 12 MeV. The 
coupling with the two-phonon states redistributes the resonance 
strength in the energy interval from 10 to 14 MeV. This figure 
clearly demonstrates the appearance of the E2 resonance width 
due to the fragmentation of one-phonon states. The integral 
characteristics of the isoscalar giant quadrupole resonances 
are illustrated in the table. The E2 resonance widths have been 
calculated by the standard formula for the Gauss distribution 
(see refs. 15•81 ). In the nuclei under consideration from SO to 
707, of the isoscalar energy weighted sum rule (EWSR) is exhausted 
in the E2 resonance region. The calculated energy values are ve­
ry close in the experimental systematics for the energies of the 
isoscalar E2 resonance Ex - 65 A-11\iev. The isoscalar E2 reso- . 
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~an~e in 208 Pb is ra~her well studied experimentally. However, 
1t 1s not yet establ1shed what part of the model independent 
EWSR is exhausted in the resonance region. According to the 
experimental papers 127•281 on the excitation of the E2 resonance 
in (a, a') and (d, d') in 208 Pb, Ex= 10.5-10.9 MeV and (60-80)% 
of the EWSR is exhausted. Many 2+ states have been observed 
in the excitation energy interval 8-12 MeV in the electron scat­
tering on 208ptJ'29/, There is a rather strong fragmentation of 
strength with individual centers of gravity around Ex. 8.9, 
I0.2, I0.6 MeV. The experimentally measured E2 resonance 

h . (29+II)"' . strengt 1s _
8 

,. of the EWSR. As 1s seen from fig.4, the 

calculated strength function in 208 Pb also has substructures at 
energies 8.8, 9.5, I0.4 and. 10.8 MeV. However, it should be 
mentioned that in the calculations with I:!. = 0. 2 MeV a fine 
structure of peaks is smeared. The strength function b(E2,~) 
calculated with I:!.= 0.05 MeV is exemplified in fig.6. It is 
seen from this figure that the quadrupole resonance in208pb 
has a rich fine structure. The E2 resonance gross-structure is 
due to the coupling of the one-phonon state with the two-phonon 
states including collective phonons. A fine structure is to 
a great extent due to the two-phonon states constructed of non­
collective phonons. According to the theoretical calculati-
ons 114·201, about 70% of the EWSR is exhausted. Recently, new data 
on the GMR excitation in 208pb in the inelastic SHe scattering 
has been reported in paper130~It was observed in these experi~ 
ments that a hexadecapole resonance exhausting (23-29%) of the 
EWSR is also localized in the E2 resonance region. For the quad­
rupole resonance the EWSR is exhausted by (32-50)%. According 
to our calculations, several 4+ states exhausting about I8% of 

Table 

Properties of the giant quadrupole resonances 

Experiment Calculated 
Nucleus 

Ex' MeV r, MeV EWSR(%) ref. Ex, MeV r,MeV EWSR(/;) 

ussn -I2 /25/ 12 .I 2.1 51.7 
144Nd II.9 2 .I 49.4 

208pb I0.9+0.3 2.4+0.4 80 /26/ 9.6 1.8 66 
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8 9 10 11 ~,MeV 
Fig.6. Strength function b(E2,71) for 208 Pb, calculated 
with~ = 0.05 MeV. 

the EWSR lie at energies with the center of mass Ex = I 0. 2 MeV. 
Close results have been obtained within the NFT119~Thus, the 

• • 1 .. • ,.. • .. .... , - - - ! - - ~ - ~ --, - - _.1 
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agreement with the theoretical calculations, though the problem 
of the E2 resonance strength is still open. 

CONCLUSION 

In the present paper we have demonstrated the possibilities 
of the QPM in describing the GMR properties in magic and non­
magic nuclei. It is shown that the calculations within the NFT 
and QPM provide close results, though the latter takes into ac­
count a wider class of diagrams. Our calculations have also shown 
that an approximate inclusion of the Pauli priqciple, widely 
used within the QPM, turns out to be practically equivalent to 
an exact inclusion of the Pauli principle for the two-phonon 
components. In describing the GMR properties various theoreti­
cal schemes provide close results, though in some cases there 
is a considerable difference between the data from various re­
actions and theoretical calculations. 
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