


At present an enormous experimental material on the proper-
ties of giant multipole resonances (GMR) is accumulated and
continuously widened with the new data. For a most complete
classification of the GMR properties see the reviews/1:2/ 1In
recent years much progress has been achieved in describing the
GMR widths, It has been favoured by the understanding of the
key role in describing the GMR properties of the coupling of
simple one-phonon states with complex configurations. An im-
portant role of the quasiparticle-phonon interaction for the
fragmentation of one-phonon states and thus for the formation
of the GMR widths has been pointed out as far back as 1968-
1971734 Now this view-point is generally accepted. The basic
theoretical works on the description of the GMR are reviewed
in paper’/% Note, that it is in paper 78/ that the first quanti-
tative results on the properties of electric GMR taking into
account the auacinarticle—phanan intaraction have heen obtained.
Equations, allowing for the quasiparticle-phonon interaction,
for the fragmentation of one—quasiparticle and one-phonon states
have been derived in papers /7'8/ To calculate the GMR widths,
one should take into account both the spreading widths I' ¥ and
the escape widths I''. However, the latter have a smaller value
as compared to the first ones in medium and heavy nuclei, there-
fore, the main problem is to calculate I'* by taking into ac-
count the 2p-2h configurations. Within the quasiparticle-phonon
nuclear model (QPM) /% this problem is solved by introducing
the two-phonon components into the wave function. General equa-
tions of this type are given in papers/9:10/ The GMR properties
of many spherical nuclei (magic and nonmagic) with 58 < A £ 208
have been studied in detail within the QPM in papers /11-14/ 1In
describing the electric GMR in spherical nuclei, the 2p-2h con-
figurations have been taken into account in’">" 1/ As a rule,
the calculations are performed for twice magic nuclei.

The present paper is a sequel of the study of the electric
GMR: the characteristics of the isoscalar quadrupole resonances
are calculated, the QPM is compared with the nuclear field theo-
ry (NFT)/18:19/ 454 the influence of corrections due to the Pau-
1li principle in the two-phonon components of the GMR wave func-
tions on the GMR excitation probabilities is studied.
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1. BASIC FORMULAE AND DETAILS OF CALCULATION

Within the QPM the fragmentation is calculated by using as
a basis the one-phonon states, the wave functions of which are
calculated in the RPA. While constructing the basis, all the
model parameters are fixed. The strength function method is
used, and the reduced transition probabilities, transition den-
sities, scattering cross sections and other nuclear characte-
ristics are calculated immediately without solving the corres-
ponding secular equations’/%.

The QPM Hamiltonian contains the terms describing the ave-
rage nuclear field as the Saxon-Woods potential, pairing in-
teractions, multipole-multipole and spin-multipole - spin-mul-
tipole isoscalar and isovector including charge-exchange inter-
actions. The general properties of the Hamiltonian are presented
in paper/g/. In the given paper we shall dwell upon the particle-
hole channel alone.

The excited state wave function of a doubly even spherical
nucleus can be written down as
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where ¥, is the phonon vacuum and the ground state wave func-—
tion. By calculating an average value of the QPM Hamiltonian
over the states (1) and using the variational principle, one can
get a system of equations for determining the coefficients R
and P. In paper/1 / the secular equation in the two-phonon space
is obtained, and it is shown that a large set of diagrams is
summed. In this case many diagrams are used which influence
slightly the fragmentation of one-phonon states. By rejecting
them, one can pass to approximate equations. In this case the
secular equation is written down in the one-phonon space as

,ff(nu) = det|{(@ -1,)8;;- -

A Aqd J (2)
ullanu i lae 1K7a1, a1,
_r g 22 2le 3 =0
2 Agiy “’).1i1+“’).212+A“’()‘1i1')‘212)"’u
Agig

where

Iy dg A

J fg+ig3

K'Wyig, Agdp) = j ,2, ’ =) @+ 1@Rp+ 1)1 dg dy Ay [ %5
Aty Agdy Aplg  Apd Aly Aqly Apip  Apt

x [y L1y 11y 28 ele _ M1 011 glee gt 2y
Igly Tydg dgle T il Ig3oPydg Tigle Tide

¢??1and ¢?1?'are the phonon amplitudes determined from the
1’2 1'g

solution of the RPA equation, and AwQ yig,Apip) is the tyﬁ;pho-
non pole shift, the explicit form of it is given in ref. .
As has been shown in papers/®#/ this shift should be taken into
account calculating the low-lying states. In calculating the
CMR the shift is small and it can be neglected.

The wave function (1) is normalized as follows:
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Within the QPM the diagrams given in fig.1 (a,b,c) are taken
into account in the one-phonon space. The diagrams in figs.]b
and lc correspond to the corrections due to the exact inclusion
of the Pauli principle in the two-phonon components of the wave
function (1). It is shown in paper/lg/that only particular cases
of the diagram in fig.la, given in fig.ld, are taken into ac-
count in the calculations within the NFT. Namely, when one cf
the intermediate phonons is changed by the two—quasiparticle
states and strongly collectivized phonons are used as the other
phonon. It should be noted that in all modern theoretical calcu-
lations allowing for the 2p-Zh configurations/l&ZO/ only the di-
agrams of the type of fig.la are used for pracg%c?g/calculations
(for the discussion of this problem see papers ’ ).

Consider eq. (2). The rank of the determinant is equal to
the number of one-phonon states in the first term of the wave

J n .
functjon (1). The factor {1 + %?K (Alil,kglz)i is the result

of the Pauli principle corrections in the two-phonon components
of the wave function (1). For the components forbidden strictly
by the Pauli principle K3 = -2 and the corresponding terms are
excluded from the sum in formulae (2) and (4). With X7 =0, the
secular equation (2) transforms into the well-known equation
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d) QPM (a,b,c) and NFT (c).

used in papers/1b14/for the study of the fragmentation of one-
phonon ?nd two-quasiparticle states. For this purpose the GIRES
program’28/ was used, in which the two-phonon components with two
noncollective phonons violating the Pauli principle were excluded
in the process of numerical solution of eq.(2) with K7 = 0. Un-
der.such a procedure, the shift of two-phonon poles, which may

be important for some low-lying states, was not taken into ac-
count, and a part of the components permitted by the Pauli prin-
ciple was excluded. Below, by the numerical example, we shall

compare Fhe results of an approximate and exact inclusion of the
Pauli principle.
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The strength function method frequently used in the calcu-
lations within the QPM allows one to calculate the strength
distribution of any physical quantity averaged over the energy
interval A without solving eq. (2). In the general case the
strength function has the form

1 ' :
b(A, n) = -ﬂ-m{f’d“,(n + .m/z)mnm“,/:} (n+ 1A/2)}, (5)

where (- are cofactors of the determinant (2) at complex ener-
gy values. A concrete form of the matrix elements Mj; depends
on the process under consideration’?, In the present paper My
correspond to the matrix elements of the EA -transitions from
the ground to the one-phonon states.

The method of choosiﬁﬁ the constants of the QPM Hamiltonian
is described in papers /9, 1114/ 14 this paper we use the same
set of parameters as in papers/12,14,24/

2, THE RESULTS OF CALCULATION

Now we study the influence of a more exact inclusion of the
Pauli principle in the two-—phonon components of the wave func-
tion (1) as compared to an approximate procedure used within
the QPM/1w14<The strength distributions of the isoscalar giant
quadrupole resonance in 1188n are shown in fig.2. For the cal-
sion of the Pauli principle, we have used the function F(y)
determined by formula (2) at Aw =0, as for the GMR the renorma-—
lization of two-phonon poles is small’/22/ As one can see from
fig.2, a more exact inclusion of the Pauli principle somewhat
diminishes the b(EZ2, ) —-value at maximum, whereas the integral
strength decreases only by 5% in the interval from 5 to 14 MeV.
On the whole, an approximate procedure of elimination of the
states forbidden by the Pauli principle, realized in paper 28/,
is almost equivalent to an exact inclusion of the diagrams 1b
and lc, though it is much simpler from the computational point
of view. For the states, which are not strictly forbidden by the
Pauli principle, the interaction renormalization due to the Pauli
principle corrections turns out to be weak. The neglect of the
requirements following from the Pauli principle may lead to the
appearance of many spurious two-phonon components in the wave
function (1).

Letr us consider how strong is the difference of the results
of calculations within the QPM, when the diagrams of the type
of figs.la-lb are summed, in comparison with the results of
calculations within the NFT, when the diagrams shown in fig.lc
are summed. Within the NFT in the diagrams la a collective and
a noncollective phonons are used as the intermediare phonons



. >
. 2 Fig.2. Strength functions 2
b(E2,h)e®fm*/Mev BE2, 1) in 11880 (A = 0.2 MeV). =
Solid line is the calcula- 1=
10 3 tion with an exact inclusion '
- x 10

A of the Pauli principle, da-

It shed line is the calculation ' 12
11 with an approximate inclu-
Iy . . ncinl
| | sion of the Pauli principle.
8] 18, , lo
1
!
' C
61
>
Q
b3
=
E
A %
Lo
=
w
0
24

4

18 ).Me/

(the two-quasiparticle state, in fact). The division of phonons
into collective and noncollective or weakly collective is some-
what arbitrary. We consider the one-phonon state to be collec-
tive if in the normalization of its wave function there are no
.components giving a more than 507 contribution. The states that
do not satisfy this criterion are thought to be weakly collec- <52 ]
tive. The results of calculations within the QPM and NFT are

given for the giant isovector dipole resonance in !188n (A =

= 0.2 MeV) in fig.3 and for the isoscalar quadrupole resonance ‘
in %80 (A = 0.5 Mev) and 2%%Pb (A= 0.2 MeV) in fig.4. It is

seen from these figures that the QPM and NFT provide similar
results, though within the QPM calculations the GMR strength

is fragmented somewhat stronger. Though the amplitude of peaks
obtained with the inclusion of the diagrams lc is a little lar-
ger, on the whole both the calculations give the same gross-
structure of the E2-strength distribution. This indicates that

the most important diagrams are taken into account within the
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NET Noto that tha afore-made ranelnsions remain valid if a 30%-
value is taken as a criterion of the phonon collectivity. In
this case the values of strength functions change very slightly.
A possibility of making calculations in nuclei with open
shells is one of the advantages of the QPM. This is demonstrated
in paper’/!®/ in calculating the total cross sections of the.dipole
photoabsorption in 1241 and 140ce, The results of calculaglons
of the strength functions WEZ2,7n) in 144Ng are presented in
fig.5. The RPA calculations, given in this figure, show that
the total isoscalar E2 resonance strength is concentrated on
two solutions at the excitation energies of about 12 MeV. The
coupling with the two-phonon states redistributes the resonance
strength in the energy interval from 10 to 14 MeV. This f%gure
clearly demonstrates the appearance of the E2 resonance width
due to the fragmentation of one-phonon states. The integral
characteristics of the isoscalar giant quadrupole resonances
are illustrated in the table. The E2 resonance widths have.been
calculated by the standard formula for the Gauss distribution
(see refs./sﬁ/ ). In the nuclei under consideration from 50 to
707 of the isoscalar energy weighted sum rule (EWSR) is exhausted
in the E2 resonance region. The calculated energy values are ve-
ry close in the experimental syiigmatics for the energies of the
isoscalar E2 resonance E_ -~ 66A MeV, The isoscalar E2 reso-

nance in 298Pb is rather well studied experimentally. However,
it is not yet established what part of the model independent
EWSR is exhausted in the resonance region. According to the
experimental papers/zmzs/ on the excitation of the E2 resonance
in (a,a”) and @, d) in 298Pb, E ;= 10.5-10.9 MeV and (60-80)%

of the EWSR is exhausted. Many 2% states have been observed

in the excitation energy interval 8-12 MeV in the electron scat-
tering on 208PW29/, There is a rather strong fragmentation of
strength with individual centers of gravity around E ; = 8.9,
10.2, 10.6 MeV. The experimentally measured E2 resonance

strength is (29ié1)2 of the EWSR. As is seen from fig.4, the

calculated strength function in 208pb also has substructures at
energies 8.8, 9.5, 10.4 and. 10.8 MeV. However, it should be
mentioned that in the calculations with A = 0.2 MeV a fine
structure of peaks is smeared. The strength function b(EZ, )
calculated with A = 0.05 MeV is exemplified in fig.6. It is
seen from this figure that the quadrupole resonance in 208Pb

has a rich fine structure. The E2 resonance gross-structure is
due to the coupling of the one-phonon state with the two-phonon
states including collective phonons. A fine structure is to

a great extent due to the two-phonon states constructed of non-
collective phonons. According to the theoretical calculati-

ons /14-20/ about 70% of the EWSR is exhausted. Recently, new data
on the GMR excitation in £298pp in the inelastic 3He scatterine
has been reported in paper’/30/.1t was observed in these experi-
ments that a hexadecapole resonance exhausting (23-297%) of the
EWSR is also localized in the E2 resonance region. For the quad-
rupole resonance the EWSR is exhausted by (32-50)%. According

to our calculations, several 4% states exhausting about 18% of

Table
Properties of the giant quadrupole resonances
Experiment ’ Calculated
Nucleus
E_, MeV T, MeV EWSR(Z) ref. E,MeV T,MeV EWSR(Y)
118 ~12 - - /25/ 12,1 2.1 51.7
144nq - - - - 11.9 2.1 49.4
208pp  10.9+0.3 2.4+0.4 80 /26/ 9.6 1.8 66
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Fig.6. Strength function WEZ2,n) for 208 pp, calculated
with A = 0.05 MeV,

the EWSR lie at energies with the center of mass E; = 10.2 MeV.
Close results have been obtained within the NFT/lgcThus, the
capeLiwcuiai daia Lue tie L4 resullauic aie i a ifaiily gooa
agreement with the theoretical calculations, though the problem
of the E2 resonance strength is still open.

CONCLUSION

In the present paper we have demonstrated the possibilities
of the QPM in describing the GMR properties in magic and non-
magic nuclei, It is shown that the calculations within the NFT
and QPM provide close results, though the latter takes into ac-
count a wider class of diagrams. Our calculations have also shown
that an approximate inclusion of the Pauli primnciple, widely
used within the QPM, turns out to be practically equivalent to
an exact inclusion of the Pauli principle for the two-phonon
components. In describing the GMR properties various theoreti-
cal schemes provide close results, though in some cases there
is a considerable difference between the data from various re-
actions and theoretical calculations.
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