


1. INTRODUCTION

Low-lying states of nuclei have been intensively studied both
experimentally and theoretically in last decades. It has been
well established that the low-lying states of spherical nuclei
have a vibrational character while the deformed nuclei are good
rotators. In the transitional nuclei an intermediate picture is
observed: the vibrational and rotational degrees of freedom are
coupled. It is usually assumed that the nuclei in the ground
state possess at least one symmetry axis. However, recently a
vast experimetal material obtained by Davidson et al./Y, for
188gr jndicates, according to the analysis performed by Bohr
and Mottelson’?’s (see also the paper of Dumitrescu and Hamamo-
to’3/), a possibility of the existence of nonaxial deformation
in the ground state and in the neighbouring states.

—~—1n 188Er 4 collective 4; state is observed which is assumed
to have a two-phonon y-vibrational stucture %3/, The ratio of
the energy of this two-phonon state to the corresponding energy
of a one-phonon states is
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that indicates sizeable unharmonic effects in this nucleus. How-
ever, the additional data obtained recently/‘/ allow one to
ascribe this 4} state (2031 KeV) to a rotational band with K =
=0: with the bandhead in 1833.5 keV that probably is a two-pho-
non state. Therefore the analysis of refs./23 is relevant ra-
ther to the I = 4 state with E = 2,055 MeV, also seen in the
data.

The existence or nonexistence of the collective two-phonon
states in the low-lying energy region in deformed nuclei has
been also discussed in 9< where the conclusion about nonexisten-
ce of the two—phonon low-lying states in the deformed nuclei
has been made.

One can see that the question of existence of the low-lying
collective two-phonon states in deformed nuclei is connected
with the unharmonicity effects caused by the small nonaxialy -
deformation in these states. Therefore the main aim of this pa-
per is to investigate the softness of a deformed nuclear field
with respect to nonaxial deformations.
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Fig. 1. The dependence of the zero-y vibration ampli-
tude and the total energy difference E ,, (y = 20°) -
E ot (y = 0°) on the neutron number for isotopes of
Qad, I?y, Er and Yb. The zero amplitudes y; have been
obtained from B(E2, gs » 2)) values /22-217 and are gi-
ven with their exp. errors.

'!The.a e.malysis of the experimental data on B(E2) redﬁced pro-
bibllltles of transitions from the ground state to a low-lying
2}, state performed in this work indicates quite large y, ampli-
tudes (yg ~ 10°) for some well deformed nuclei in the vgcinity
of ]?y and Er (see fig. 1). The large values of these amplitudes
man}fest the susceptibility of these nuclei to nonaxial defor-
mations. It should be remarked that calculations performed in
1968 by Arseniev et al.’® for some nuclei in this region have
a]..rtaady shown such an effect which, however, remains unnoticed
Similar calculations have been done by Kumar et al 8/ p -
ski et al.’?” and Gotz /% /5.8,7/ i1 ’ oten

K n tz . In refs. the Nilsson poten-
tial has been used, whereas in ref.’¥ the Wood-Saxon potenti-
aZ_L was employed. In all these papers the hexadecapole deforma-
tion wasn't taken into account in treating of nonaxial. degrees
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of freedom. In the present work we include the nonaxial hexa-

decapole deformation.
1)

2. DESCRIPTION OF THE METHOD

In our calculations we apply the shell-correction method
developed by Strutinsky /10,11,18/ | As this method is widely
described in the literature, we restrict ourselves to a brief

presentation of its basic assumptions.
Let us write the deformation energy in the usual form:

E - E 5B + SEH), @)

where EpgB) is a liquid-drop component and SE(B) is a shell
correction. ELp, which is a smooth function of the deformation
and particle numbers, N and Z, can be written in the droplet
model /13-18/ ag:

By B = EY (BB -1 + 2B, B - 1), 3)

where ‘Bc(é) and B,(é) describe the Coulomb and nuclear-surface
energy, respectively, and are normalized so that they become
unity for spherical nuclei

B~ 17.430 (1 -k(N; Ly%12%® Mev,
e = &5y /is0.88 - k(22" A
A ‘ A ' )

k =1.7828.

In the above formulaeﬁ is a set of the parameters characteriz-
ing the nuclear shape. The nuclear surface for moderate defor-
mations can be described by using the multiple expansion

~ 4
R(Q) = C(B) Ro[l + LEE ‘{.‘ BLMYEJQ)] s (5)

where ﬁCM=(—1)MB Ly ,Q stands for the set of the polar angles
(¢,0) and Rog=rg A is the radius of the corresponding sphe-
rical nucleus. The function C(B) secures the conservation of

the nuclear volume with changes of the nuclear surface.




One can choose a coordinate system in which

Bety =0, Bgy =B, (6)
and introduce Bohr parameters B, and y

Bgo = By cosy,

(7
Bgp = Bg_p = —E_-g:siny.

In such a parametrization of the quadrupole degrees of freedom,
axially symmetric fiuclear surfaces are described by y =kZ.,

(k =0, +1, +2, +3). To extend this property to hexadecapole
degrees of freedom, we have used the Cayley-Hamilton theorem

to write the spherical, rank-four tensor, B4M as 7?1/,

B
By = —-61(5 cos?y + 1),

By = Byop = % sin2y ,

(8)
B4
. 35 .
Byg = Byey = -é—\/-—z— sin®y

'84i1= B413 =0.

A more general parametrization of hexadecgyole degrees of free-—
dom has been suggested recently in ref.’'® | Relations (8) 1leave
us with a set of three independent deformation parameters.

The shell corrections in formula (2), 8E(B), have been calcu-
lated in the usual way /18-18/ by means of a correction polyno-
mial of the sixth order, using the single particle spectrum of

the Saxon-Woods potential. The latter has been taken in the
form /17,18/

VG B) = Vo/[1+ exp(t(F B)/a)], (9)

where V; is the depth of the potential well and a is the diffu-
seness of the nuclear surface. The function Zﬁ:ﬁ), describing
the distance between a given point T and the nuclear surface,
has been determined numerically and taken negative for points

4

Table 1
Parameters of the Wood-Saxon average field potential
i

for 162Dy
Central potential Spin-orbital potential
Fo a Vc (N‘o‘) S0 (_a)go ;l
[£m] [tm} | [em)] {tm] | [fo]
Prot . 1.275 0.7 -57-5 0.901 0.7 18.51
eut.  [1.347 | 0.7 [ 417 1.221 0.7| 32.82

inside the nucleus. For spherical nuclei £(f, B =0).= r - ROQ
where R0==r0A1/9, is the radius of the corresponding §pher1-
cal nucleus. The usual form of the spin orbit interactin has
been assumed:

2 2 . -
B\ (Vvxo).sl . am

> A
= (R .
Voo [ B = =Moo ‘0~ <07 g0

where 3 and 8 are nucleon momentum and spin operétors, respec-
tively, and V is given by eq. (9) Yith ?O)sq being the corres-
ponding spin-orbit interaction radius given in table 1. The )
Coulomb potential for protons has been determined as a ClaSS}’
cal electrostatic potential of a uniforyly charged nuc}eus with
a nuclear shape given by eq. (5), and with Coulomb radius (ry),,
equal to the radius of the central part: (ro)c = l.?75 fm, All
calculations presented in this paper have been carried out by
using the level spectrum of ¥2Dynucleus. The velgfs of para-
meters used in the calculations taken from ref./lg/are listed
in table 1. The pairing strength given in ref.’1% equals

G, =[CGo7 G, (N -2)1/A,

where.
Gy = 18.95
for neutrons
G, = 0.078



Gy = 17.90
for protons. (11)
’01 = 0.176

3. RESULTS

The calculation was performed for nuclei in the rare-earth
region: 54-170‘Gd , 158*170Dy, 158-170Er’ and 162-172 Yb. For
these nuclei energies were calculated at deformation points
(ﬁz,ﬁ4 ,¥) in limits:

B < [0.21 (0.04) 0.33],
B4 €[-0.02 (0.03) 0.07], (12)

y < [0° (4°) 20°].
The results are analysed in the form of contour-maps showing
the energies in the (By, y) and (B,, y) planes. At each point
(ﬁg, y) and (ﬁ&, y ) the minimization was performed with respect
to B, and B, , respectively.

Figures 2 and 3 show examples of such contour maps for Gd,
Dy, Er, and Yb, and for N= 96, 98 and 100. It is seen from
the figures that for N = 96 and 98 the nuclei of Dy, Er, and
'‘Gd are quite susceptible to nonaxial  deformations. This effect

ie maet nranammrad far 164]’\?. vhara v = 14° correcpeonds tC oo
energy increase from the minimum only by about 200 keV. One
should notice for comparison that the nuclei of YD are rather
rigid with respect to nonaxial deformations. It is also seen
that the trajectory of the minimum energy of fixed y corresponds
to an approximately constant Bg(B,) and vice versa. (see also
Figs. 7 and 8).

It is interesting to observe that this result of our calcu-
lations coincides with the assumption made by Bohr and Mottel-
son in their analysis L Figure 4 shows the dependence of com-
ponents of the total energy ofle4Dyon the parameter y. (It
should be noticed that the total energy was minimized with
respect to 8, and B, at each point y of fig. 4. Such points
form the so-called trajectory in y-direction in the (Bg,8,, y)-
space). It is seen that the liquid-drop component Ep changes
rather slowly, while the pairing 8E;§3R and shell corrections
8E jpt, are more sensitive to y. However, their effect tends
to channel, and the resulting total energy V has a flat mini-
mum around y = 0. An analogous dependence is shown in fig. 5
for single-particle levels.

The particular softness observed for N= 96, 98, in figs.2
and 3 is reflected here by an energy gap which is approximately
constant with increasing y.
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Fig. 2. The contour map of the total nucleus energy
in (Bg,y) plane for Gd andDy‘ a.md gor b{= 96,98,100.
At each point (Bg, y) the minimization with respect
to B, was performed. Energy intervals separating th
contour-lines are 100 KeV. Energy values at the minl-
ma are given at the bottom of the figures.
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Fig. 3. The same as in fig., 2 for Er and Yb isotopes.

In general, one can expect the nuclei to be susceptible to

nonaxial deformations in two quite opposite situations;

a) An energy gap at y=0 which persists in some region of y.

This corresponds to a large shell-correction component (N = 92,
96, 98, 104).
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Fig. 5. The dependence of the
neutron single-particle levels
on the y-deformation. The para-
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meters of the Saxon-Woods

single-particle potential are

given in table 1.

Fig. 4. The total nucleus ener-

gy E and its components E;p,
tot tot n p

OE gnon > OEpaIR » OE gpen > OEghen,
n 4 =

SEpaip %Epag (V=E = Ep*

tot tot 184
+ 8Eshe“ + SEPAIR ) for Dy as

function of the nonaxial de-
formation y.
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on the y deformation

along the trajectory iny -direction for Gd, Dy ,Ernand

Yb isotopes.

-

Table 2

The first two components of the expansion of the to-
tal potential energy in powers of y:

V) = VO = 3-Cpy? + Gyt +

L ad Dy Er Yb
4 62 C;" 62 [+ 02 c

196 15.0 42.1 3.45 | 113.7 | 13.7 1.54 28.3 48.4

o 5.02] 189.6 | -0.60 | 104.9 |10,0 | 166.4 33.1 16.2

100} 14.1 14.0 7.98 85.2 }[23.0 | -11,17 ]| 47.9 -174.8

b) A condensation of levels in a narrow interval between
two energy gaps at y = O which also persists in some region of
y. This corresponds to a small shell-correction (N = 88),
Figures 6 a-d) show the dependence of the total energy on
the nonaxial deformation y along the trajectory in the y-direc-
tion, for different nuclei. A striking feature is the flatness
Af Fho mintmam fawr 184ne /N - 00) And mAdAbbaiilon o1 Ao
~f the minimum for Dy (N - 02) ond noishbouring nucloi. A sl
milar, though less pronounced affect is also seen for Gd and Er
at the same neutron number.

Let us also turn one's attention to the flatness of the total
enenrgy of Gd and Dy for N = 88 which corresponds to the situa-
tion (b). It is obvious that for such nuclei one can expect
significant unharmonic effects in y ~vibrational modes. To illu-
strate the magnitude of these effects, in table 2 we present
the first two coefficients of the expansion of the total energy
in powers of y2 . Softness of the nucleus (that means a fast or
slow increase of the total energy with the y-deformation along
y—trajectory) is correlated with the amplitude y, of y-zero
vibration (y, is the squareroot ofy dispersion in the ground
state) as is shown in fig. |, where the dependence of the total-
energy difference (B, (y= 20°) - Ey,, (¥= 0°)) on the neutron
number, is given together with the yy dependence on the neutron
number. The dependence of By and B4 on ¥ along the above-men-
tioned trajectory is presented in figs.7 and 8,respectively.It
is seen that B, and 84 are approximately constant.The values of
B, and B, at the minimum of the total emergy of the considered
nuclei are plotted in fig.9,as functions of the neutron number.
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The total energies at y = 0°(Ep;) and Y
for some isotopes of

and the difference Egyy—Ep;
'ad, Dy, Er, and Yb

Table 3

60° (Egp)

14

L‘ ad Dy Er Yb
E
E‘ b E"’ T Eob B ob -E
l; R N I - I
P pr pr p
MoV | MevV MoV |MeV MoV | MeV MeV MoV
be 092 1.42 .89 1.41 .64
-.70 | 2.0° | =52 | 1.5°
1.76 | 278 | 1,75 | 1.43 151 |97 1.08 | 1.47
"
90 —.98 3.0‘ -.68. 2.5‘ -.46 2.0 -.43
2.12 | 3.73 | 2.17 | 3.35 [1.98 | 2,81 1.54 | 2.20
, [ 3
P2 161 | 35" |-1.18 | 3.5% | -.83 | 2.5 -.66
2 a4 a.51 | 2.5 4.17 | 2.97 3.66 1.96 3.00
p 12,07 | 3.5% [-1.65 | 3.5% {-1.29 | 3.5" -1.04
2.69 | 5.05| 2.79 | 4.79 | 2.64 | 4.35 2.23 | 3.75
. -
P 2,36 | 4.5% | -2.00 | 4.0° |-1.71 | 4.0° -1.521 2.5
# 2.82 | 5.29| 2.89 | 5.17 | 2.71 | 4.86 2.29 | 4.39
E 3
ol P 2.28 | 5.0* |-2.15 | 4.5° 2,10 | 3.5
2093 5'50 2.94 5049 2072 5.30 2.27 4097
19 ,.57 2.55 | 5.0 |-2.58 | s5.0" 2.70| 4.0+
2.82 | 5.58| 2.77 | 5.68 | 2.51 | 5.59 2.03 | 5.33
E 3
102-2.76 -2.91 -3.08 | 4.5° -3.30| 4.5
2.61 | 5.28] 2.51 | 5.50 | 2.21
10
‘%067 -2099
*Results from Ref.’% .

o
~

Fig. 9. The values of Bp
and B, deformations at the
minimum of the total energy
(i.e. y = 0° as a function
of the neutron number for
Gd, Dy, Er, and Yb isotopes.
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Table 3 presents the va-
lues of the total energy of
the considered nuclei.

i) at the minimum - for
prolate (ground state) nuc-
lei and

ii) at the saddle-point
for the oblate ones.

iii) the difference bet-
ween the two energies (pro-
late and oblate).

The results obtained in
ref.’® are also presented.
A good agreement with our
values is observed. The cal-

culations of the prolate and
oblate minimum energy made by Libert et al.’20/ for 168p;

with Skvrme forces are verv analogous to our values.
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4, SUMMARY

We briefly summarize the main conclusions of our analysis:

i) There is no stable non-axial deformation in ground sta-
tes of deformed nuclei. Nevertheless some deformed nuclei pos-—
sess the softness with respect to y-deformation (especially
Er and Dy with N = 96, 98 and 100).

ii) From the point of view of the potential energy the vibra
tions conserving axial symmetry (g-vibrations) separate from
the vibrations violating axial symmetry (y-vibrations).

iii) The correlation between the y-dispersion in ground sta-
tes (obtained from experimental B(E2) values) and the softness
of nucleus with respect to y-deformation is observed.

The authors wish to thank Prof. I.N.Mikhailov and
Prof, V.G.Soloviev for help and stimulating discussions.
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