


1. INTRODUCTION

Though studied intensively for nearly thirty years, the
radiative muon capture (RMC) still belongs to the poorly under-
stood nuclear processes. There remain both a serious discge an-
cy between measured and calculated yields of hard y—rays]
and the disagreement between different theoretical approaches
If taken literally, the experimental results would dictate
a strong upward (RMC on 160 ) or downward (RMC on 0ca) renor-
malization’! of the pseudoscalar coupling constant gp of
weak interactions. It is clear that a certain numerically im-
portant piece of the theoretical analysis 1s missing in the
recent RMC calculations.

In the present paper we argue that the difficulties might
be connected with the currently used form of the impulse ap-
proximation (IA): Indeed one cannot exclude a possible impor-—
tance of the meson exchange currents (MEC) in RMC. In particu-
lar, the analysis of RMC on 3He(ref/1/ ) and 126 (ref.’/5 )
has shown that the so-called "elementary particle treatment"
<EPT> p‘:;l’i:;; \_\/.'.ui\:\..u‘ulj ‘IILE)‘IILL y‘uui.Uu j;cldb Llian Lite de
tailed IA calculations. We defipitely subscribe to all concep-
tual criticism (see, e.g., ref.”” ) directed against the
application of EPT. Nevertheless, the difference mentioned 1is
very systematic and it easily lends itself as an indication of
strong MEC in RMC.

The explicit calculation of the MEC corrections in RMC is
indeed very difficult. The early estimate ¢/ has been criti-
cised 7/ on general grounds. The calculation by Akhmedov/8/ *
suggests a strong renormalization of gp;it is, however, based
on the infinite nuclear matter properties and techniques. An
alternative procedure would be to employ the coupling provided
by the continuity equation of the electromagnetic current.

Using it, an important portion of the MEC corrections might
be effectively included in terms of the one-body operators,
i.e., in IA. We shall follow here that path.

Actually, the well-known Siegert theorem’?/ tells us that
the probabilities of the electric transitions B(EL), even if
originally subject to large MEC corrections, can reliably be
calculated via a modified IA: Using continuity equation
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for the electric current(}(eh) and charge (j;efbdensities and
the long wavelength regime (g-»0) one can express the needed

nuclear current operator in terms of the nuclear charge operator;

the IA is expected to work well for the latter one. )

One cannot apply the Siegert theorem for the nuclear radia-
tive processes at larger values of the momentum transfer q.
Nevertheless, the continuity equation (1) still allows us to
modify IA. Such a procedure has been used in the analysis of
the electric-type (EL) transitions induced by electron scat-
tering 10/, 1n some cases, e.g., for the E2 transition to the
16.11 MeV T=1 level in !2C the effects are numerically drama-
tic, though they might be moderate in other cases. Sim%larly,
the analysis of the deu%ﬁ;on photodisintegration reaction
y+d » n+p has shown that the large MEC effects which
arise in that case can be effectively included in IA for a
broad energy interval ( E& < 150 MeV) via the continuity-
equation constraint (CEC).

The radiative muon capture differs from both (e,e') and
y+d@ -» n+p reactions since RMC is controlled by two cur-—
rents: instead of the single electromagnetic current j&J)(x)
we deal with the time-ordered product of jﬁﬂkx) and weak
current Jy(y) (two-step reaction). The purpose of the present
work is to develop a formalism which allows one to include the
continuity-equation constraint in such a case. It is done
in the next section.

2. RADIATIVE MUON CAPTURE

For the RMC reaction off the nuclear state |N> with the
creation of the state [N">

_ ,

O aN® - v e NG+ yk, O ()
we divide the amplitude into a lepton radiating part Tg'and
the hadronic part Th: T=Tp +T}.Since Tp is well establlsheé
(see; e.g., ref.”'2/" ) we shall be interested in T, only. With

the isospin indices and operators omitted it can be represented
in the form

ieG i ity —ikex
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where [ = J“)— pw) , £ Qf“{pw)) is the lepton weak current,

jﬁe)(x)and Jy () are the electromagnetic and weak nuclear current
and

(el (eD) (ef)

TH, @ O] = 5,7 @I 6) + 05, -x)l0,00 0, ® ] (4)
is the time-ordered product. The othgr notation should be obvi-
ous. We use the Pauli metric, Auzz(A,iAO).

Conventionally the theory of RMC is discussed in terms of
the effective Hamiltonians’/!2/, then

ieGcecoso
Ty ) = Xyt erdE( - E;)
Vﬁf 2Ey (5)
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The Hamiltonians H(x) and Hh4(§) correspond to the time—-orde-
red products of the weak current with the electromagnetic cur-
rent and charge operators, respectively (see eq. (2)). In the
impulse approximation they are represented as sums over all
nucleons of the one-body nucleon operators, that is

i A > - >
H, (}) :.E]h(xj)8(x - %)) (6)
1=
and
> A > e
Hig (D) = 3 hy(dpaE-+)) . 73
As was mentioned above, the relations (6) and (7) are valid

only if the MEC corrections are negligible. The validity of
such an assumption for Hh4(§)seems to be beyond doubt. One
observes, however, that for the real photon ¢ (p) =0, and we
should deal in eq. (5) with the Hamiltonian H (¥).To improve
the approximation stated by eq. (6), we shall use eq. (1)

to express ﬁh(ﬁ)in terms of Hy4(%) wherever possible as we
have outlined in the Introduction. This should indeed be

done by manipulating eq. (3), where the electromagnetic current
ﬁfm(x) is still singled out.

To perform this programme, we shall expand the photon wave
1n eq. (3) as a sum of two terms

> —Il—(’o; nd >, > JERY

e*(u)e = A*(p, k- X)+VS*(p,k-x) (8)

(see.Appendix A) and simplify the expressions which contain the
gradient operator (Vv S8*.To this end we shall use (i) the
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electromagnetic current conservation, eq. (1), and (ii) the
SU(R)xSU @) current algebra commutators

5y, - x)11, 0, 1 P@1 =80 - 0. (9)

The amplitude T, is divided in correspondence with eq. (8)
as

Th(p)=lecc°sec\/ 1 M (0 + MY 1 8, w= 1. (10)
Nes 2E

Substituting (8) into (3) and integrating by parts we obtain

, E
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where eq. (1) has already been used. Applying eq. (9) and inte-
grating again by parts we have
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The final expression for T, () then reads

. E_x
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In terms of the effective Hamiltonian introduced in eq. (5) the
full RMC amplitude can be written in the form

4

ieGeos8,~ /1
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Here Hg(x) corresponds to the muon radiating RMC diagram and
H., t(x)ls the ordlnary-muon—capture Hamiltonian. Exp11c1t
expre551ons of the Hamiltonians He.ﬁh,Hh4,and H are given
in Appendix B.

The analysis of the RMC with the new form of amplitude as
given by eq. (14) is indeed calculationally much more compli-
cated than the standard one. In eq. (14) there have appeared
additional terms which resemble the off-shell ordinary muon
capture; instead of one term in eq. (5) we have now three groups
of operators. This will lead to a number of interference terms.
Still, we think that the calculation is worth of further efforts
if it takes into account, at least partly, the MEC effects.

The numerical work for the 160(#—,Vy) and 4OCa(#-,Vy)reactions
is in progress, and we shall report the results elsewhere.

The scheme developed in the present paper may indeed be
applied to other radiative two-current reactions. An applica-
tion to the nuclear pion photooroduction and the radiative
pion capture is being prepared.

s*(p,l? $)[-E, Hy (1) +H,
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APPENDIX A

There are several representations which allow us to extract
a gradient part from the photonic wave €(wesp(ik. ¥).Here we
have used the decomposition by Rose the coordinate system
is such_that the third axis is oriented along the photon mo-—

mentum kK. Then

i

e el s K(E-%) + VS(w E-%), (A.1)

K(I‘v E"i’) =

v 3 et 0 Ty (000 —EE— ¥, @) (0l a.2)
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(u Y=-V " i [f(e " 1)1 k( +de)lg(kX)Yg#(Qx),
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where jy(kx) are the spherical Bessel functions, T are vector
harmonics

5 F 13 (A.4)
T (0= X Y ¢ :
M R 00,40 My u M EM_“(QQ)e#
and Yy, are usual spherical harmonics. The symbol [**°]
stands for the Clebsch-Gordan coefficient. tU Ny

Other decompositions have been suggested, e.g., by Foldy
and by Eisenberg and Greiner /137 . Joenpera/ls/ compared the
three decompositions and found, according certain criteria, the
expansion (A.1)-(A.3) to be most suitable among them. Since
the choice of criteria is certainly not unique, an interesting

ol bl e Ambremal L E v A v murnncn) oav-—
I v T .
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pansion of ¢ emﬂif.;) can be constructed. The first step

LK . . .
tow%ggf such an expansion has been done by Friar and Fallie-
ros

APPENDIX B

Here we display the nucleon operators h (cf. eqs. (6) and
(7)) obtained via the non-relativistic reduction from the
standard RMC and muon-capture diagrams 712/ For the muon-radia-
ting diagram of RMC one finds

> > —) 2 i > .:.(1/\
hg(xj)'(*(#):XV(xJ)TnTl[ly —UY pP l

(B.1)
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The vector A* has been decomposed in (A.2) into three com—
ponents defined by the unit vectors (-1 L, and k. Cor-
respondingly,

=) -0

-

h(i’j)'(*o\) =>2(V)(Xj)-21;lly ~ Gy - ﬁ'(u)]i[(gAr)\ -8y~ BMY 3
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The Hamiltonian hy is obtained by assuming the radiation of
a time—like photon:

5

o2y > S0 1 -
=X (Kj)l[lF —ay.pV][gv(én_lE(gm_Ey,rEV)_.l[_ngg.k)l,

h (x
4( i i
Y




, Byut8&, E - gp—84 E, = 2
+(§AOF L B ST L P A v oW B s
y m y 2m Ey m, 2m (B.4)
N 2E,§ 3 R
g 4 - %ék LY AL ATR A )
®'-p) + my m l :
The muon-capture Hamiltonian
> : g’ r
B eap (X)) = XV E )DL =0y -3V (g, - & —5l )15+ (8 40}

gy +8 s 3 s
s g S g - g (5, KB +E - m )25 4 Uy,
2m AZm” ®Pm f y Ty T Mg LX)

enters into eq. (14) w1th the Sff shell momentum q=p’-p={_—k

(the on-shell value 1is q f ). Combining eqs. (B.4)
and (B.5) one finds
_ _ —( —» 1 - :v
Eyh4+hcap1-XV)(xj)§n—l'[1p ~o0p - PV)]fgv(1+oz k)E
l I S () 3 - (B.6)
+ (gv+ gM)lEyop x K gPEVp +gAEyk +gAEyog
Y ud :’ N 2E‘VE nd
+8(gp—8p=L oy K- gp——rt )i x W) ,
g ®’-p) +m !

where lg and 1. (o and ¢. ) are unit (spin) operators acting
in the spaces of 1epton and j-th nucleon, respectively. The
weak and magnetic form factors are denoted by g; 0__V M, A, P)
and up,nn,reSPectlvely, gp= gp@ ) ,g@ gg(F—k) )y s
*-—a/lal , B = *hﬂ + K , m 1s the nucleon mass.
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