





The simplest scattering problem of this type is the deute-
ron- @ scattering. The tight binding of the X{-particle makes
it possible to neglect its internal degrees of freedom to a lar-
ger extent than with any other nucleus, i.e.,up to energies 22
MeV in the CM system. At the same time, the small size of the
alpha-particle means that in this energy range, only a few angu-
lar momentum channels will contribute essentially to the scat-
tering.

This problem is therefore the first which should be at-
tacked, if a firmer bases for understanding the scattering and
reations with the more complex targets and projectiles shall be
constructed.

The questions which arise when a N-body problem - in the
present case N = 6 - is approximated by a 3-body problem have
been discussed by a number of authors, see particularly the re-
73,

cent work of Schmids) and Bencze et al. and references

therein. Basically two different points of view may here be
ta%cn. Tillier due wmays as 4u’), slari wiih iue H-body [or-
malism. This actually involves coupled equations for components
which result from splitting the system in 2,3,4,etc. "clusters"
of interacting (not necessarily bound) particles. Hence, by
elimination and truncation, it leads to an approximation scheme,
where the system may subsequently be described in terms of 2
clusters, 3 clusters,etc., with effective interactions between

them. Effects of other fragmentations may be taken into account

as higher order corrections.
A precise account of the different fragmentation channel is

particularly important when they open up, whereas below thresh-

old their influence is small. In our case, the most important
neglected channel is presumably 6Li > 3H + 3He. The main
justification for the neglect of this is ita rather high threshold,

15.79 MeV.

The inclusion of antisymmetrization in this approach is a
little complicated. In this respect, the other approachs) may be
simpler, since the wavefunction is given as a sum of terms contain-
ing antisymmetrized products of cluster functions with functions of
their relative coordinates (like the Jacobian coordinates below).
The clusters are in general distorted, so that only asymptotically
they correspond to the free ones.

In calculations it is convenient to truncate the complete
system of cluster wave functions, and,e.g.,use a generalized Kohn
variation principle to calculate amplitudes of concrete processes
like transfer,etc.

The main principle is that from the fundamental interactions,
acting between the particles, as well as from the Pauli principle,
effective interactions between the clusters are derived. These
interactions must depend on the internal structure of the clusteré,
including the distortion. They will in general be both energy de-~
pendent and of multiparticle character, i.e.,there will be not only
two-cluster, but also three~cluster forces.etc. The present method
can be viewed as a special case of that of ref.6), with the dis-
tortion of the alpha particle neglected. This crucial approxima-
tion, which can also be called a neglect of the virtual break~up of

this particle,is again mainly justified by the high threshold for
real break up. We therefore write the wave function as an anti=-

symmetrized product of an X~particle function CX and a function}
of the Jacobian coordinates, describing the distances between the
center of mass of the o{-particle and the two other ones. The va-
riation is performed on y only, and the antisymmetry leads to
elimination of qy -components which are not orthogonal to the in-
ternal neutron (or proton) 'X -functions, which are approximated
as 1ls states with respect to the center of mass of the {{ -particle.
In this limit, which also means, that center of mass problems are

only treated approximately, there are only two-body interactions
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between the clusters. Exchange terms are now similar to those in

nucleon~of scattering and may be approximated in a similar way.
Some attempts to solve the deuteron- Ok scattering problem by

means of the Faddeev equations have been made recent1y2'3).

These attempts are based on the usual formalism of the Faddeev

equations, by means of scattering amplitudes and Green's functions

given in momentum space. Interactions are then generally used

which have simple forms in this space, particularly sums of se-

3)

parable terms. Of these approaches, that of Charnomordic is

presumably the most extensive. There, the n-p interaction is simu-

lated by (L = angular momentum of relative motion)
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and the alpha-nucleon interaction by an expression similar to the
latter one.

Results are obtained which are in fair agreement with expe-
rimental ecattering data.

However, in this approach, as well as in others with sums of
separable terms, one meets with a number of difficulties.

The first is of mathematical nature. The Coulomb inter-
action cannot be well approximated by a finite sum of separable
terms. Alt and Sundhas" have suagested a scheme for solving the
Faddeev equations with a potential which is the sum of a se-
parable and a Coulomb terms. This method seems, however to meet
with some mathematical difficulties, and the only rigorous so-

lution of the Faddeev problem with Coulomb interactions as well as

short range ones seems at the moment to be that of Merkuriev®)
who uses an extension of the method also employed in the present
work.

The second problem is connected with the exclusion principle.

A complete antisymmetric wavefunction cannot be constructed in any
realistic calculation with more than four particles. However, the
antisymmetrization can,as discussed above,be approximated by say-
ing, that certain occupied states (here roughly corresponding to
the bound states in a shell model description of the alpha-par-
ticle) are forbidden in the nucleon-alpha scattering.

This forhiddenness can be effectuated by a repulsiﬁe poten-
tial which is (infinitely) strong and separable, since it cor-
responds to a projection operator for the corresponding sinqle
particle state. 1In a calculation like that of ref.a), the most

near lying will therefore he to use a repulsive notential for 1 s.

In the present calculation, the alpha-nucleon
potential is attractive and local. It is chosen so as to repro-
duce the alpha-nucleon phase shifts. The same is the case with
the repulsive potential of ref.3), but this is only possible

in a limited sense, as is seen from Levinson's theorem applied
to the occupled state.

The difficulties mentioned above are thus overcome in the
present calculation, by integrating the Faddeev equations in
configuration space, and using local interactions together with
a device corresponding to the exclusion principle. This method
has the further advantage, since the matrices representing both
the kinetic energies and the potentials are sparse, that a dia-
gonalization is facilitated. The calculations are discussed in
details in the next section.

In the present context, however, the main progress which is
obtained with the use of local potentials, is that, in that way,

the road is prepared for a connection to the great bulk of nu-



clear physics calculations. In bound state problems, the shell
model potentials, and in scattering problems, the optical model
potentials are well established nucleus-nucleon potentials, and
parameters have been found, which give overall fits to a vast
number of data and which with small modifications can be made to
fit bound state and scattering data for any concrete nucleous.
Also nucleon-nucleon interactions have been found, which repro-
duce all properties of the deuteron, as well as the appropriate

phase shifts in a very large energy range.

Therefore, Lf the task is to understand the limitations and
successes of previous nuclear reaction calculations, and to find
their natural extensions, it is extremely useful to be able to
use those interactions in the correct Faddeev treatment of the
problem.

It is of particular interest for the present calculation,
that a set of local interactions has been found which reproduce
not only the deuteron wave function and the nucleon-nucleon as
well as nucleon-alpha scattering data, but also the binding
energy and charge radius of 61,i8). wWe shall in the follow-
ing make use of these potentials, just as the 61i wave func-
tions have to a certain extent been used to check the programs
used in the present calculations.

When we write the oL-nucleon interaction as a local poten-
tial which reproduces the o -nucleon phase shift, as a conse-
quence we must also approximate the forbidden ls state by a

bound state in the same potential, as mentioned in ref.B),

2. GENERAL FORMALISM
Since the method of solving the Faddeev equations in coor-
dinate space has been explained in details in other works7),

we shall here give a rather brief description of this formalism.

The system of equations to be solved can be written

(E- Ho= VW =V, (P ey ™) (2.1)

il
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Here the interactions are, as usual, indicated by the particle
which does not take part in them. So Vg is the neutron-proton
interaction. The interaction between the neutron and the alpha-
particle (which is here treated as an elementary particle) is
denoted Vp, G’ being a modified interaction which takes

p
~~
into account the exclusion principle. For the neutron V is

n
defined analogously.

The three equations are solved with boundary conditions
correspondina to the interactions which thev contain.> So. e.a..
in the description of deuteron-alpha scattering, with possible
inclusion of deuteron break-up, part of 4*,u will asymptotically
correspond to plane waves, and part to outgoing waves of the
relative deuteron-alpha motion (multiplied with a deuteron
function of the internal coordinate). The & ,n,p case is
particular by the non-existence of bound nucleon-alpha systems,
so the two other components have asymptotically only outgoing
three-particle waves.

The total wave function is given by

,1\/’2'\\/0‘1' N\/P'\"er’ A (2.4)

The three components are often referred to as the wave

function in the three channels, & , p and n; it must be remem-




bered, however, that 1*"‘ also contains such parts where the

deuteron has been subject to break-~up.

The concrete solution of the coupled equations (2.1) (2.2)

(2.3) is carried out in Jacobian coordinates, corresponding to

the different channels with

my, = omy = m and My = Wm (= 4m)
we have
1+wYa
Xu = ‘Lu) (s -2))
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(2.5)
Yo * (©Cwra)* (L +am = (0D ay),
X ¥ “2p,
)
T (wew+aN® (way + ap- (WHD2a).
In these coordinates, angular momentum components are intro-

duced:

v
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W = 5, 255,

(‘aﬂ‘) { l( \)o[,xs,, %‘(Xj} Mi(2.6)

V= °‘\P|VV

When this is inserted in (2.1), (2.2),(2.3), a system of coupled

differential two-dimensional equations for the ﬂ+'i is ob-

tained. For limited total energies, the centrifugal barriers

and the limited extension of the nuclear forces make

-

it possible

to neglect the couplings due to Vy (Xy , Oy ) for higher ﬂ”
z -values; this limits the number of coupled equations (for Eji

10 Mev A, € > 2 contributes very little for all V). A simi-

~ ~

lar argument is also valid for the term in V, and Vp,

which take care of the exclusion principle. For the Coulomb

forces, however, the argument is not applicable. A rigorous

treatment of these forces is postponed to later work: in this

paper wee shall content ourselves with a perturbative approach,
which seem justified at most energies.

In that case, as a first approximation, the forces acting
on the neutron and the proton are identical and we may reduce
the number of coupled channels ( % , i) by introducing the oper-
ator of exchanging the neutron and proton Ppn'

ol A~ o~
TS TR Gl T S

(2.7)

P.Y == e (1 BV

The nuclear forces used were taken so as to reproduce the
nucleon-alpha and nucleon-nucleon scattering data for lower
energies, as well as the properties of the deuteron. The prin-
ciple of approximating the nucleon-alpha interaction in the
antisymmetrized system by a two-body potential together with an

exclusion of the 1ls state in their relative motion, and the use

~r and
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na). This however is now treated in a more efficient manner,
as discussed below.

Since the alpha-nucleon and nucleon-nucleon force ofB)
were very carefully chosen to fit the two-body data, and since
they furthermore lead to very good fits to most of the proper-
ties of the 6Li ground state, we shall here just use the same
forces subject to a slightly different treatment of the Coulomb
force problem. Keeping the forces constant, we shall concen-
trate our efforts on the scattering problem, with particular

attention to the way in which the Pauli forbiddenness is treated.

3. THE EXCLUSION PRINCIPLE
In ref. 8) the exclusion principle was handled by pro-

jecting the Faddeev components into the allowed space. Let the



projection operator for the forbidden neutron state be

M= | u &> <utpl,

(3.1)

where u(xp) is the wave function of the ls state, and the

)

corresponding operator for the proton r then in ref;a

n’

; . X v v
the components which are found by iteration W¥~v’9’q;~
*

are in each step replaced by

PW x (- T (T~ T WY (3.2)
( Ps Buﬂnﬂﬂbapumq PQ" P )

A generalization of this method to the scattering problem

8) to use

seems highly complicated, so it was proposed in ref.

instead an algorithm similar to the one suggested by Bang and
10 . . -

Gareev ).The same idea was successfully applied to similar

problems by Kukulin et a1.11)

Such an algorithm is the main ingradient which has to be

~AAA~AAR kA Faur hAAdy matrhaAe ava FA e annlisA +A erabtorinn
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and reactions of complex nuclei. The case of elastic scattering
was discussed in ref.11), we shall here look at the modifica-

tions of the method which are necessary for reaction problems.

Without the Pauli principle, the Vb, G; of (2.2),
(2.3) reduce to Vp' V. and the coupled equations imply
that‘\y of (2.4) satisfy the Schrddinger eguatioh

(E-HWY =0 {3.3)
with
Ho=Hg+ v, + Vg + Vg » (3.4)

In a similar way, we want that (2.1}, (2.2), (2.3) imply
P(E - H)P Y = 0 .- (3.5)
We may, however, instead of (3.5) solve the inhomogeneous

equation

(E-H)YW= u,_(}r_M\E,,QaQ * Ul By (trr) ' (3.6)

10

where one chooses the F's so that

Su..lg,)"‘\’a(fh = SWPQ‘QM’"‘{? =0 (3.7)

We see that when (3.7) is satisfied, we may write

Y =P (3.8)

When we insert this in (3.6), and operate on both sides of it

with P, we get back (3.5), since

Puw,) = pu.r\ = 0. (3.9)

Once more, instead of (3.6), we solve the system of coupled

equations

(E-Ho-V% WP o= \/P(’IV“‘J«-’LF“) 4 Up CP , (3.10)

fe AWV (Ao NN+, F fa 111\
LE-tp ~Va! e B so el f )

(E_HO_VOL)'\J./“,V_L(VP ) (3.12)

Again, neglecting the differences between up and u, as
well as between Vp and VvV, this system reduces to two
coupled equations, plus a symmetry between P and .

For the numerical calculation, it is practical to expand

the function F(y) on some fixed system of independent func-

tions f£;(y)
Fly) = 2_cifi(y) (3.13)
~ [
A convenient choice of £y will be the so-called splire

functions; in the present calculations cubic splines were used.

11



Since the system of equations (3.10) - (3.12) is linear, it
may be solved by replacing the F,, (yp ) ¥ =n,p) by £; (YV )
solving the inhomogeneous equations for each i-value, and then

determining the c; so that the total wave functions is ortho-

gonal to u, and up.

Let the solution, obtained by replacing F(y) by f;(y) be
1*’(1), and ’Q’(O) be a solution with no inhomogeneous term.

Then a solution of (3.10) - (3.12) is

W= @ > e (3.14)

So, from (3.7) we get

{Cu\’h\’(o’> + ZC‘LCL\\'I-FC‘)>‘L)=O_ (3.15)

1f the f; are orthonormal, we may by multiplication with

fj(y) and integration over vy obtain (3.15) in the form

cL} « 2O GL} =0 . (3-16)

We see that this determines the c's up to a common normaliza-
tion contained in ‘*40).
The possibility of expanding F, Fp, on square inte-

grable functions is seen as follows.

We have, e.g..
Ve (‘_w) = gd»:,o w (%) {(E _Ho_vr)l‘,v
NACESION
= (E ~20-T13r) g”‘ér WCr, YUP
- Qo wxpd Vp, Q™

(3.17)
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or, using (3.7)
‘:‘;(Z&pﬁrgd’fpw(f())(“{o'ﬁ‘)f“\’h\«-"‘\’“) . (3.18)

Now, u(x,)—» 0 for xp% oQ ; and as is seen from (2.5),

P
large values of Yp and finite values of Xp correspond
to large values of x, and X, . But we see from (3.11) and

(3.12), that

yy o

(E'Ho\-‘*\’v - 0 (v = "";“‘) . (3.19)
X

so Fp(zp)go for yp-)oo-

Taking the potentials to be of finite range, it will ac-
tually be the exponential decay of uC¥v§ as function of Xy,
which determines the asymptotic behaviour of Fp(y) (as a si-
milar exponential function).

We see, that the modified interaction of (2.2) can be

written as
\7.0 (Ut = V(7 W)
+ go(xpuk(gp\ (Ho“:—)(’l\‘kr"%hﬂ , (3.20)

~
and similarly for V. Since “p(xp) is of {finite exten-

sion, we see that the boundary conditions of (2.1) - (2.3) or
(3.10) - (3.12) are similar to those of the usual Fadeev equa-

tions with no Pauli principle, provided the forbidden states are
excluded in the boundary conditions (e.g., for Xp finite,
yp1u).

This is the justification for saying, that the solution of

(3.10) - (3.12) with the proper boundary conditions is what is

13




needed for the scattering problem with the exclusion principle,
in the same sense as the usual Faddeev equation provided the so-
lution of the three-body scattering problem.

The method presented here can be obtained from the method
of adding a term, Al rr, + T

~
10’11! Actually, the spline expansion may be

) to the Hamiltonian and letting
go to infinity
applied for finite values rk , obtaining a linear equation

for determination of the c's, which in the limit of infinite
becomes identical to (3.16).

It is interesting to note that, since Y; is a typical
example of a separable potential, the procedure just mentioned
can be viewed as a tool for solving the Faddeev equations with a
potential, which is the sum of a local and a separable part. So
also for this task, the method of solving the equations in coor-

dinate space turns out to be efficient.

4, TREATMENT OF THE COULOMB INTERACTIONS

Although the product of the charges in d+ X scattering is
small, the Coulomb force has an important role in determining
for example the positions and widths of resonances. The Coulomb
energy in the Faddeev ground state is 0.77 Meve), and the
shifts to features in the scattering phases are expected to be a
large fraction of this. Because the Faddeev equations are
otherwise so accurate, it is essential to include some good
approximation to these Coulomb effects on the nuclear phase

shifts.

We have found it satisfactory to use the screened-Coulomb
method described in Goldberger & Watson12) and used in 3-
nucleon scattering by Alt4). In this procedure the scattering
equations are first solved for nuclear forces plus Coulomb

forces which have been screened by multiplication with a cut-off

14

shape (1+exp((ﬁ,—R)/aD'1 . The scattering S matrix elements
can then be found for this screened Coulomb force alone, as the
cut-off radius R has been chosen inside the radial mesh. Al-
though as R increases both scattering phases diverge logarith-
mically, their difference becomes constant and equal to the
nuclear phase shift that we require. Since in the present work
we mainly need the effects of Coulomb distortion in the interior
and surface regions of the target, and since we are looking only
at partial waves up to /| = 2 at incident momenta up to k =1
fm'l), it is sufficient to take a cut-off radius such as 10

fm, which is 5 times the size of the target, and which is hence
also much greater than L/k = 2 fm. A cut-off diffuseness of 2
fm was used. Because the neutron and proton were assumed
earlier to have a symmetric wavefunction, we have distributed
the deuteron's charge symmetrically over its components. This
neglects the higher multipoles of Coulomb distorting force and
will perhaps change the break-up distributions slightly, but

1A Amlar wanslble s FFank +ha Alaabim cmattavine Far +ha 1aviar
chonl2 only anlly 2fFoct Ltho o 29710 TTRVLSISSL S ne Lowrer

partial waves.
When there are several incoming partial waves coupled

during the interaction, the above procedure is generalized, sO
that the nuclear matrix Sy is found from the nuclear +
Coulomb Sy, and the screened-Coulomb-only S/ by the uni-

1
tary transformation Sy = S§. %, Syc S;i.. The Sy is

then analysed into phase shifts, in the standard manner which in

the2 channel case involves finding S]J % 2+ and € such

e Pt o (4.1)
- . + -
sy = u (g l’L‘El)u )
cosé€ -sin€g
. (4.2)
where u = \sine cose J ,

must be the second unitary transformation.

15




5. NUMERICAL RESULTS FOR DEUTERON-ALPHA-SCATTERING

As mentioned above, we have in this work used the same
nucleon~nucleon and nucleon-alpha interactions as in the

8) on the ground state of 614,

work

These interactions are, for the .p and n channels
given in Table 1. The bound 1ls states were calculated with the
potential of Table 1. The angular momentum components of the
present calculation used in the different channels are given in
Table 2.

For J = 1, 7\‘= 0, 2, the phase shifts given by equations
(4.1) and (4.2) are shown in Fig. 1.

For 7\‘- 2, J = 2,3, the coupling is negligible and the
phase shifts are given in Fig. 2.

The differential break-up cross sections are in principle
obtainable from our wave function, although they present some
numerical problems; but the total reaction cross reactions are
obtained from the imaginary term in the phase shifts (in earch

channel)

Tt a2
o, (‘—"7)- (5.1)
- [ =3
Gince the only inelastic process which is possible in the
present model, and in reality, for energies smaller than 22 Mev,
is deuteron break-up, and since A=0,A = 2 is very dominating
in the scattering at these energies, (5.1) with the relevant F7
gives the total break-up cross section;
The numerical work was done with a network of points in a
system of hyperspherical coordinatél (R,~®), where R takes 60

steps of length .3 fm, whereas § goes in steps of 0.7143°.
The fits to the experimental phase shifts of Figs. 1 and

2 are seen to be somewhat superior to those of previous calcu-

lationlg). The region where SA!O and 5L2 are near to
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Fig. 1. The phase shifts 8(&: 0) and 6(%: 2) for J =1

The real part of the phase shifts are denoted 6

'

whereas ~z= exp (Im (8)) and e is given by equation

(4.1). The experimental values, given by circles are

those of ref.lz). The dotted line corresponds to

neglect of the spin orbit force, the full line is with

the full interaction. Upper ﬂ?-curve:?\: 0.
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Table 1. The nuclear potentials.

-43.0 Ls o 40.0
= = = + :
Vn = Vp = Yn 1+uY~((m-R°7/oL,\ Yo trenpla-fix) Mev

i o 220¢8 38
| | ', T [ T T
| Jo
| , Ry = 2.0 fm, & = 0.70 fm, .
o] , o . A
| ‘ o Ry = 1.5 fm, ok, = 0.35 £m.
o’ l o o ! d 1 A
151
| .
| 3
o ° Ja 5 each other seems to present a problem both for the separable
[+] ’ a potential method and for ours, but this is a region where the
s
c
O’ o~ o analysis of experiments presents some problems too, due to a
3
O’ do ; g strong sensitivity to the small So2 (’1‘02). Actually the
° -
’, g’ = experimental phase shifts of Keller and Haeber1i'2) are in
e}
b ’ ' [ - g this region much nearer to both of the two theoretical sets,
I l do N than those of Grilebler et al., given in fig. 1.
P o i
I ‘ w - It should be remembered, however, that our main task is
I « not to give a particularly good fit to the deuteron-alpha scat-
I
’ < tering phase shifts (therefore also no variation of the poten-
' 5 tials was attempted), but rather to use this as a test case for
W
' a method with a much wider range of applications.
| o
b 6. CONCLUSIONS
@
"K:L As we have seen above, the method of solving the Faddeev
[
é equations in coordinate space, which has had so many successes
. in genuine three particle problems, is by the introduction of
~N -
& the pseudo-potentials, easily extended to the scattering of
Nal
b complex particles. Excellent fits are in this way obtained for

low energy deuteron scattering and break-up.

The same method, with slight modifications, were also

used for calculating the ground state of 6L1. 1In this case,

19
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The angular mom:ntum components on the left side of

Table 2

The crosses indicate the

the Faddeev equations.

couplings due to the potentials.

Potentials

Kind

(s (L g) i) ]

[A

BETA X

1+

1/2

1/2

1/2

0

BETA

1+

1/2

1/2

1/2

0

BETA

1+

1/2

1/2

1/2

BETA 0

1+

3/2

1/2

1/2

20

BETA 0

1+

3/2

1/2

1/2

ALPHA 0

1+

0

ALPHA

1+

ALPHA 0

1+

0

ALPHA

1+

8.

6,

The two incoming channels are Nos.

1.

Pauli~blocked@ channels are No.

a complete agreement with the earlier calculations of Bang and
GignouxG) was obtained. Since the method of taking into

account the exclusion principle, presented here, is much simpler
than that of refa), it should be preferred in future calcu-
lations.

The perspectives for such future calculations are quite
wide. Among bound state systems, the states of any nucleus,
consisting of a closed shell plus two nucleons, may be calcu-
lated by the present methods. Since such nuclei play a large
role as test cases for nuclear transfer reactions, and as model
cases for nucleon clusterization phenomena, a number of "attempts
have been made to obtain precise wave functions for such
cases‘o)like 18p,42¢ca, etc.

However, these calculations, known under the name of ex-
tended basis shell model calculations, meet with particularly
great difficulties when the two particles outside the closed
shell are a neutron and a proton, which in the periphery of the
nucleus will form a deuteron cluster. Nuclei of such a type are
18F,42Ti, etc. In such cases, the present method should be
able to lead to correct answers.

The most interesting example is, though the scattering of
deuterons on closed shell nuclei, including break-up and strip-

ping processes. As an example, one may think of 160 + a— 1%

+ d,170 + p, 17 4+ n ana 166 + n + o

It is obvious that the description of such scattering pro-
cesses is more complicated than that of e + a, given here.
However, the difficulty is not of principle, but rather like also
for the bound state cases, a question of including sufficiently
many componenets of different angular momenta in the calcula-
tions. With the present generation of computers, this seems

feasible, and such calculations are actually under preparation.
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In’ many cases, the usual DWBA calculations may of course

i 4) E. O. Alt, European Symposium on Few Body Problems,
be sufficient, but the main problem seems just to be to estab-

S . . R Invited talks, Sesimbra 1980, and refs. therein.
lish the limits of their applicability.

i ; 5) S. P. Merkuriev, preprlnt, Freie Universlt¥t, Berlin
Also, in the calculation of break up cross sections, the

1979)
distorted wave methods meet with particular difficulties, which ¢

i 6) FE. Schmid, Phys. Rev. C21 (1980) 691
one may hope to overcome with the present method. —

; : 7) G. Bencze et al., Nucl. Phys. A390(1982) 253
In most reactions with heavier nuclei, the neglect of

i 8) J. Bang and C. Gignoux, Nucl. Phys. A313 (1979) 119
core degrees of freedom, inherent in the few body treatment may

9) S. P. Merkuriev, A. Laverne and C. Gignoux, Ann. of
be dubious. For the cases mentioned above, this is hopefully

. Phys. 99 (1976) 30
not the case. Anyhow, many approximate ways of taking the core -

10) J. Bang and F. A. Gareev, Nucl. Phys. A232 (1974) 45
degrees of freedom into account exist, whereas the three body

11) V. I. Kukulin and V. N. Pomerantsev, Ann. of Phys. 112

aspects of nuclear reactions as well as the local clusteriza-

i s (1978) 330 and refs. therein.
tion phenomena are sparsely treated in literature.

12) M. L. Goldberger and K. M. Watson, "Collision Theory"

ACKNOWLEDGEMENTS {(Wiley, New York (1964))
13) L. G. Keller and W. Haeberli, Nucl. Phys. Al56 (1970)
The authors are indebted to collaborators of NBI,

465.
Copenhagen, and ISN, Grenoble, for enlightening discussions.

14) W. Grilebler et al. Nucl. Phys. A242 (1975) 265.
I. J. Thompson and J. J. Benayoun want to thank the Niels

Bonr lnstitute for paying their stay in Copenhagen for a period
in which part of the work was done. J. Bang wants to thank CNRS

for a grant, which payed his stay at ISN, Grenoble, where

another part was done.

References
1) L. D. Faddeev, "Mathematical aspects of the three=-body
problem in the quantum scattering theory”. (Israel
Program for Scientific Translations, Jerusalem (1965)).
2) P. E. Shanley, Phys. Rev. 187 (1969) 1328
3) B. Charnomordic, Thesis, IPM, Université Claude

Rernard, Lyon 1 (1976) Received by Publishing Department

on June 22, 1983.

22
23







