


1. Introduction

It has been shown recently 1/ that the Hamiltonian of the
Interacting Vector Boson Model of collective nuclear states can be
expressed in terms of two interacting vector bosons, which form a
"pgeudospin™ doublet. It is shown also there that the noncompact
Sp(12,R)~-group is the group of dynamical symmetry for the most ge-
neral one- and two-boson Hamiltonian. As a first approximation of
the model it is assumed in (1,3) that the Hamiltonian H should con-
serve the number of bosons (this approximation seems to be reaso-
nable for the description of the low-lying collective states in
nuclei); In this case H can be expressed only in terms of the gene-
rators of the maximal compact subgroup of Sp(12,R), namely the group
U(6). The latter necessarily includes the group 0(3), ger -ated by
/1,2/

the angular momentum operators, and it has been shown in that

the following chains of subgroups are possible in the Interacting

Vector Boson Model:

u(e)

SU(3) & SU(3) u(3) @ u(2)

5U(3) 0(3) @ 0(3) U(3) @(u(1)eu(1))

0(3)8 0(2) (1

0(3)

In some particular cases/B/ (when H is subject to gome addi-~

tional restrictions) the Hamiltonian can be expressed in terms of



the independent Casimir operators of one of the chains of subgroups
of the reduction scheme (1.1). Then the Hamiltonian can be diagonali-
zed automatically in a U(6)-basis labelled by the quantum numbers

of the representations of the corresponding subgroups of the chain,
These limiting cases are of a great interest,because they give a set
of comparatively simple analytical solutions, which can be easily
compared with the corresponding experimental nuclear data. However,
it turns out that only a very restricted number of nuclei can be
described within these limiting cases. Most nuclei have intermediate
spectra, which can be described only by a diagonalization of the full
Hamiltonian of the model.

In this paper we are going to discuss an approach for an analy-
tical diagonalization of the full Hamiltonian of the model., This ap-
proach is based on the idea, that the Hamiltonian can be constructed
as tensor operators, which transform according to the irreducible
representations of one of the chains of decomposition (1.1), namely
the chain:

U(6) DU3) @& U(2) D U(3) @ (U(1) & U(1))
(1.2)

U

o(3)>0(2) .
This chain of subgroups is very convenient, because the Interacting
Vector Boson Model is a generalization of the model, used for the
description of deformed even-even nuclei in the framework of the
broken SU(3)-symmetry /4'5/. The latter makes use of the well-known
/6/

basis of Bargmann and Moghinsky , which is very appropriate for

the calculation of the matrix elements of the physical observables,
such as angular momentum,quadrupole momentum and so on /7/.
The representation of the Hamiltonian and the physical obser-

vables ag a combination of irreducible tensor operators transforming

according to (1.2) makes possible the calculation of their matrix ele-
ments through a direct application of the generalized Wigner-Eckart
/8/

theorem . In this way the problem is reduced to the calculation
of the corresponding isoscalar factors and reduced matrix elements

in the basis of decomposition (1.2).

2. Tensorial structure of the U{6)-generators and their

bilinear forms

We recall that the Interacting Vector Boson Model Hamiltonian,
which conserves the number of bosons, can be expressed in the fol-

/1,

lowing way
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where ﬁoéﬁjb)and\/'{ééjaiddé;)are phenomenological constants and
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A =2 G il GOl () @2
J=0,1,
are the generators of the group U(6).

The operatorslig;(d) and(jqn_ﬁx) in (2.2) (M =0,%1) are creation
and annihilation operators of vector bosons with a projection of the
"paeudospin"cé,:ia%. These operators satisfy the standard boson
commutation relations.

The operators u:;&)(or Uy &) can be considered as components
of a vector in the 6-dimensional space, which transform according
to the irreducible representation [1,0,0,0,0,6}65 [1]6 of the group

u(e) /Lthéi)transform according to the corresponding conjugate rep-

resentation [1.1,1.1,1,0}6E[O,O,O,O,O,—ﬂc_:_[dg . These irredu-



cible representations become reducible if one passes to one of the
chains of subgroups in (1.1). This means that along with the quantum
numbers characterizing the representations of U(6), the operators
1i:k(d)andlAde)are characterized by the quantum numbers of the
subgroups of the corresponding chain of subgroups. In our case the
most natural chain of subgroups is the chain (1.2) because of the
gense of the quantum numbers ™ and d.The chain (1.2) is very suitable

/6,8,9/

because it is a particular case (M =3) of the unitary scheme

U (3(n-1) 2 su{3) X U{n-1)
(2.3)
0(3)X0(n-1)Y2>2 8(n) »

where S(n) is the permutation group.This scheme has been entirely
investigated in/9/ and all further caloulations of the present paper
are based on the algebraic technique developed in /9/.

The only possible representation of the direct product of

vvl\.

oY U(E\ 1nwr-‘|ws +A +ha v-nnv'nenhf‘nf"lf\h ‘—11, of UW(6) is |-1 -’-\. r1.‘n.
i.e.,[1]6 = (1]3.[1]2 . According to the reduction rules for de-
composition U(3) 2 0(3) the representation [1]3 of U(3) contains the

representation (1)3 of the group 0(3) giving the angular momentum

*
) In this paper we use a simplified notation for the repre-
sentations of the U{r)-groups

[]Ll;}‘lf""l ]\-rl E[fkh]\l) ....)\/r_n]r
it Aenad, e, Mr=0,

where

MZ A=z .2 Avn

of the bosons 1=1 (with a projection m=0,i1)° The representation f1]2
of U(2) defines the "pseudospin" of the bosons T = é:, whose pro-

jection is given by the corresponding representation of U(1) @ U(1),
. Y|

i.e., £ ==

Purther, when convenient, we shall use also the notation:

49-F 5 11'015
m =

A
o0, m <=2

(2.48)
Nom = U L'[:]];D ,m =%
and the corresponding conjugate operators
[ oL = Py
/pm: umffﬂi m t= um:[‘ —24- ' (2.4b)
-1
T um lm o L—‘aﬂl?m;m(x:fz .

Formulae (2,.,4a,b) establish the following phase convention

A +L o it

Liag L w o ’ - e (oo}
U -0 Ao ot -m -

In this way the generators of the group U(6) (2.2) can be re-

written in the following way:

C4L g, me  p
/A\ (d F) ZC n Mum ] mocum;[']:n , (20

i
where E;n v M are the Clebsch-Gordan coefficients for the decom-

pogition 0(3) D 0(2). It is evident from (2.6) that the operators
/\HQijB) have clear tensorial properties only according to the de-

composition 0(3)= 0(2).The irreducible tensor operators according to
the chain (1.2) can be expressed in terms of the operators (2.6) by



T WO, m IMTT,)=
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where the generallzed Clebsch-Gordan coefficients are given as a

(2.7)

product of isoscalar factors for the following chains of subgroups:

1) for the chain U(6) D U(3) ® U(2)

C le e p I

" (2.8a)
LTy L RT, L RT,
2) for the chain U(3) D 0(3)
~ 01 [ -1
CLMS “‘“JS Litls (2.8b)
(L>b (L >3 (/')5 l
3) for the chain U(2) D (U(1) @ U(1))
Cl’T‘] [T"] [T]
O(, ”fb "“‘Z ) (2.80)

The Hamiltonian (2.1) is given in terms of the U(6)-generators,
which can be expressed as a linear combination of the irreducible

tensor operators (2.7) by

L Lrp 61, Dl D
- (- £ 6 *
AM (d,@-( {) Z Cﬂlbﬂh ONUMIEYN AR RENCXY

W01, My AL £T . ) |
’ Cm: mz (L)z o } 7 T 06 D, 2T LMT T

Hence these generators transform according to the direct product of

the U(6)-representations [1]6 and [115, namely
[lg x (B = [1,-1]¢ +{0]¢, (2.10)

where [1,-1]¢ = [2,1,1,1,1,0],. Along the chain U(6) D U(3) ®U(2)
the repregentations (2.10) contain the following representations of

U(3) ®u(2):
[0l = o], o],
[1,-1¢ = [2,1]3.[2]2 + [2,1] 3,[oje + [013'[2]2

(2.11)

and along the chain U(3) D0(3) the U(3)-representations in (2.11)

contain the corresponding representations of 0(3) /3/:

[2,1]3 = (2)5 +(1),4 (2.12)

The chain U(2) D (U(1) @ U(1)) of (1.2) gives the values of the

"pseudospin'" and its third projection

T = %(A4~lz> T?):—)L5+%(/\4+?\2), (2.13a)

where the integers }L4_> )\Ldetemine the representations of U(2)
DL")?LL]Z, and }Lb runs the values

‘)\42 A= Ay (2.13b)

Hence, the U(2)-representation [2]2 contains tensors with T=1,

T0=O,i1, and the representation[b]2 contains tensors with T= 0

and To = 0,



The two-boson interaction in the Hamiltonian (2.1) is expres-
gsed as a linear combination of all possible scalar products (accord-
ing to the group 0(3))of the generators of U(6).Along the chain (1.2)

these scalar products transform as the tensors

T, 1) w1, [2T],0' =0 TT.) =
(2.14)

;ZT((MGNDYMG [x}b[zﬂ LMTT ﬂ-(([ﬂb 1), 08, T L EM T T e

RO L T Yo R e
[wlb[zT]z[l“Ja[ZT"]Lmsi?ﬂl (L), L), @0 LM-M 0 T T,

where the isoscalar factors are of the type (2,8a-c), and the sym-
bols (J and (O indicate the extra sets of quantum numbers needed to
characterize the tensors, as the chain (1.2) is not a canoniocal one.
Formula (Z2.14) 18 in Iact & definliiou ol iue U{G)-iireducibls
tensor operators transforming according to the chain (1.2),which are

0(3)-scalars. Through an inverse transformation one can express the

two-boson interaction in the Hamiltonian in terms of the irreducible
tensor operatora (2.14)

LLO A+ P+
CN‘MOA (> A &)= (1) Prr ‘

i, B [}Je b, Iﬂe e il 1w O,
Z TRURUNTI-SRPIEA 1,[41 B3I Dl J[leDx_]b[zT 1, 2T,

(1, 07 [, L0, Uy DG VL I, m 4 2 T 5T )
(i)i(i) (/.)5 (4)5(4) (L) C(L) L)w'0 QL-PT E[ STY*

(T TU DT 0T o).

It is obvious, that the tensors (2.14) (or (2.15)) transform accor-

ding to the direct product of the U(6)-representations

(L1, + T,- 1) (ol + 011D = 210l # 411 -1, +12,-2
+[1,17O,O,-i,—-ﬂé+[47{’07O,O,-2]6+[2,0,0,Q—1,—1J5,

where
[2,"2]@ = [2;0709 0_7 09”2 ]G :P{)Z) /2} 2; ’2’)0]6
[474’0,07—47_1l;-L2;2,1,4,0;CU5
U4000-4L=@5ﬂ2*2@6 (2.17)
[12,0,0,0,4,~41e= 34,4, 14,0, 0lg.

The boson realization of the basis slong chain (1.2) is determined

(2.16)

by the most symmetric representations of U(6), namely {N]G (N-in~
/9/

teger). It has been shown in , that in this case, only tensors,
which transform according to U(6)-representations of the type

i 1
UI,O,O,O,O,—QJG, generate symmetric U(6)-representations DVJ .« On

IR} (R} ) RNV PR £ SR Fen AN e v dlam caviemliman AR ;o men
Vhe vbhol Laild WGBS Lamilbtodian (J.1) SousScyves tho numbor of tosono

ich gives [N =[N in thi i

which gives = 6o For this reason in this paper we shall discuss
the irreducible structure only of the operators, which transform
according to the first three representations in the right-hand side
of (2.16). Having in mind the reduction rules (analogous to (2.11)
and (2.12)) along chain (1.2) one can enumerate all the represen-
tations of (1.2), which contain the scalar representations of 0(3)
and appear in the bilirear forms of the generators of U(6). These
representations end the corresponding irreducible tensor cperators
are listed in Table 1 where the scheme of coupling of the U(6)-
representations is given by

(00, ) el (T, D [l D, [, 277, L=0

(2.18)



Table 1

Yo U (6) u(3) | u(2)l u(1)+u(1) Tensors
[} ¥ n
[%Jei ¥, Dle (DM, (2T T
1 o ! 0 0 ) 0 0 U:
!
2 | -1 1, 0 0 0 1 0 Uy
3 01,1 1,-1 2,2 | © o] o u3
| -2 .0 +2
N RIS N 2,2 | O 4 -2,0,2 g, ug, Uy
5 11,-1 1 1,-1 2,-2 | 4,2 0 0 ug
6 | 1,-1 : 1,-1 2,-2 | 4,2 2 -1,1 Ué‘,ug4
70110 1,1 2,-2 | 4,2 4 -2,0,2 Ui{ug.u;l
8 0 : 1,-1 1,-1 ] 0 2 -1,1 ugh U
9 [1,-1 ! 0 1,-1 | o 2 -1,1 U;,U;‘
i
10 |1,-1 1 1,-1] s1,-1 ] o0 2 -1,1 uhut
11 1 1,-1 ) 1,-1] at,-1 | 0 2 -1,1 uhutt
a a
|
Table 2
C[‘"ﬂs [-11, r]e — fxle
DL 0T 0 frly LBl L5076 [2,2.1,1]6
bl [ b, 2 YA R
P,11991Lx[2.ﬂ5 [ol, +3/2 -1/2
Table 3
[1'-1]‘ ﬁ'—1]6 [}_1@ [1]6
(1, RT3, 0T), ©l,14), [2,-2]¢ [2,2,1,1),
2,1, 2}, = .1, 21, +1/3 -2/2
lo]g, [2]Lx [013 [2]1, +2/3 +1/3
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3. Transformation properties of the independent
Casimir operators

It has been shown in /2/, that the two-boson interaction in
(2.1) can be expressed in terms of the second-order Casimir opera-

tors of the algebras belonging to the reduction scheme (1.1)
Hint = ek, AWy ol Kyt oKyt ol G, +
+F6%+ﬁ5gi+?;g—gl:ﬁj%+f%% *
PP CA G + A Op)),

where Ké , Ri,\( , RAare the Casimir operators of the U-algebras

(3.1)

in (1.1), G_; is one of the Casimir operators of the SU(3) @ SU(3) -
algebra,glz, -9(; R 9/',, g/tz,

the corresponding O-algebras (we recall that the 0(3) ® 0(3) - algeb-

, and g’z are the Casimir operators of

ra hqg_two gecond-order Casimir operators noted in (3.1) vy §E
and Si; )e The relation between the coefficients of (3,1) and the
independent constants of (2.1) is also given in /2/.

All Cusimir opegaiurs in (5.1) ave uilin cf the WA)-
generators (2.2) (or (2.6)), i.e.,they can be expressed as linear
combinations of the irreducible tensor operators listed in Table 1.
Tor this reason, however, one has to know the explicit values of the
isoscalar factors, which are of the type (2.8a-c). First of all it
should be noted, that the isoscalar factors can be expressed in the

form of orthogonal matrices. Thus for example, the imoscalar factors
(3]s ', w [xle
{x]:,[Z'T’JZ [x¢}b[2, n] [}}‘ [ZT]Gwhich correspond to the decomposition

of the direct product {}.‘L’X }“lez [}]6 according to the chain

U(6) DU(3) ® U(2) can be treated as matrix elements of an orthogonal

matrix M (XL s where ‘L‘-’j [}«-& 6 and é'—’: D\‘X b(ZT,}:J\ (l"}b [ZTKZ, .

11



Ve shall first enumerate the trivial cases of the isoscalar

facters corresponding to one-dimensional matrices:

a) of the type (2.8a)
C foly [0I¢ {0]e
01,01, [, 10}, 01,10,
[ e 41 §33
FLUL UYL [, 2T,
(\[‘F”e M-1le  [z,-2],
i)y o], (241502, [4,2], 141,
C le  [-tle 11,11
103,003, [ 03,023, [o], (4],
C [4,‘“6 101 -ﬂ;"ﬂe
[01; (21, (01,101 foi, (1, .

b) of ihe type (2.8Db)

0 0 0
Oy [y [
), (1, L

whose absolute values are equal to 1.

The U(3) @ U(2)-representations {013[012 and [£2j3,[?}2 balong
to three different U(6)~representations determined by the direct
product [M‘1}6 K[A,'i}@ . The corresponding isoscalar factors form
three~dimensional matrices, whose values are given in Table 4 and
Table 5. The last two columns of Table 5 are not filled up bscause

the U(6)- representations {3,3,2,2,2}63nd [3,1,1,1}6do not contain

12

Table 4

m-le Po-le Dil [xle
Gﬂ} [eT1], [h"J3 2T, [} 3 [o], [0l | [5+~<16 [2,2,1,1]4

i 2.3 1 !
2,1]5.[21, x [2,1];5[2 A= F= -
I: ]3 t 2 x [ 1521, 7.5 2 (3.7 2.13.5

(2,115, [0, x[2,1], . [0], +2E _2 2

7.5 2.7 2Y5
[0 Te]e = [0); [2)e -, b_3 o
Table 5
[1"'1}6 {1"‘115 [1:(5 ‘ [1]6

N, T, (2T, [a.2]4 (2], [2,-2] | B3,2,2,2]¢  [3,1,1.1]4

[2,13 500 x[2,1)5. 021, v

[2,1] 3I2]2 x{2,1] 3 ,[2]2

[2,1}3[0]2 x [2,1]3{012

=il | -

scalar 0(3)-representations. The method of calculation of the 1iso-~-
scalar factors belonging to the first column of Table 5 will be pub-
lished in a following paper. This method has also been used for the
calculaetion of the values of the isoscalar factors given in Tables 2,
3 and 4; they coincide (up to a phase factor) with the corresponding
/9/

values calculated in

13




The U{3)pU(2)-representation W]3[011 belongs to the U(6)-rep-
resentations “7-1J6,[575?2,Z,2116 and[57i7ijjjé but the corres-~
ponding orthogonal matrix is four-dimensional, because the represen-
tation [ﬁ "416 appears twice in the direct product [ﬂ’414 X[ﬁ ‘!]6

The values of the isoscalar factors are given in Table 6, where, as

in the case of Table 5, the last two columns are not filled up,

Table 6
[T T T .

["A' [2]-}2 h“ PTﬂ? O] [2] a [1,-1]6 }L <] [1,-1]6
(2:135.015 = [2.1)5. 20, %’ i 0
2,1]5.0002 x 115 2] 0 i o
(2,115 Rl x Ra1]5.00]5 0 : 1

- j =

[] [2], x {O [2], ~13— { 0

Table 7

2, B, D Dl | o,-
(0 (€); (0 [2:2,2]5 =0l | [4,2,0],

3 5

), = (), E JE

@5 x ), +\E N E

8 8

14

because the representationst??, 3;2;‘2;'2—76 and [3, 1,’174](, do not con-
tain scalar 0(3)-representations. The indices @ and S take into
account that the representations [ﬂ“i]e appear twice in the
direct duct [ -11, « 1,41, .

irect produc t, k 9 JG szh sz] [AL

The isoscalar factors (£); (() 0 , which cor-

respond to the coupling {1]5:[2,4]5A [2,{&xHWaining scalar 0(3)-
representations,form two-dimensional matrices whose matrix elements
are listed in Table 7.

The isoscalar factors of the type (2.8c) according to the chain
U(2) DU(1) @ U(1) coincide with the usual Clebsch-Gordon coefficients
given in /10/.

Using the values of the isoscalar factors given in Tables 2-7
one can easily express the independent quadratic Casimir operators
of formulae (3.1) in terms of the irreducible tensor operators of
Table 1. First of all it should be pointed out that the Casimir ope-

rators Ké‘K‘J‘,‘,'zj.RA and 973 are diagonal in the basis of chain (1.2)
’ : 2/

b/
and using the results obtained in

K, =N 5N = 6 U7 w5K

K= S e w2420 + 5 U - 65 Uy
&;MﬂgTﬂéw%%;U%qﬁuwéﬂ (2.2
W, =505+ AT U+l 5 LU 4

- gLt =S U 2z U -2z 0

It is evident that 72,3/

3
Kf EHL’LN (3.3)

they can be written as

i5



which is due to the fact that the groups U(3) and U(2) are mutually

complementary /2’3/. This leads to the relation

U;:E“J: +N> (3.4)

Using (3.2) and (3.3) one can express the irreducible tensor opera-
0 )

tors L [j [} [Jb either in terms of the Casimir operators
L<6;;< 3, PL% Sr; or in terms of the "pgeudospin" operator T, its
third projection T , the number of boson operator N and the angular
momentum operator L,

The second-order Casimir operators 72 , jg , ﬁ;’, 5{2, and 6}1
of expression (3.1) are off diagonal in the basis of chain (1.2).
However, they can be expressed in terms of the remaining irreducible
tensor operators listed in Table 1. Having in mind that f4[1»t 2/
is invariant if the p- and n-bosons are mutually subgtitutable
(a "pseudospin” svmmetrv). For ranvaniance wa intrca

LU U LU0 U 3O U
IS:U;:)’U;; ;Jg:U;“UX (3.5)
]s: Usi“U: ; Ja :Uci - Uo:{

With the help of (3.5) the off diagonal Casimir operators can be

written as

T30 LT ST- [, B B

16

Ty= tNor N +2 - T LT+ (20,0 BUs- 27,
57; JZL - fl}J; +'VZEL]; ‘XZVTE L/

e ST T

@ %Q—W_Js“%(]‘ (3.6)

—~ P’ .
where U'—'—' AO(F)’VL)'f’ﬁ(M)P), Having in mind certain relations /2/

between the second~order Casimir operators and the bilinear forms

of the U(6)-generators one can obtain the relation

Ja*’ja:[?:]a v Js. (3.7)

Then the Hamiltonian (3.1) can be expressed as

]”WLJE (046"‘ 0454’ s+ 3 Log,+ ¥(56+‘ (%)fVZ
+(5o<e+o(z,+—pe+ﬁ5)j‘f+

t (Loks+ Gty + /55—— 5o T
G2 pegPrsfe Ulsper S 2 f) i+
(B persB Pl p)l - ER
B B+ (- LB, +

+ (—3,,2;’—5/75’)(%}@ +VZ Js).

(3.8)

17



This representation of the Hamiltonian of the Interacting Vector-
Boson Model makes it possible to use the generalized Wigner-Eckart

theorem for its diagonalization, i.e.,

¥, Ind, 12t], _ ], (2, Bt
ocL5 t, ﬁ(f}]‘,mjtz‘mkm;) I t,’z>=

16 [¥, [¥]e (3.9)
= X § X

], W%ﬁawa T t" t
£ Lo w4l VTt te

Here En,}ﬁz [’W.,'YLL‘O‘X 5 and [l,ﬂ: Y%V LR OJL are the representations of
the groups U(3} and u(2), respectively. The numbers En]b and LZtl
1ohalling +tha venrveaentations of the direct product U(3)®U(2) belong-
ing to a given U(6)-representation [N]6 can be obtained by standard
group—theoretical methods /3’9/. The index ol (<£') distinguisehes
states with equal L, which appear more than once in the decomposi-
tion U(3)>0(3), while the summation index J5j in (3.9) indicates
that some U(3)-representations appear more than once in the direct
product E}]bx Pnﬂb.

Unfortunately}there are no explicit analytical expressions for
the isoscalar factors in (3.9), which correspond to the decomposi-
tions U(6) D U(3)@U(2) and U(3)>0(3). However, one can calculate
them in some particular cases, which are of importance for the prob-
lems discussed in this paper. The reduced matrix elements in (3.9)

have also to be calculated.

18

4, Conclusions

The results of the present paper show an explicit way for a di-
rect diagonalization of the Hamiltonian using a basis along one of the
main chains of the reducilon scheme (1.1) (it is the chain (1.2) in
our cese)., Furthermore, it is evident from (3.,6) and (3,7) that the
irreducible tensor operators [];, léf , ééo, LLi and ﬁépof Table 1
are diagonal in the basis (1.2). The operators l&f, \I;, and J; give
the transition from chain (1.2) to the chain U(6)20(6)>5U(3)+0(2) D
50(3)+0(2) D 0(3), while the inclusion of different types of linear
combinations of the operators jT , kﬁl,and .Ié gives the transi-
tions to the remaining two chains of (1.1).

At lest, it should be noted, that all regults of this paper
can be applied directly to the three-body problem, where (after the
jntroduction of the Jacoby coordinates) the group U(6) appears in

a quite natural way.
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