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I. INTRODUCTION

To describe the reactions with heavy ions, at present the
theoretical approaches are intensively developed in which the
interaction potential 1is constructed on the basis of the data
on effective nucleon—nucleon forces and on distribution of
matter in the projectile and in the target. Two of the most po-
pular methods for constructing the nuclear interaction potential
(NIP) of heavy ions are the double folding potentials”’!’ and the
energy-density formalism/2/, These approaches make it possible
to allow for the effects of nuclear saturation and antisym-
metrization’/1:3/ 1in the density dependence of interaction for-
ces’4 due to inclusion of nucleon exchange. However, in gene-
ral the calculations involve various approximations. The imagi-
nary part of NIP, which includes the relevance to various reac-
tion channels, is approximated by the Woods-Saxon phenomenolo-
gical potential’l!’, the interacting ion densities are simulated
by all the possible functions ‘4/, etc. Among the consistent mic-
roscopic scheme for constructing NIP, we feel it necessary to
weniliun Lue wulks ui Fassier's group “»%) where an attempt was
made to use the G-matrix in order to calculate the imaginary
and the real part of the optical potential (OP) of heavy
ions on the basis of the properties of infinite nuclear matter.

The formalism of the method of hyperspherical functions (MHF)
was used in ‘7’ to obtain the nuclear density distributions
for a number of light nuclei ( *He, ®Li, !2C, !'%0) verified on
the basis of sets of experimental data, such as binding energy,
monopole resonance excitation energy, r.m.s. nuclear radius,
elastic and inelastic form factors for the excitation of mono-
pole resonances ‘8. In work 1%/, the nuclear interaction poten-
tials using finite-range forces proposed by Satchler and Love
for systems with A =4,6,12,16 were constructed by parametrizing
these densities in the form of two Gaussoids with different
parameters ?'. In work '3/, the densities obtained in MHF were
used to construct not only diagonal but also nondiagonal matrix
elements of the potential for monopole excited states of
nuclei 1127 gith Skyrme & -forces. A good agreement with
exper1ment in describing elastic scatter1ng process was obtained
in ref. 14/ by representing the real and imaginary parts of
OP in terms of such a microscopic potential and varying only
the renormalization factor for the imaginary part. Besides that,
the method of coupled channels was_paed_;a_na&eulate the ine-
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lastic cross sections of ion interaction involving excitation

of monopole giant resonances’/15/, These cross sections are also
proved to be in an adequate agreement with experimental data for
the inelastic scattering process with excitation of 0% state

in the 3He+ 12C reaction. Such studies are urgent because

of the numerous experiments carried out in the recent years to
find and identify the monopole giant resonances in nuclei. Howe-
ver, the problem of the existence of monopole resonances in
light nuclei (A <16) has not been solved unambiguously. On the
other hand, MHF can give reliable theoretical predictions for
the description of monopole oscillations and may be used to
study inelastic processes in ion reactions involving excitation
of the monopole degree of freedom. In this case, the test of

the potentials obtained in MHF by describing elastic scat-
tering of ions is a necessary intermediate stage.

In the present work, the 180 ;160 elastic scattering is
studied theoretically at different bombarding energies of ions
using the nuclear interaction potentials calculated with the
densities obtained in terms of MHF. The stability of calcula-
ted results with respect to the choice of the model for the
construction of the potential’!'®/ is analyzed. In the case of
the double-folding potential various effective interactions
are used, namely finite-range forces suggested by Satchler and
Love’/10/ and Skyrme & -forces’!13/ to study the influence of
the character of the forces on the behaviour of elastic scat-

LeLilp CLUDD SEULLIULD.

2. CALCULATION TECHNIQUE

In this section, we shall discuss the scheme of calculating
the nuclear interaction potential in ion reactions.

The interaction potential between two nuclei or ions is not
completely determined and therefore, the optical model was used
to construct the potential for a system of two nuclei @ + A.The
complete wave function of the system a+ A is expanded in inter-
nal wave eigenfunctions of individual nuclei:

¥ =24, ¢ x;; R, (1

ij
where x j; (R) described the relative motion of the system a+A
when nucleus a is in state i and nucleus A is in state j.Elas-
tic scattering corresponds to the wave function xgg(R). If one
neglects the effects of antisymmetrization between two nuclei
whose wave functions are separately antisymmetrized, then,

according to Feschbach 718/, the effective potential of optical
model will take the form

2

Ugp = Voo + aﬁ' Voa ( Jaa’ Vg0 =Up +AU, (2)

E-H + ic

where V is the interaction between a and A ; the summation runs
over all the excited states of one nucleus or both. The first
term is the real double-folding potential

Up R) = Voo = (g Sp0 |Vidyo b0 )- 3)

The integration in (3) is over all internal coordinates of the
two nuclei. The remaining term AU, which contains the coupling
to the inelastic channels, is of the dynamic nature, so that
one has to know the total excitation spectrum of the colliding
nuclei in order to construct it. In phenomenological approaches,
Uyp is approximated by the local complex potential U(R), which
is used for example, in the Woods-Saxon form. The parameters

of the real and imaginary part of OP are often chosen to be
independent. Therefore, the radius of the imaginary part of OP
is in most cases larger than the radius of the real part.

(a) The Double-Folding Model

When U 1l..(R)(formula (3)) is calculated by the method of
double folding, the densities of the colliding nuclei 4 and A
are assumed to be nondisturbed. and the interaction potential
is the mean value of the nucleon-nucleon interaction averaged
over two densities:

Up ap ® = [Toy (F1) o 9V (T + R—ry ar dry . )

Such a determination seems to be justified at the ion collision
energies considered here ( < 10 MeV/nucleon) because the elastic
scattering of ions is only sensitive to the form of the poten-
tial at a distance between the ions near the radius of strong
absorptign

173

R - 15A1 2+ a ). (5)

crit

The overlap of the densities of colliding nuclei is small in
this region, so that one can assume their distortion to be neg-
ligible in this case. For even-even nuclei with N=2Z, the nuc-
leon-nucleon potential in formula (4) may be assumed to be in-
dependent of spin-isospin interaction. Then, using the Skyrme
interaction with &-forces as nucleon-nucleon interaction, we
obtain the following double folding interaction potential for
the nuclei a and A:
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where lﬁ -;l =vR2+r2_-2Rrcos®; tge t are the parameters

of the two-particle and three-particle Skyrme interaction, res-
pectively; n;; (f) is the density distribution of nuclear matter
given by
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The normalization condition is of the form

4x fnij(r)rzdr =A,

and the r.m.s. nuclear radius is expressed by the relation
- [n, (O)r%r
2 2 11
Rii =TI = —————— (8a)

H fnii(r)r2dr

In the case of finite-range forces, the nucleon interaction po-
tential is chosen to be of the Gaussian form allowing for a soft
core in the effective interaction at small distances’

U = 22 Uy exp(__r_i) s 9
k=1 a%

> - >
t =[ri+R~-rzf.
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In this case, the Gaussian form with the parameters found from
the condition for the best representation of nuclear densities
obtained ' in terms of MHF is also applied to the nuclear matter
density distribution. Use is made as a rule of different para-
meters of the Gaussoids in formula (9), which permits one to
describe the asymptotie behaviour of the density correctly. In
the language of the shell model this means an effective al-
lowance for mixing of configurations from different shells.
Thus, using the following form for the densities of colliding
nuclei,

PA(D =pgy lexp(-——) + C —5—exp(~ —r—z—-)],
boa b2A boa (10)
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we get for the nuclear interaction potential
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In the case of heavv ion interaction we use the zero-range
pseudopotential/l/
U5 (r) = dES(r) (13)

in order to take into account the Pauli principle effectively.
This correction term depends on the mass number of the system
and the incident energy in the following way:

A(E) =—276(1—0.005§:—)Mev fm . (14)

(b) The Energy-Density Formalism

In this case, NIP between two ions is calculated in the sud-
den approximation, where it is assumed that the ion densities
are frozen at the moment of collision. Then, NIP takes the form

U(R) = fic(pa +P, )—c(pa)—e(pA)}dr, (15)

where ¢(p) 1is the energy density for the relevant system wkich
is determined as/2/

6

e(p) =Top +pVip,a) + 1y (Vp)2 +-;—eppve —0.37882;2;'/3, (16)

where p =p, +pp pn(pp) is the density of the neutron (protomn)
component in the nucleus; a is the neutron excess

a = Pn7Pp (17)
Pn +Pp

The first term in (16) is the density of the kinetic energy due
to the Thomas-Fermi approximation

5/3 3 %2 3 2.2/3 1 5/3 .. B/8, 5/3
TF = %k P =5 2m(-2-'77 ) -5[(1—a) +(1+a 1p

+ (18)

where m is nucleon mass. The functional V(p,a) corresponds to
the potential energy of a particle in nuclear matter

Vip,a) = b,(1+a,a)p + by(1+a5a%)p*? rbg(l+2aga®)p ®® . (19)

The gradient term in (16) arises from the finitenmess of the
nuclear system, the two last terms correspond to the direct and
exchange Coulomb energies. The values fa,b} are determined by
fitting the binding energy and the proton radius. It should be
noted that NIP was calculated in che energy-density formailsm
using the same densities (formula (10)) as in the case of the
finite-range potential.

In the case of 160 + 160 system, the parameter @ = O and
the density parameters in p,(r) and p, (r) are also the same.
Considering the latter, we obtain for NIP:

1 )
UR) = 2r [dcos® [ f(R,O,r)r?dr,
-1 0

(R, 0, 1) = Tlp, +p,) —¢,) —Elpy) =2ng1,
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it | = 12+ LRr2 - 1R cos®, l?\:y/rv;+-l-R2+—1lR005®,
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where R is the distance between ion centers; €(p) is the cor-
responding functional (16) without the gradient term. When
deriving formula (20), we disregarded the contribution from
the direct Coulomb term for it is included effectively in the
computation of the cross sections.

(c) Cross Sections of Elastic Scattering

The angular distributions for elastic scattering of ioms
were calculated using programs TUFO and CHUCK. It was assumed
that the forms of the real and imaginary potentials were the
same, so that

U =Ugg, 00 (1+ixoo,oo)‘ 21

The factor xgg g9 in the elastic channel was found by fitting
theoretical differential cross sections to experimental data.
The criterion of fitting is the usual one, namely, we minimized
the value

8, )“"meor ® ) e

2=3[ Zexp 1, (22)

i @,)

Toxp
where % theor.®;) are the calculated differential cross sections;
«i) are the measured cross sections; Ae (8,) are the
experlmental errors.

exp

3. CALCULATED RESULTS AND DISCUSSION

The nuclear interaction potentials of two ions are determined
by the form of effective nucleon-nucleon interaction and by the
d1str1but10n of matter in them. Figure 1 shows the density of

180 nucleus calculated by MHF for two ver51ons of the nucleon-
nucleon interaction (Brink-Boeker potential 11/ Y. If the
parameter set B4 is used, we obtain a narrower density distri-
bution, but with a more clearly expressed maximum for R = 1,2fm
compared with the result given by the parameter set Bl. The
use of the parameter set Bl gives rise to a larger nuclear
radius. Obviously, the use of different nucleon-nucleon in-
teraction potentials in MHF leading to different nuclear densi-
ty distributions must affect the results of calculations of
NIP of two ioms.

Figure 2 shows the results of calculation of NIP in the
double folding method with the Skyrme interaction 713/ for
three sets of parameters tyg and tg. The values of the para-
meters are presented in Table 1. Versioms (a), (b), (c) differ
by the three-particle force contribution determined by the
parameter tg.

8

Fig.1. Density distribution of

Foo the ground state of “°O nucleus
for the potentials Bl (—)
015 and B4 (-—--).
Voom
{MeV)

01

005

Fig.2. Double-folding potential
of 1860 ;180 wywith Skyrme for- ’
ces for three sets of parame-
ters tg, tg from Table 1 ).
(a , b

, ¢ — —

As the ratio |tg/tg| rises, the calculated potential gets
deeper. Thus, an increase in the contribution of the three-
particle forces, which are of repulsive nature, gives rise to
a decrease in NIP depth. Figure 3 shows the results for the
160 + 180 NIP computed in the energy-density formalism (dots),
by the double~folding method with the Skyrme forces (the solid
line corresponds to NIP calculated with the densities obtained
in MHF with the set of parameters Bl, and the dashed line with
B4), and with finite-range forces allowing effectively for
(d # 0, the dot-dash line) and disregarding (d = O, two dots-

Table 1
to tg |tg /t3] V(MeV) at R=0.1 fm
a) -1057.3 14464 .4 0.073 -410.25
b) -1170.0 9331.0 0.125 -522.75
c) ~1205.6 5000.0 ~ 0.241 -586.20




dash line) anti-symmetrization. Table 2 presents the parameters
of the potential calculated in the energy-density formalism.

Table 2

by by bg ay ag ag 10

-588.75 563.56 160,92 -0.424 -0.0973 -2.25 7.23

.

The parameters of the potentials obtained by the double-
folding method with finite-range forces are presented in
Table 3.

Table 3
Version
of forces VI(MeV) V2(MeV) al(fm) az(fm) d (MeV fm3)
1 553.18 1781.4 0.8 0.5 0
2 601.99  2256.4 0.8 0.5  -276(1-0.005 £ )

Fig.3. Potential of %0+ %0 in
the energy-density formalism
(....), in the double-folding
method with Skyrme forces:

Bl ( ), B4 (---); with Sat-
chler-Love forces including

( } and disregarding

(——— ++——) antisymmetrization.

10

The calculations have shown that the interaction potential
depth is determined by the density distributions of colliding
ions,namely an increase in the density at small distances for the
set B4 compared with the set Bl (see Fig.2)results in a deepen-
ing of NIP.The NIP calculated in the double-folding method with
finite~range forces is characterized by a stronger interaction
at high R compared with the result obtained using the &-force.
In particular, the values of the NIP at the critical radius
are V(R,,, ) = -1.05 MeV for the parameter set Bl and Skyrme-
forces (version (a), Table 1) and V(R,,,) = - 2.74 MeV in the
case of finite-range forces. The consideration of the antisymmet-
rization effect in the calculations with the finite-range
forces results in a deeper potential at all values of R. The
NIP obtained in the energy-density formalism is characterized
by a repulsive core up to R =2,2 fm. Its maximum depth
Vo= —-31.35 MeV at R =4.1 fm is much smaller than in other
cases. Thus, the 1804 180 interaction potentials calculated by
using various models’!'?/ with various effective forces are
much different at small distances, but these differences become
insignificant in the peripheral region.

The calculated NIP were used to analyse the differential
cross sections of elastic scatteringlao +180 ¢ R&E=41, 49,
63 MeV /1%, Figure 4 shows differential cross sectioms calcula-
ted using the Skyrme interaction (version (a)) in comparison
with experimental data at three energies. The parameter of the
imaginary pari vl Lie OF was varied depending on the pombarding
energy of the ions in order to obtain a better reproduction of
experimental data. Its value was found to be ¥ 00,00~ 0.04, 0.1,
0.2, respectively. The thin line represents the result of a
phenomenological calculation based on the Woods-Saxon poten-
tial 718/ At the bombarding energy E,p, = 63 MeV the result of
the microscopic calculation is in better agreement with expe-
rimental data than that given in ref./ 1% 1n particular, the
most realistic description, compared with the phenomenological
model, is obtained at small angles. For the lower bombarding
energies the differential cross sections are represented only
qualitatively.

In the following the effect of the three-particle forces
on the differential cross section of elastic scattering was
investigated. Figure 5 shows a comparison of the differential
cross sections calculated using the Skyrme nucleon-nucleon in-
teraction potential for different sets of parameters (see
Table 1 and Fig. 2) with the experimental data obtained at
E = 63 MeV. The estimates based on y? indicate that the
best agreement with the experimental results is obtained for
the highest contribution of three-particle forces. In all the
cases, a rather good description of experimental data can be
obtained at scattering angles up to ® = 65° for Xomo¢=0.2.

11



PO Fig.4. Elastic scattering cross
- ° e sections calculated with
ol . .:_;\‘ -~ Skyrme forces and the relevant
3 L S NS experimental data for E , =
R \_\.:_,.\‘_:,‘ ¥ .'_to \ = 41 MeV ¢ o),
&P VN wire) 49 MeV (---,®), 63 MeV (—,
3 B 9.
_ 160'160 o P
» At
3 ) \r
102 AW
SRR ATV
3 . f\
i
i \ 10"
L -
3 ) 3 - i e i l ’: i
30 <0 S0 68 70 80 90 100 ‘Qo‘Z'
Bcmlgrad) g9
S |
S~
. . % 3F
Fig.5. Experimental data on 10°L
elastic scattering cross sec- E
tions (+) and the results of |
calculations for three versions b
of Skyrme forces ((a) y—+, . L0 S0 60 70 8) 90 100
(b)) -—— ()
E,,= 63 MeV. O:m grad)

Using the NIP with the finite-range forces the differential
cross sections for elastic scattering were calculated at

E ;b = 49,63 MeV, where the parameter of the imaginary part
was XOO 00-_0 3. From Fig. 6 it follows that the better des-—
cription is obtainable at a higher energy. However, the use

of the potential with finite-range forces permits a fairly
good interpretation of elastic scattering cross sections in

a broader interval of angles compared with the previous one
also at E,,, =49 MeV. Therefore, this potential allows the
most realistic description of the elastic scattering of two
ions in comparison with other potential types investigated.
Figure 7 shows the results of the calculations with NIP obtained
in the energy-density formalism. This potential has a repulsi-
ve core and a relatively small depth. In order to describe
experimental data we had to introduce two free parameters
according to U =(a +i8) Ugg,90 - A satisfactory agreement can
be obtained with a = 2.7 and B = 0.3 for Ej,, = 49 MeV. However,
it is impossible to describe the experiment at E;,, = 63 MeV in
the interval of scattering angles @ < 80°.
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forces.

183,160 elastic scattering at
Elab_'49 MeV (---) and 63 MeV
()

far tha nataned~
r

Cellivals

given by the energy-density
formalism.

4. CONCLUSION

We used the microscopic nuclear densities obtained in MHF
to construct NIP for 180 ions in the double-folding method and
in the energy-density formalism. It has been shown that the
choice of nucleon-nucleon interaction, when obtaining densities,
determines the NIP behaviour at small distances; in the periphe-
ral region this difference is insignificant. Comparatively iden-
tical description of elastic scattering by using the realistic
NIP on the basis of the finite-range forces and the potential
calculated with the Skyrme & -forces, respectively, indicate
that three-particle forces have to be taken into account. Small
changes of the NIP depth both in the case of Skyrme &-forces
and for finite-range forces do not lead to marked differences
in the descriptions of elastic scattering cross sections. Howe-
ver, the appearance of a repulsive core in NIP gives rise to
the necessity of a considerable renormalization of the potential.
Therefore, the internal part of NIP may affect the calculated
cross sections for the elastic scattering of ions.

13



It should be noted that, by varying only a single parameter
on the imaginary part of the OP we can obtain a comparable
(and sometimes a better) description of the differential cross WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?
sections for elastic scattering of !0 ions compared with

€ 3 i l . i - i )
the phenomenological method where up to 6 parameters have to be You can receive by post the books listed below Prices - in US §

used, for example in the case of the Woods—-Saxon potential. including the packing and registered postage
D-12965 The Proceedings of the International School on
ACKNOWLEDGEMENT the Problems of Charged Particle Accelerators
for Young Scientists. Minsk, 1979. 8.00

The authors are indebted to F.A.Gareev and V.M.Shilov for

o, e . . . . -80~ P d I 1C
critical remarks and informative discussions of the problems D11-80-13  The Proceedings of the International Conference

on Systems and Techniques of Analytical Comput-

treated in this work. ing and Their Applications in Theoretical
Physics. Dubna, 1979. 8.00
D4-80-271 The Proceedings of the International Symposium
R on Few Particle Problems in Nuclear Physics.
REFERENCES Dubna, 1979. 8.50
. D4-80-385 The Proceedings of the International School on
1. Satchler G.R., Love W.G. Phys.Lett., 1976, 658, p. 415; Nuclear Structure. Alushta, 1980. 10.00
Phys.Rev., 1979, 55, p.3. o a £ the VII All-Uni conf
. roceedings o e -Union Conference on
2. Lombard R.J. Ann.Phys., 1973, 77, p. 380; Charged Particle Accelerators. Dubna, 1980.
Ngo H., Ngo Ch. Nucl.Phys., 1980, A348, p. 140. 2 volumes. 25.00
3. Panda K.C., Behera B., Satpathy R.K. Journ.Phys., 1981,
G7, p. 937 D4-80-572 N.N.Kolesnikov et al. "The Energies and
L B o Half-Lives for the ¢ - and B-Decays of 10.00
4, Vinas F.J., Lozano M., Madurga G. Phys.Rev., 1981, C23, Transfermium Elements"
p. 780. .
D2-81-543 Proceedings of the VI International Conference
5. Izumoto T., Krewald S., Faessler A. Nucl.Phys., 1981, on the Problems of Quantum Field Theory.
A357, p. 471. Alushta, 1981 9.50
6. Sartor R. et al. Nucl.Phys.. 1981. A359. D. 467 . n1n, 11-01_€33 Drocosdings of the Trbornatisnzl Mocotins on
7. Kaschiev M., Shitikova K.V. Yad.Fiz., 1979, 30, p. 1479. Problems of Mathematical Simulation in Nuclear
8. Burov V.V. et al. Journ.Phys., 1981, G7, p. 137. Physics Researches. Dubna, 1980 9.00
9. Orlova N.V., Shirokova A.A., Shitikova K.V. Abstracts of D1,2-81-728 Proceedings of the VI International Seminar
the XXX Symposium on Nuclear Spectroscopy and Structure of on High Energy Physics Problems. Dubna, 1981. 9.50
the Atomic Nucleus, Leningrad, 1980, p. 203. D17-81-758 Proceedings of the II International Symposium
_aa. . on Selected Problems in Statistical Mechanics.
10. Burov V.V. et al. JINR, P4-83-279, Dubna, 1983; Dubna, 1981, 15.50

Knyazkov 0.M., Hefter E.,F, Z.Phys., 1981, A301, p. 277;

Knyazkov 0.M. Yad.Fiz., 1981, 33, p. 1176. D1,2-82~27 Proceedings of the International Symposium

on Polarization Phenomena in High Energy

11, Dymarz R., Molina J.L., Shitikova K.V. Z.Phys., 1981, Physics. Dubna, 1981. 9.00
A299, p. 245. D2-82-568 Proceedings of the Meeting on Investiga-

12. Dymarz R., Shitikova K.V. JINR, E7-81-653, Dubna, 1981. tions in the Field of Relativistic Nuc-

13. Vautherin D., Brink D.M. Phys.Lett., 1970, 32B, p. 149. lear Physics. Dubna, 1982 7.30

14. Demyanova A.S., Shitikova K.V. Yad.Fiz., 1982, 35, p. 1431. D9-82-664 gmgfedin‘ig gflihe fympgst‘-__ﬁmd“ §h§

15. Dymarz R., Nazmitdinov R.G., Shitikova K.V. ICOHEPANS, D10, o “hubna, iegy. ethods of Acce 9.20
Versailles, 1981, p. 139. . .

D3,4-82-704 Proceedings of the IV International
16. Feshbach H. Ann. Phys., 1967, 19, p. 287. School on Neutron Physics. Dubna, 1982 12.00

17. Brink D.M., Boeker E. Nucl.Phys., 1967, A91, p. 1.
18. Maher J.V. et al. Phys.Rev., 1969, 188, p. 1665.

Received by Publishing Department Orders for the above-mentioned books can be sent at the address:
on Juny 3,1983, Publishing Department, JINR

Head Post Office, P.0.Box 79 101000 Moscow, USSR

14




SUBJECT CATEGORIES
OF THE JINR PUBLICATIONS

Index Subject
1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. Low energy theoretical physics
5. Mathematics
©. fuciear spectroscopy and radiochemistry
7. Heavy ion physics
8. Cryogenics
9. Accelerators
10. Automatization of data processing

12.
13.
14,
15.

16.
17.
18.

19.

Computing mathematics and technique
Chemistry

Experimental techniques and methods
Solid state physics. Liquids

Experimental physics of nuclear reactions
at Jow energies

Health physics. Shieldings
Theory of condenced matter

Rpplied researches
Biophysics

Hasmurguuos P.I'., Cayme I'., luTuHkoBa K.B. E4-83-368
llpuMenenne Metona rumnepchepuuecKHX OGYHKUME K ONMMCAHHIO
ynpyroro paccesnus 160 4+ 160

PaccumnraHb moTeHUHANB SOEPHOrO B3aMMOOEHCTBHA OJIA CHCTEMSI
18609 4180 dopMannamMax OBOHHON CBEPTKH W INIOTHOCTH SHEpPIHH
Ha OCHOB& DPagHAJIBHOTI'O pacClpefesyleHHA TIOTHOCTH 3THX fAgep,
TIOJIy4eHHOTO MeToHnoM runepcdepuueckux byskuuit, Hccraemosana
38BHCHMOCTD CeYeHHA YINPYroro pacCesHHA B 9TOH CHCTeMe IpH
PAa3JIMYHHIX 3HEPrHAX OT THUNA HYKIIOH-HYKJIOHHBIX CHJI, a4 TaKxe
NPOAHAIH3HPOBAHA YCTOHYKHBOCTEL Pe3yNBTATOB K BuGOpPY Momelnu
AJI1 MOCTPOEHHS MNOTeHUHAalla AOEePHOTO0 B3aMMOLeHCTBHUA.

PaGora BhnonHeHa B JlaGopaTopuH TeopeTHuecKOil dMauxu OWIH.

NpenpuHT 06beaUMEHHOrO MHCTMTYTa AgepHux uccnegosanwi, lybna 1983

Nazmitdinov R.G., Saupe G., Shitikova K.V. E4-83-368
Application of the Method of Hyperspherical Functions
to Description of !80 + 180 Elastic Scattering

The  potentials of nuclear interaction of 60 +160 haye
been calculated in the framework of the folding model and in
the energy-density formalism using the radial density distri-
butions of the nuclei obtained by the method of hyperspherical
functions. The dependence of the cross section of the elastic
scattering in this system at various incident energies on
the type of the nucleon-nucleon forces and the influence of
the choice of the model for the nuclear interaction poten-
tial on the results have been investigated.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,

Preprint of the Joint Institute for Nuclear Research. Dubna 1983




