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1. INTRODUCTION

The main part of alpha decay width calculations is performed
in the frame of two variants of theory which lead, respectively.
to the R matrix/'?/ and to the integral formulas /3,4,5/ These
two variants of the theory are analysed in sections 2,3 and it
is shown that the essential problem with them is the fact that
the model wave functions used in calculations do not describe
correctly the nuclear surface. Then, having in mind that at the
nuclear surface the Pauli principle effects and clustering must
be important, a way to account for them is proposed. An integro-
differential equation is obtained for the alpha particle-final
nucleus relative motion wave function in section 4. A method
for calculatine the nonlocal potentials appearing in this
equation and the first numerical results for these potentials
are given in section 5.

2. THE R MATRIX FORMULA FOR ALPHA DECAY WIDTHS

The asymptotical behaviour of the wave function of a spheri-
cal alpha emitter with only one alpha channel open must have

the form
I; M; T.x 1My Gp+iF
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Here the functions X,» ¥ describe the internal motion of
alpha particle and final nucleus, Yy is the spherical harmonic
describing their angular relative motion, while Gj and Fj, are
the irregular and regular Coulomb wave functions depending on
the distance R, between the centres of mass of the fragments.
The constant \7Fk/2Q is obtained from the continuity equation,
considering the state ¥ 'i'i quas1stat10nary, and contains the
alpha width TI', the c. of m. energy of the alpha particle Q and
the corresponding wave number k. The operator ( stands for the
antisymmetrization between the N-2 neutrons and Z-2 protons
of the final nucleus and the 2 protons and 2 neutrons in the
alpha particle.

For spontaneous alpha decay I' <<@ and, consequently, under
the barrier, the function Fj, is by 10 +20 orders of magnitude
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smaller than the function Gy .Thus, the imaginary part of func-

tion WhiMi gives very small contributions to the matrix ele-

ments and can be neglected. At the same time, potentlals acting

between alpha particle and final nucleus can be considered real.
In the frame of the R-matrix theory for alpha decay’/1.2/

" it is stated that the Hamiltonian of the A-particle system
can be described for overlapping fragments (R, < R,) by the
shell model and for nonoverlapping fragments (R > R ) by the
optical model

sm

H foo, R < R_ (2)
H = :

(Ra) for R > R .

opt opt a= c

H =Ha+Hf+TRa+V
Here the parameter Rc is the channel radius. Obviously, the
results must not depend on this parameter, i.e., there must
exist a region where the logarithmic derivatives of the shell
model wave function

(Hsm_E)\Psm =0 3

and of the optical model wave function

(H,, ~E)Qix ¥y, v o BL -

(4)
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are equal. If this matching condition would be satisfied on
a sphere of radius R, the alpha decay widths could be obtained
equating the amplitudes of the model functions on this sphere:
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But, concrete calculations show that such a sphere does not

ex1st Eq (5), projected on the channel wave function
[‘I’ i . reads
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where the function Ji; is the overlap integral
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and the factor [( g )0 s )] appears as a consequence of
the antisymmetrization. This is the only effect of the antisym-
metrization operator @ for channel radia R, where the framtents
are well separated. Some typical cases for functions R *

and \/L"g%i x g are represented in fig.1 and 2. It is obvious

that there are no points R, = R, at which they would match.

This means that if the shell model describes well the system

in the interior and the optical model at the exterior, there
exist an intermediate region at the nuclear surface where none
of them does work. (The dismatching demonstrated here leads to
the strong channel radius dependence of alpha decay widths cal-
culated by the R matrix formula). The shell model Hamiltonian in
eq. (2) is unable to account for surface alpha clustering,




while the optical model Hamiltonian in eq. (2) does not account
for Pauli principle effects.

An attempt was made to account for Pauli principle effects in
the R matrix formalism/6/. It was stated that the channel radius
R, must lie in the region where the fragments are overlapping.
For such distances R, the effect of the antisymmetrization ope-
rator in eq. (5) is some more complicated. Projection of
eq. (5) on the channel wave function yields

L : L Tk ~

where
IMg 7 (M
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(For distances where the fragments are well separated function
N{(R,R") takes on the form &(R -~ R’).Then, it was proposed /67
to rewrite formula (8) as

st g A
N'" Js =N"gy (10)

and from qualitative considerations to assume that ﬁ’égL is
the solution of the usual radial optical model Hamiltonian with
local potenEials. Here the difficult problem of calculating
function N{(R,R’) arises.On the other hand, this procedure may
contain some principal and mathematical indeterminations/7/.
At the time, the problem of matching internal and external

wave functions is not solved. Function N% Jh falls down

too rapidly at the nuclear surface, just like J;f does. (See
figs. 1 and 2 of ref./8/ ).

3. THE INTEGRAL FORMULA FOR ALPHA DECAY WIDTH

Another way to calculate alpha decay widths is to use the
integral formula’?

.M.

TeMy nucl 2
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r=2
a0

Here ¥, is the regular Coulomb wave functionlnormalized to 8-
function in energy, while the potential VJ{'®’ stands for the

nuclear part of the alpha particle-final nucleus interaction.
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This formula was obtained’3/ comparing the wave function of the
decaying nucleus with the resonant scattering wave functionms.

A simplified way to obtain this formula is the following. Let
us rewrite the Hamiltonian of the system in the form

nucl coul

H=Ha+Hf+THa+Vaf + Vg (Rg). 12)

The only approximation here is that the Coulombian part of
the interaction is considered central. Projection of the cor-
responding Schrddinger equation on the channel, gives

2 2 I;M ~
h d®  L({+1) coul L fef mcl, I;My
(g =+ HE D VT R-QR T =R O Y]y Ver 1Y .
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(13)

Writing along the equation for the regular Coulomb wave func-
tion ¥, multiplying the first equation (13) by R, J; :the second,

L 5 :
by R,Jif ,subtracting them and integrating over R, formula (11)
is obtained, under the condition that the asymptotical condi-

tion (1) is satisfied (the imaginary part is neglected), i.e.,

that the overlap integral has the correct asymptotical behaviour

L Dk %1 N2 ox 72 .y
Jif‘—"\/zg R(2) (2) . (14)
As this formula does not depend on any free parameters, it
permitted to perform consistent calculations for a large number
of spherical alpP%Lemitters/tsﬂ But, in these calculations,
the functions ¥'i"i for the alpha emitters were approximated
by shell model wave functions. It was shown’/5/ that, working
with Woods—Saxon one-nucleon functions and taking into account
nucleon-nucleon correlations, the relative alpha decay width
values are well described for a large number of nuclei and for
all types of alpha transitions. But, the absolute values of
the theoretical alpha decay widths are by a factor of 100 smaller
than the experimental ones. In order to understand this phenome-
nological result, let us rewrite formula (11) (in which func-

tion wliMi is approximated by W;&Mi) as follows

L nucl 2 N-2 Z7-2
F=2n|f3; RV, ¢ (Rh)flﬂRa)RadRa]( 2 e ) : (15)
Here the approximation V:?d = ::CRR ) is used. It was shown/4.9/

that such an approximation does not éhange essentially the re-
sults. From formula (15) it is clear that the relative values
of alpha decay widths (besides their energetical dependence




which is accounted for via the function ¥ ) are determined
mainly by the position and amplitude of the last maximum of the
integral overlap J}}.Thus, the fact that relative values are
in accordance with experiment means that this function is cor-
rect up to this last maximum. In terms of the many body func-
tions, this means that the shell model with nucleon-nucleon
correlations approximates well the decaying nucleus function
up to the surface. The discrepancy in absolute values can be 5 }
explained by the same fact as the strong channel radius de- i
pendence of the R matrix results: the function J? falls down
too rapidly at the nuclear surface, i.e., the shell model gives
no good description for this region. Thus, we are lead to the
same conclusion as in section 2: the shell model wave functions
cannot account for surface alpha clustering, but, in additionm,
we can conclude that thev give a good norm for the amplitude of
alpha particle preformation probability up to the nuclear
surface.

On the other hand, integrating formula (]5%“£fom the exterior

up to the last point, where the interaction V¢ =Vopt(Rg)

and consequently using instead of function.Jh(Ra) the function
Tk )

with correct asymptotical form /-8% gL(R‘J';it was shown’ 1%/

that the outer and surface region are ver
absolute values of alpha decay widths.

important for the

4. DESCRIPTION OF THE SURFACE OF HEAVY ALPHA EMITTERS

The analyses given in the preceding sections showed that
nor the shell model, neither the optical model can describe the
nuclear surface. For a good description of this transitional
region, surface alpha clustering and Pauli principle effects
must be accounted for. This idea can be argumented also by
experimental evidence for surface clustering, following from
nuclear reaction data/ll/ and by the nuclear matter calcula-
tions/12/ which showed that alpha clustered nuclear matter is
energetically favoured for small nucleon densities.

Having in mind all these arguments, let us write the Hamil-
tonian of the decaying system by adding to the shell model
Hamiltonian a term accounting for surface alpha clustering

H=H3m+(1_-£.)va. (16)

where p is the nucleon density and po its value in the centre

of the nucleus, while V, is the interaction potential forming
the alpha particle

6
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The Hamiltonian (16) reduces to shell model Hamiltonian for the
interior region, while in the exterion it can be rewritten as

HeHy +Hyv Ty + Vo --;‘;— v . (18)
For great distances R, the last term is zero, while V_; averaged
on the channel wave function must coincide with the real part
of the local alpha-nucleus optical potential.

In order to obtain the solution of the Schrddinger equation
with Hamiltonian (16) in the whole space, by diagonalizing
it in a shell model basis, states with four particles in the
continuum must be included. But, the discussion is section 3
hints to the fact that even the shell model wave functions ob-
tained in usual truncated bases are good approximations up
to some point R, in the vicinity of the nuclear surface. In
the external reeion the solution of Hamiltonian (16)-(17) coin-
cides with the optical model wave function. In the transitional
surface region, since here alpha clustering must take place,
it is natural to look for the solution of the Schrddinger
equation by means of the resonant group method /!4/ (RGM), i.e.,
Mg UL(Ra)

LM]IiMi Ra

B-B)Qix (¥ Y 1 0. v .d. (19)

If the truncation of the shell model basis for the interior
region and the RGM function for the surface are good approxi-
mations, we must have in the vicinity of the sphere with ra-
dius Rg the internal and external solutions identical up to

a constant, i.e.,

AP ItM :
v v%@{x[w‘ e 1 o il

P LM LM, R, 3 - (20)

R,= R,

| =

sm'R_R_
Then, the alpha decay width I' should be obtained from the
ratio of the overlap integral and the RGM relative motion func-
tion at this point, because the channel projection of eq. (20)
yields

L Te 1 L

L ®)=Vog 3 IN®L.R )u;(R)AR, (21)
where the function N;(R,R”) is defined by eq. (9).

Let us consider for the beginning the case of an alpha emit-
ter in the vicinity of the double magical 2%®Pb for which it
can be assumed that the Hamiltonian Hg,,as well as H;, is well



described by the independent particle shell model. Then,

: A
developping the function an -—érll in series of four par-

ticle shell model wave functions

ey

[[W“l 1 ‘Pnz lyig ]112 ['/'“32333'1'“4(’-454 jgq LM

(22)
(symbols ny, £,, j;;mn,; ¢ » jo stand for proton state quantum
numbers; while ng, f3,j3; ny, %4, js » for neutron quantum num-
bers; (a),for two particle antisymmetrization;and the paranthe-
sisyfor angular momentum coupling), accounting for the antisym-
metrization operator (f and taking in mind that ¥ form a com-
plete orthonormalized basis, the RGM equation for the relative
motion wave function takes on the form

2 2 it
[5'3_7(-7‘%5 + L‘-‘E'gll) + V®) + Vo®)1u, + [V, R.R)+Vp RR) ], RIR =0,

(23)

where

4
V(R)=<XaYLM|%§] VilxeYLw> (24)

is a local potential obtained by averaging the selfconsistent
field potentials V; and

Ve - -, Y, x> £ , (25)
is a local potential following from the account for clustering.
The nonlocal potential VP(R,R’)appears due to the account
for the Pauli principle and has the form

]

i

4
ey T
i=1

1

Vo R.RY) - 3 g®)e®I( T ) (26)
p\it = n<an gn i=1€ »

where the functions giKR) are overlap integrals of shell model
and alpha particle functions:

g,];(R)=<anL|'Pn> : (27)

4 4 n
The sums % ¢; and 2 ‘iO stand for the energy of the cur-
i=1 i=1
rent four-particle state n and, respectively, for the four-
particle state ngy just about the Fermi levels of the final nuc-—
leus. The second nonlocal potential is a mixed effect of the

Pauli principle and clustering

8

L
VpdR.R)=RR°(1-2B)) 5 vim)g (r7, (28)
PO " n<F
where
L LM
ViR =<x Yyml V19, >. (29)

The symbol n > Fin eq. (26) and (28) stands for the complemen-—
tary sum to that in which all four particles in the state n
are taken over the Fermi surface of the final nucleus.

The solution of the integrodifferential equation (23) with
degenerate integral kernels (26) and (28) can be represented
in the following form

n
uy =uf +n2 <Rg lu;>u;, (30)

where uL is the solution of the homogeneous differential equa-
tion with local potentials, while “L are solutions of the
inhomogeneous dlfferentlal equations
h"’( d2 L(L+1)
m GRE R

+ VR) + Vo R) - Q)u] =
: (31)

g ng 3 L p(R), L
=B( X - T c‘i')gn(R)+R(1—-—p-;)Vn ®).

The solutions'u; have in the internal region a form resembling
to the inhomogeneity, while at the surface they turn into
functions with the correct boundary condition (ug, ~» GL)for the
quasistationary state. Thus, one can expect that the sum in

eq. (30) can yield a continuous transition from the overlap
integral J;; to the radial function of relative motion with
correct asymptotic form (see figs. 1 and 2).

5. FORM OF THE NONLOCAL POTENTIALS

To solve the integrodifferential equation (23)-(29) by
the method based on eqs. (30)-(31) is quite cumbersome since
the sum over four particle states n < F contains a very large
number of slowly converging terms.

The same problem arises in the calculation of the nonlocal
potentials Vp(R,R”) and Vp (R,R’)WNonlocal potentials of this
type were calculated only for light nuclei/!%/  and then,
instead of solving the integrodifferential equation, methods
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of projecting out the states forbidden by the Pauli principle
were used, i.e., the orthogonality condition model/}/ or the
method of orthogonalizine potentials/16/.

In the present case we can make use of the fact that for
an internal alpha particle wave function of the gaussian type,

as deduced from electron scattering on the 4He nucleus and usual-

ly worked within alpha decay calculations/1:2:4:5/, the over-
lap integrals g, (R) may be represented as a finite sum of har-
monic oscillator functions Ry

gL (®) = % Cyp, Ry @R)- (32)

n
For the coefficients Cyj analvtical formula can be obtained.
Thev are a particular case of the Talmi-Moshinsky coefficients
eeneralized for four particles.
Thus, the formula for the nonlocal potential Vp(R,R’)
takes on the form

(33)
d E ” :
Vp(R,R) = RR* % ’MNNA‘RNL@R) fRN»L(BR ).
E on L 4 1 $ (34)
My =2 CRUEY e 5 ey
NN= Co NLINT 2 6 o o
Neglecting the spin-orbit interaction for nucleus we have
ng 4
iEl €; —i§="1 e?: (N...- N Dho, where N ,, is defined by

the relation '21(2ni +8)=2Ny,,+ L.
1=

In order to evaluate the potentials following from the account

for clustering, for the 'interaction V, a sum of two—-nucleon
potentials was used and the nucleon-nucleon potentials were
approximated by simple potential wells/17/, Thus, we get

R
VeR) =V, %5'5') : (35)

: p(R). ., ; 36

Vpc® =V - SRR 2 My Ry CR) Ry (2RY, (36)
n n

MNN’=n§FCNL N’L* , (1)

were Vg is about - 84 MeV.

Calculations performed for 2%Pb as a final nucleus gave the
results represented in fig.3. For the nonlocal potentials
the diagonal, i.e., R=R’ part is represented. Summation in
eq. (34) and (37) was done up to N=N“= 16. This gave a good
convergence for the Vp¢ potential and for the internal part,
up to 6 fm, for the potential Vp .Addition of further terms will
make the surface well in Vp some more deep.

10

v SEsid Fig.3. The local and nonlocal
Mev potentials (for R=R’ ) of
alpha-nucleus interactions cal-
culated for a nucleus in vici-
nity of 208pyp,

100 -

The potential Vp following
from the Pauli principle forms
a wall inside the nucleus and
a small negative well at the
surface also. Thus, the account
for the Pauli principle will
transform the alpha-nucleus
potential into a surface well.
The local term following from
-50 clustering V. renormalize the
well depth in the interior regi-
on making it more shallow.
(Potential V has a depth of
-100 about 207 MeV). The nonlocal
e R e term Vpc following from clus-
tering works as a wall in the
surface region, dissipating the alpha particle. It compensates
also the surface well formed by the Pauli principle in such
a way that the position and amplitude of the barrier, which
is experimentally determined from elastic scattering, will
not be changed by the introduction of the nonlocal terms. But,
it must be underlined that the nonlocality of potentials Vp
and Vpcis strong and, as it can be seen from formulas (30) and
(31, it can change chastically the form of the relative mo-
tion function uj at the surface.

50 H

0 2 & 6 8 10 12 Ritm

6. CONCLUSIONS

As far, a model 1is proposed to account for surface clustering
in heavy nuclei and a way of calculating exactly nonlocal po-
tentials arrising from Pauli.principle and clustering is worked
out for nuclei in the vicinity of 298pp,

The next step in this work will be to solve the integro-
differential equation and to verify if the internal and ex-
ternal functions are matching, i.e., if the truncation of in-
ternal and external bases for solving the Schrédinger equation
is adequate. Then, the form of the clustering potential in-
troduced in the Hamiltonian (16) must be verified in connection
with other phenomena for which surface clustering can be im-
portant, e.g., in elastic scattering of alpha particles on
heavy nuclei and alpha transfer reacrions.
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XonaH C. E4-83-337
NosepxHocTHan KnacTepuaauusa u addexTs npuHuuna Naynm B a-pacnage

OTMeueHa BaMHOCTL NPaBUABHOrO ONMCAHWMA MOBEPXHOCTHOW OBNacTH Appa npu
paccMoTpennn a-pacnapa. fpeanoxena Mopenb, ABHO yuuTwBaOWaR &@-xnacte-
pM3aumio 1 apdexTn npunuuna Maynu, cywecTBeHHWE 8 NOBEPXHOCTHON OBnacTw.
PaspaGorar cnocol peweHMA OCHOBHOrO MHTerpoaUdOEpEHUManbHOro YPaBHeHus
MOogenM Ha ocHome WCMONL3OoBaHMA ocuMnNATopHoro obonoueuHoro Gasuca u MmeToga
Konatua. MNepasie uncneHHue peaynbTaTu NOMYUEHH ANR HENOKANLHOTO noTeHy4dana
B83aUMOAGACTBMA' anbda-yacTuu C AOMEPHUM ARPOM.

Pabora sunonHena B JlaBopaTopuu HeRTPOHHOM Ouauku OUAM.
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The importance of the correct description of nuclear surface region in
alpha decay calculations is pointed out. A model Is proposed for taking
into account surface clustering and Paull principle effects which are es-
sential in this region. A method for calculating the nonlocal potentials
appearing in this mode! is worked out and the first numerical results
for them are reported.
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