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Proton-Deuteron Scattering

A concise scheme is given for the calculation of
the cross sections of the elastic and inelastic proton-
deuteron scattering starting from a given two-body local
potential. The integral equations for the three-body-
amplitudes are represented in terms Qf graphs. The given
scheme is applied to calculate the first two terms of )
the multiple scattering series (pole and square graph) in
linear effective range approximation.
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1. Introduction

The basis for the treatment of the elastic and inelas-
tic proton-deuteron scattering is given by the Faddeev
equations /1/, In actual calculations a lot of authors
used the formulation of the Faddeev equations which was
given by Alt et al.”?/_ In 1963 Sitenko et al. /3/ first
formulated the Faddeev equations with spin and isospin.
In the following years suitable mathematical approxima-
tions have been developed to solve the Faddeev integral
equation system. To calculate three particle scattering
states a number of separable potential models have been
developed, the best known of them being the Amado-
Lovelace model /#'5/ The numerical results of this
model have later been improved by Cahill 6 . In the
last time there has also been remarkable progress in
solving the Faddeev equations with local potentials 7/ .

But despite of the great progress of the three particle
theory even today quite a lot of three particle scattering
experiments is interpreted in terms of very simple
models. Certainly, this is partly due to the fact that it
is difficult for experimentalists to keep up with the fast
development of three-body theory. Moreover most theore-
tical papers cannot directly be used to perform numerical
calculations since they do not contain details on spin-
factors, antisymmetrization and so on.

It is not the purpose of the present paper to compete
with the theoretical papers mentioned above but only to
give a concise representation of the p—d scattering
which can directly be used to perform numerical calcu-
lations without the necessity to consult other papers.
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This is achieved by giving explicitly all the factors
arising from spin, isospin and antisymmetrization which
are necessary to calculate the cross sections observed
experimentally starting from a given two-body local
potential. The paper is intended to be a continuation of
the paper /8/  sSimilar representations are contained
for example in papers published by Cahill /¢ and
Ebenhoh /97,

In a first step the Faddeev equations for the three-
particle wave function are transformed into integral
equations for thethree-body amplitudes. This has proved
very useful since the wave function is not explicitly needed
in the calculations. Furthermore the integral equations
for the amplitudes can very easily be representedin terms
of graphs. The iteration of the integral equations for the
amplitudes gives the so-called multiple scattering series,
which can be interpreted as a decomposition of the total
amplitude into partial amplitudes with increasing order
of rescattering. Because of its simple physical meaning
this series can serve as a starting point for different
models and the investigation of its properties (conver-
gence, analyticity) is of special interest. A detailed in-
vestigation of the multiple scattering series for t/“{f)’ /body
separable potentials was performed by Sloan oIt
turned out that in general we cannot expect the ordinary
multiple scattering series to converge at incident proton
energies less than 100 MeV. Improvement of the conver-
gence can be achieved by cutting off the low partial waves
(peripheral model ’ / ), unitarizing the multiple scat-
tering series /10/ or by converting the ordinary series
into a convergent series by means of Pade-technique 7/,

Not in every case it is necessary to perform pro-
tracted calculations. In recent years it turned out that
in many cases the single scattering term of the ordinary
multiple scattering series is sufficient to describe the
shape of the peaks appearing in the experimental break-up
spectra (quasi free scattering (QFS) and final state
interaction (FSI) peak). For example it has been used
with some success to extract the n—n. scattering length
despite the fact that below 100 MeV the absolute magnitude
of the peaks is reproduced very badly.
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In the present paper we calculate the next term
(square graph) of the scattering series to see how it
changes the shape and the absolute magnitude of the
spectra. The two body interaction has been choosen in
the form of the linear approximation of the effective
range theory. The results show that no improvement of
the theoretical description can be achieved as compared
with the single scattering term. This is in contrast to
results obtained for the Tabakin potential /12/,

2. Faddeev Equations for the Three-Body
Transition Matrix

2.1. Transformation of the Faddeev
equations for the wave function into
Faddeev equations for the scattering
amplitudes

At the beginning we repeat some formulae given in
paper /8/ The connection between the cross section and
the matrix elements for the elastic and inelastic p—d
scattering is given by

2
Elastic scattering: (-4 _4n° o 2
g: (G2 =SEeP T, 1L )
Break-up:
(deuteron scattered 3 4m2m

( do

on protons )
P ) d0,d0_dE_ b h7p

d T L2
P5<| ineJ'(lb)
d

Here, m; is the mass of the deuteron and p¢ the reduced
mass in the p—d system. The quantity p; denotes
the laboratory momentum of the deuteron in the entrance
channel and p_  the phase space factor. The matrix
elements T, and T, must be taken in the cms-system.
The cross section given for the break-uprefers to the so-
called complete experiments.

As concerns the potential we assume in the further
considerations that Coulomband three body forces are



neglected and that the two particle interaction is given
by

)

V (GO-v, (0P @ P (i +v, PP, Gk

(2)
+V, (ik )p(;’( P :‘) (i) +V, (k) pf) (il P (k.

The operators P((,;/,S) project on singlet and triplet spin
and isospin states correspondingly.

Using the potential (2) the matrix elements in eq. (1)
can be expressed by matrix elements for different spin
states /8/

2 e 2
i sp | +31 gl (32)

Te 17 = 51°T

2
+

2 i i i 2
- 5| gl v 510,10 @B

=

2
l inell 3,2‘

As has been shown in/8/ these matrix elements can be
expressed by the following quantities (some indices
omitted to simplify the notation)

3272 102 2 302 "2 T2 Tia T2 aar
1 3 3 3
e . ..1 2 _Y3 Y3 _ -
1/2 4 102 T4 7212 T % T302 Y% T4z "1
2 _— 4a)
3 3 3 (
T30 Y7723 t 331 T '%‘"4,31 ,
b o_y2r .1 1, _L L
Tom Vi1 vz 12 TJg s G e T e

i 1 1
T2 ="\/"%’3,12 ‘272—’1,23 - 22 2,28 ~ 28 3,23 ~ (4b)
i3, o, Lo 1113
7V3 74,23+2\/2—’1,31+2\/-2-’2,31 2\/3’3,31 2 V3

1 1.3 1 |
‘27—2’4,23 +5V5 T 31 _RT2,31 PN 73,31

+

2\/574,31 :

The quantities 7 are defined by

i,mn

e,8 _e S ),é._’fﬁm k2 4P [dpdp o (0, Ix
mn = i Up =7 m a2 P Pp? 4P 23
0
~ikp s ,
xe LU B LB, oo

2

. . 5 - S - 3

inel g _ imel 5 (k ky) 3 g (kz2 ~k2)y (K k)
N 1 4 m k2_’k2z 1 mn

(5b)

with i=1,2,3,4 and (f,m,n)=(1,2,3),@2,3,1),(3,1,2). Here,
¢4 denotes the deuteron wave function. The index i runs
from 1 to 4 according to the 4 terms in the potential (2).
The indices ({,m,n) denote the three possibilities to
introduce a system of Jagobi coordinates in a three-
body system. The symbol denotes the direction of the

vector K. This quantity and the vectors 7}, and
kmn are defined by the experimental situation in the
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exit channel. The wave functlons lﬁs(f’ k) are given by
the Faddeev equations

sz 7 3 > N
(6)
4 - R .
m 2 dk’[.s.t'(f’—_’ - s f_’ _
h (F 2 ;,)r (2”)3 TR Pz,n)+ﬁii € (f.py.m)x

S, > .
X l;l’] (Pl ’k )’
where we introduced the following definitions: k; = rela-
tive momentum between proton and deuteron in the

entrance channel, E = total energy in the three particle
system,

> >, 5> 2 _” 2
B =k +k 72, B,k 4k, 1 =y (E4i0), 7=(p-2k" ),
S=(3/2,1/2),i=12,3,4
-1 0 -y3 o0 -1 0 v3 0
3/2 1 0 0 0 0 3/2 1 0 0 O 0
% =7 | = By =7 -
vV3 0 -1 0 V3 0 -1 0
0 0 .0 0 0 0 O 0

* Eq. (6) does not comc-u-ie completely with eq. (71) of/ /

In the present paper we used additionally the equahty
YLk =y (=P which follows if we impose on the
two-body potenhal the condition V(r)=V(-7).

(1 -3 V3 &3 [ 1 3 53
R IRT e R CRNEEIN ISR R CAE)
ij 4 — - » T ".ZJ _ —

V331 3 V3 v3 1 3

\\/3_ v3 3 1 \_vs-_va_ 31 /

The two-particle off-shell matrix is defined by the
equation

5 m dk ,r l‘] ( I rr)

¢ (k "k, )=V, &%) -0 &R, 7
! wlepor,y e @

'v'(E)= fdfe " v, ).

The terms V; are given in (2). Since the three particle
wave function l/ls(f K) is not needed explicitly to
solve the problem but only the quantities 7; (kp,, ,kz) we
will find an integral equation for these quantltles Let us
first consider the inelastic scattering. We apply the
limiting procedure (5b) to the integral equation (6) and
get

>

4 ’ = d
s -> -> s -
7 (K o oKy )=j=21f(2n)3[ it (6 Pz"l)"ﬂ ‘(f'Pz”l)]x
... (8)
GRSl
f=k
mn
Here we used the relations
- 2 3,2 2 3.2 2 3,2 2
7o =27 k] skGe=2 kg w kg =gk akly o (9)
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Since all the quantities on the right-hand sidg of eq. (8)
are defined for arbitrary valugs k and f we can
replace 5 (Kpy,kp ) by r?(f,k)-

Then the wave function x/;is (") can be writtenin the
form

e
S - 3, s r, (£,k)
‘/Ii( f,k)=(277) qu( )B(k—ko)ah -(—f-z-——-—3—]:'2—-—- (10)
+Z —7])

Inserting (10) into the right-hand side of eq. (8) we get
an integral equation for

> S o, 82, S5 7
W% /miply + a2) U QP Ym 3k ki 2-n)

(K )=~

1

with pjo=(k +k o/2) ,_l;m =(k/2+ky ) and an effective two-
body t -matrix defined by

S s, S o 7, S 7
tij(T(,k ,77)=aij t(k,~k/7)+ Bijti(k, k’, 7). (12)
Moreover we introduced a form factor G(k) by
Go=(-a/mk*+a)g (). a3)

Now we turn to the corresponding equation for the elastic
scattering. First of all we replace the space dependent
wave function in eq. (5a) by its Fourier transform
s dkdky o F1Pp+RaaPma) o L
> - _ 1 2 S
t/fi(pmn,pg)—f~——-—(2")63b vl kyg k) 14)

Aceording to the transformation formulae for Jacobi
coordinates and momenta (see eq. (7) in # ) we can
write

10

Ky, kyy)
1Ptk g Pg )=k +f pg )r (k5= (kKg)

(1,2,3)
for (¢,m,n)= (3,1,2)
(2,3,1)

Then eq. (5a) can be written

-~ 2 d_’ Ind 5> o S - ->
ep(kg):%—h—t’im (k(z)—kz) f k23¢d(—f’)'o‘(k—k’)t/;‘s(k LR
i m K22 (2m)3 i23 1

(16)
At first we investigate the case (¢ ,m,n) =(1,2,3). We get

dk 5 2 s
(R -f —2¢ (k2R tim k24D g, D1 A7)
i (2”)3 23 4 m kz—»k(z) i
According to eq. (10_2 we can replace the wave function
in eq. 17 b ;is (Ezs ,k) . Then we apply the limiting pro-
cedure to r; (ko ,k) using eq. (11). The amplitude ris (ka3 .k)
has a pole singularity at k=ky which is caused by a pole
in the two particle transition matrix t;, . We have

38% gim k242 ¢ (K90 n)=60 H6(K) (18)
4 m 2,20 e ’
where we used the relations ( g, , 8 - two particle

Green functions without and with potential correpondingly)

t=glgV=g'ls 28,V _ Vigp<tqlV , ExE
8 0 d
0 n (E—En) (E—Ed)



ek "k n) =<k’|ejk > = <k|V]gy><glV Ik _GEIGE)

( h2/m)( 7 +a2l) (#2/m)(y +a12)

It should be noticed that only the quantity erlsza gives

a contribution different from zero. For all other index
combinations the integral in eq. (16) has no singularity
at k =k 0 -

Using eq. (18) formula (12) reads

> - y
t?( ’ ,T]) S _G_é“m—l;_)—‘, ys Ea,s.'f"B“S, T] ~—-qa (20)
] l,l (h /l-n)(7,]+(1l ) ij ij ij v

Regarding eqs. (17), (1), (18) and the normalization

b, (= £ (f) 1 . 21
[ == (2 )3 ¢ (21)
for the elastic scattering we get finally
G, )G@,,) 4 >
S S 10 20 ¢ dk
ey (k=[x -3y =X (22)

(rF/m)(pf0 +af) =1 LT (203
6@y (B k"
> o '2

x _ ]
G¥m)(k 2k k'+ k7

-7) k =k

0

2.2. Graph representation of the Faddeev
equations

We introduce the following graph elements /8/

:n<F 2 G([F)  vertex

effective two-body matrix (s.eq. (12)) (23)

b) -k.>1::<,::

>

s > -
t,{j(k‘)ko,‘?)

A - » ey —
C) O——>»0 = (E(P)°E"LO) 1)

E(’a’) =p2/2m propagator

de d 5 =2
f tEap F(E,P)closed loop

(2m)3

d)

Additionally we have the conditions:

e) Energy and momentum conservation must be valid
for each node of the graph.

f) The total mathematical expression correspondmg to
a given graph is obtained by multiplying the expressions
for the different graph elements.

Then the integral equation system for the quantities
r,(f,K)  may be represented in the form

-

s

£l ‘Pnj -

Lo f

For the elastic scattering we get
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As can be seen from (24b) to find the elastic amplitude
‘'we need not solve an integral equation if the inelastic
amplitude is already known. In this case the elastic
amplitude can be found simply by integration.

3. Faddeev Equations in Zero Range Approximation

If the two particle interaction is choosen in zero
range approximation of the effective range theory the

graph elements defined in the preceding chapter aregiven
by /8/

2
> o 4t /rr 4 47t /m

l’tl (k’,k;"]) ,t ( k T])=—'——'—“’(25)

52
G(k)=-—\Bra
(k) m\i (a +1\,/_) 2 (as+»i\ﬁ]-)

t3=t4=2:
with Vn=1iV[n| for 7<0.
We define the following quantities

14

3/2 > = 2 g 22 2
f =4 =
o (f, ) nGa3/2(k) 4rrGa3/2(k)/(k —ko),

206 - 4nGa ()=4nGa (K)/(k*-k> ), (26)
: t 1,2 0

1/2, 07 oo VA K 2k 2

ry (Fk)=—4nGa_(k)=—47 Gb , (k)/(k?~ky).

Inserting the expressions (25) and (26) into eq. (11) we get

2, (& & 33,
2 5/9(k)=- L L, dl; 321,
()/k—al) N(k,ko) 277 N(k,’k")

_ I 4’ 12— _); - _”
7=, 1 i EN L [1/2a (k )13/23, 001 |
B k 2 N(k,k’

Y\ a, Nk 0) 7 ( ) (272)
a (K o 1323 (K)+124 (k-
3 (K= 1 [ 39/29 .| dk- [3/2a (k )jliZas(k )] |
(yk-as) N(k,ko) 2772 N(k,k’)
with
> > 2 5
N(k’ko)z( k +kk0+k0—rl ),
Vv 3k%4 - §
Y, = __ cfor Bk —p)< 0
—ivn -3k%

The equations (27a) are identical with the well known
equations of Skornyakov and Ter-Martirosyan 14/ For
the elastic scattering we get from egs. (22) and (25)
- - - 2
©aq,(k") 377

LSS - St 72 i) AL (k) _ -
h2 NG 27 NREY) kg M3/ ek




71/2“: yo_ WG 1/2 o dk’ [1‘/25,(1?’)+3£255(_k’)] _
Pl e Ny 2l N(R,K") ek
LY (2b)

- 2, & )k=k

m

To get the last equality on the right-hand side of eq. (27b)
we used the definitions (26) and the factthat fim (yk -a )/

(k2 k3 =3/8a , - kky

4. Calculation of the Pole Graph and the Square Graph
4.1. Method of calculation

In chapter 2 we have shown systematically how to
calculate the elastic and inelastic p—d scattering starting
from a given two-body local potential. It is not the aim
of this paper to deal with mathematical methods to solve
these equations. We only investigate the physical meaning
of the inhomogeneous term (pole graph) and of the first
iteration (square graph) of the integral equation (27).
In this case the amplitude is given by

2 ()=~ (—— -] W1,
32 CooNRE)

3 (K)=f (k) 12
N(k,ko)

1 i 91 & 28a
vy dos 2y @, (28a)

a,(0=f (k) 122
NGk kg)

32 3 2
+37,® e 2 001
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with

R . ol k’ singlet
J(k)=—1—5fdk’ “ﬁ( 4)* , B = : (28b)
B 2a NGk 7k ) NCk“kg) triplet

In actual calculations instead of the zero range approxi-
mation we used the linear approximation for the two-body
matrix elements. It is given by

f (k)= 1 ,

B _ r
(—-a$+yk— —%&yi )

a o= scattering length, f;g= effective radius.Insimplified
gﬁaphical representation we have for eq. (28)

d 22— % ke %
a - -
= =r{f =
P k, ko f (29)

—k,
+

f
k

The first graph has been investigated in the papers /8,13/ .
It turned out that this graph contains both the spectator
model (impuls approximation) and the final state inter-
action model (Watson-Migdal approximation).

The calculations at 7 MeV proton energy have shown
that the general features of the experimental spectra are
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reproduced by this graph but that the theory overestima-
tes the absolute value by about an order of magnitude.

In the present paper we calculated the pole graph for
energies up to 100 MeV. Additionally the second graph
(square graph) was calculated. Here the main problem
consists in calculating the integral (28b). To do this the
functions N(k k0 ) and N(k,%’) in the dominator of eq.
(28b) were decomposited into a series of Legendre poly-
nomials. After some simple calculations we end up with

J(K) =25 (20 +1)A_(K)P, ( r“’E)
= + ——),
B nkkg o B8 k-
(30)
—AK)y o BK)
ﬁ(k) fdk fﬁ(k )QE g )Qﬂ ” k’ ),
where

Ak )=k 2e1ly), Bk )=k Zk2 —p).

The functions P and Q, are the Legendre polynomials
of the first and second kmd correspondingly. In the region
0<k’” < o the integrand in (30) has two pole singularities
caused by f,(k *) and two logarithmic branch points which
are contained in Qy - Thus to calculate the integral we
have deformed the integration contour into the complex
k’ -plane (compare n/ ). To check the numerical results
independently of the described method the integral (28b)
was additionally solved by another method. In this case the
integration over the angles K’/k’ was done analytically
by standard methods and the integration over k' was
performed numerically. No contour deformation was used
in this case. Instead of this in the vicinity of the poles of
f (k ) the integral has been solved analytically by decom-
poslng the integrand into a series. The logarithmic singu-
larities are so weak that we can leave out small regions
of the integration contour containing the singularities
without causing great error in the results.

42. Results and conclusions

The results of the calculations are given in fi-
gures 1 to 5. We can make the following conclusions:
For the break-up case the pole graph describes the
main features of the experimental spectra (FSI and QFS
mechanism). The agreement of the theoretical and experi-
mental absolute values is improving with increasing
energy. For the p-p quasi free scattering we have an
approximate agreement of the theoretical and experimen-
tal absolute values at 100 MeV (fig. 3). It should be noted
that the experimental n—p quasi free scattering cross
section in the investigated kinematic region (fig. 1) is
about twice the value of the p—p quasi free scattering.
This difference cannot be explained by the antisymmetri-
zation effect as can be seen comparing the theoretical
curves for the n—p and p—p quasi free scattering in
fig. 1. To explain this we must intréduce either Coulomb
forces or assume the p—p and n—p nuclear potentials
to be different. As concerns the squaregraph it describes
qualitatively the FSI mechanism whereas ithasa minimum
in the region of the QFS mechanism. From the curves
representing the sum of the two graphs we see that the
square graph in general gives a correction in the wrong
direction. The calculations for the elastic scattering show
that the inclusion of the square graphgives an improvement
of the angular distribution in forward directionas compared
with the pole graph alone. The absolute magnitude of the
spectra however cannot be reproduced.

In general we can conclude that under the given
assumptions for the two particle interaction and in the
discussed energy region the investigated models can be
used to describe some qualitative features of the spectra,
but for a quantitative description a more accurate solution
of the integral equation is necessary.
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points taken from

24

References

15.

16.
11.

18.
19.
20.

CEIGIPL D

L.D.Faddeev. JETF (USSR), 39, 1459 (1960).

E.O.Alt., P.Grassberger, W.Sandhas. Nucl.Phys., B2,
167 (1967). ‘

A.G.Sitenko, V.F .Kharchenko. Nucl.Phys.,49, 15 (1963).
R.Aaron, R.D.Amado. Phys.Rev., 150, 857 (1966).

C . Lovelace. Phys.Rev., 135, B1225 (1964).

R.T.Cahill. Thesis.

" W.M.Kloet and J.A.Tjon. Phys.Lett,, 37B, 460 (1971).
. K.Moller. Zfk-221, 1971.

" W.Ebenhoh. MPI Heidelberg, 1972.

10.
. I.Borbe’ly. Phys.Lett., 35B, 388 (1971).
12.

13.
14.

I.H.Sloan. Phys.Rev., 185, 1361 (1969).

J.L.Durand, J.Arvieux.., A.Fiore, C.Perrin, M.Du-
rand. Phys.Rev., C6, 393 (1972).

B.Kiihn, H.Kumpf, K.Mdller, J.Mosner. Nucl.Phys.,
Al120, 285 (1968).

G.V.Skornyakov, K.A.Ter-Martirosyan. JETP (USSR),
31, 775 (1956).

E.L.Peterson, R.Bondelid, P.Tomas, G.Paic,
gl.&.;l)ichardson, J.W.Verba. Phys.Rev., 188, 1497
P.J.Pan, J.E.Crawford. Nucl.Phys., Al50, 216 (1970).

&)O.Caldwell, J.R.Richardson. Phys.Rev., 98, 28
55).
M.Davison, H.W.Hopkins, L.Lyons, D.F.Shaw. Phys.
Lett., 3, 358 (1963).
C.C.Kim, S.M.Bunch, D.M.Devins, H.H.Forster.
Nucl.Phys., 58, 32 (1964).
.(Il.gl.gﬂilliams, M.K.Brussel. Phys.Rev., 110, 136
58).

Received by Publishing Department
on September 20, 1974.

25



