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On the Calculation of the Elastic and Inelastic 
Proton-Deuteron Scattering 

A concise scheme is given for the calculation of 
the cross sections of the elastic and inelastic proton
deuteron scattering starting from a given two-body local 
potential. The integral equations for the three-body 
amplitudes are represented in terms of graphs. The given 
scheme is applied to calculate the first two terms of 
~he multiple scattering series (pole and square graph) in 
linear effective range approximation. 

Conun:anieations of the Joint lnst_itute for Nuelear Reeeareh. 
-Dubna, 1974 

1. Introduction 

The basis for the treatment of the elastic and inelas
tic proton-deuteron scattering is given by the Faddeev 
equations I 1 I. In actual calculations a lot of authors 
used the formulation of the Faddeev equations which was 
given by Alt et al. 121 . In 1963 Sitenko et al. 131 first 
formulated the Faddeev equations with spin and isospin. 
In the following years suitable mathematical approxima
tions have been developed to solve the Faddeev integral 
equation system. To calculate three particle scattering 
states a number of separable potential models have been 
developed, the best known of them being the Amado
Lovelace model 14

•51. The numerical resu}ts of this 
model have later been improved by Cahill 61 . In the 
last time there has also been remarkable progress in 
solving the Faddeev equations with local potentials 17 I. 

But despite of the great progress of the three particle 
theory even today quite a lot of three particle scattering 
experiments is interpreted in terms of very simple 
models. Certainly, this is partly due to the fact that it 
is difficult for experimentalists to keep up with the fast 
development of three-body theory. Moreover most theore
tical papers cannot directly be used to perform numerical 
calculations since they do not contain details on spin
factors, antisymmetrization and so on. 

It is not the purpose of the present paper to compete 
with the theoretical papers mentioned above but only to 
give a concise representation of the p- d scattering 
which can directly be used to perform numerical calcu
lations without the necessity to consult other papers. 
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This is achieved by giving explicitly all the factors 
arising from spin, isospin and antisymmetrization which 
are necessary to calculate the cross sections observed 
experimentally starting from a given two-body local 
potential. The paper is intended to be a continuation of 
the paper 18 /. Similar representations are contained 
for example in papers published by Cahill /6/ and 
Ebenhoh /9 I. 

In a first step the Faddeev equations for the three
particle wave function are transformed into integral 
equations for the three-body amplitudes. This has proved 
very useful since the wave function is not explicitly needed 
in the calculations. Furthermore the integral equations 
for the amplitudes can very easily be represented in terms 
of graphs. The iteration of the integral equations for the 
amplitudes gives the so-called multiple scattering series, 
which can be interpreted as a decomposition of the total 
amplitude into partial amplitudes with increasing order 
of rescattering. Because of its simple physical meaning 
this series can serve as a starting point for different 
models and the investigation of its properties (conver
gence, analyticity) is of special interest. A detailed in
vestigation of the multiple scattering series for t~~1body 
separable potentials was performed by Sloan 

1 
· . It 

turned out that in general we cannot expect the ordinary 
multiple scattering series to converge at incident proton 
energies less than 100 MeV. Improvement of the conver
gence can be achieved by cutting off the low partial waves 
(peripheral model 1111 ), unitarizing the multiple scat
tering series /I O/ or by converting the ordinary series 
into a convergent series by means of Fade-technique 17 I. 

Not in every case it is necessary to perform pro
tracted calculations. In recent years it turned out that 
in many cases the single scattering term of the ordinary 
multiple scattering series is sufficient to describe the 
shape of the peaks appearing in the experimental break-up 
spectra (quasi free scattering (QFS) and final state 
interaction (FSI) peak). For example it has been used 
with some success to extract the n- n scattering length 
despite the fact that below 100 MeV the absolute magnitude 
of the peaks is reproduced very badly. 

4 

In the present paper we calculate the next term 
(square graph) of the scattering series to see how it 
changes the shape and the absolute magnitude of the 
spectra. The two body interaction has been choosen in 
the form of the linear approximation of the effective 
range theory. The results show that no improvement of 
the theoretical description can be achieved as compared 
with the single scattering term. This is in contrast to 
results obtained for the Tabakin potential I 121 

2. Faddeev Equations for the Three-Body 
Transition Matrix 

2.1. Transformation of the Faddeev 
equations for the wave function into 
Faddeev equations for the scattering 
amplitudes 

At the beginning we repeat some formulae given in 
paper 18 /. The connection between the cross section and 
the matrix elements for the elastic and inelastic p- d 
scattering is given by 

2 
Elastic scattering·: ( .-4.£.) = 417 11 2 l T 

1 
l : (la) 

dQ c.m. h4 e 

Break-up: 
(deuteron scattered 
on protons) 

d3 
(--!L--) 

d!1 dn dE lab 
1 2 s 

2 2 
4" md .IT. l.(lb) ---ps met 
h7pd 

Here, m d is the mass of the deuteron and 11 the reduced 
mass in the p-d system. The quantity p d denotes 
the laboratory momentum of the deuteron in the entrance 
channel and p the phase space factor. The matrix 
elements T 

1 
8
and T. 1 must be taken in the ems-system. 

e Ine 
The cross section given for the break-up refers to the so-
called complete experiments. 

As concerns the potential we assume in the further 
considerations that Coulomb and three body forces are 
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neglected and that the two particle interaction is given 
by 

V ( "k) V ( "k)P (t) ( "k) (s) ( · ) · ) (s)( · ) (t) · 1 = 1 ,1 a :1 P 
7 

.1k + 'V2 ( :1k P a ·lk P
7 

(1k) 

(2) 
+V

3 
(ik)P(t)(ik)P(t) (ik) +V

4 
(:ik)P(s) Uk) P(s) (ik). 

a r a r 

( t/s) 
The operators P a/r project on singlet and triplet spin 
and isospin states correspondingly. 

Using the potential (2) the matrix elements in eq. (1) 
can be expressed by matrix elements for different spin 
states 18 1 

2 2 e 2 ..l e 2 
!Tell =~IT3/21 +3IT1~i· (3a) 

2 2 i 2 1 i 
I Tine 1 I = 3 I T 3 ;2 I + 3! t T I /2 I 

1 i 2 
+31sTl;21· (3b) 

As has been shown in 181 these matrix elements can be 
expressed by the following quantities (some indices 
omitted to simplify the notation) 

eT =l.r + ~r -r 1 -flr + -T 
3/2 2 1,I2 2 3,I2 I,23 2 I ,31 2 3,31 

- -
e T = _j_ r + i r - Yl..r + Yl..r - r 

1/2 4 1,12 4 2,12 4 3,12 4 4,12 1,23 

1 3 y3 
- 4-r 4,31 ' 

(4a) 
- 4r1 ,31 + ';[' 2,31 + T r 3,31 

iT =- v.J.r + ..Lr + _1_T - _l_T + _l_r 
3/2 :J 3,12 -..;2 1,23 j6 3,23 -..;2 1,31 ..;6 3,31 

6 

. . ...2 1 1 1 IT =-v T --T - --T ---T 
t 1/2 3 3,12 2yf 1,23 2/J. 2,23 2·/b 3,23 (4b) 

12 1 1 1 13 --y-Lr +--T +-T - --T --y--..;-
2 2 4,23 2/2 1,31 2y2 2,31 2y6 3,31 2 2 4,31 

i 2 1 3 
sT1/2=- vr2,12 +ty27 1,23 

__ 1_
7 

1 
2y6 2,23 + 2/b T 3,23-

- _ 1 
T + ..!.-..; lr --1-r - _l_T +_j_T . 

2..;2 4,23 2 2 1,31 2J, 2,31 2-..;2 3,31 A/2' 4,31 

The quantities T. 
1,mn are defined by 

e S 
T 

i, nm 

2 
s~ 3ti 2 2 ............ = er. (k_ )= ,.....-- €im (ko -k) f dp dp'Z!¢ d (p23 )x 
1 ·r 4 m k2 -.k~ I 

........ 
-ikp1 s -> 

x e I/1. (p • P
0 

), 
1 mn L 

(5a) 

2 
inel T s 

i, mn 

inel S 
T 

-> ... 3"h 2 2 s .... -> 
(k .ko)=~4- rim (ko -k )¢_(k ,k) 

mn L m k2-.k~ L ' mn 

(5b) 

with i=1,2,3,4 and (e,m,n)=(1,2,3),(2,3,1),(3,1,2). Here, 
¢ d denotes the deuteron wave function. The index i runs 
from 1 to 4 according to the 4 terms in the potential (2). 
The indices U ,m,n) denote the three possibilities to 
introduce a system of Ja~obi coordinates in a three
body system. The symbol k. denotes the direction of the 
vector "· This quantity and the vectors k e and 
r are defined by the experimental situation in the 

mn 
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exit channel. The wave functions tfr~ (r,k) are given by 
the Faddeev equations 181* 

tfrs{i,k)=( 2rr)
3

¢ {i)o(k-k )o 
i d 0 li 

(6) 
4 .... 

m I f ~[ S .... -+ - s -+__. -
n2(f2-7i)i=1 (2rr)3 aijti (f ,-12·"7)+(3ij ti(f,p2,.,)]x 

X tP ~(p\ ,k '), 
J 

--> 

where we introduced the following definitions: k0 = rela-
tive momentum between proton and deuteron in the 
entrance channel, E = total energy in the three particle 
system, 

-+ -+ -+ -+ --> m 3 2 
P1 =k +k'/2, p=ki2+k', 71 =+:2(E+i0), 1/=<11--k ) , 

2 tt 4 

s = (3/2 , 1/2 ) , i = 1,2 , 3 , 4 

-1 0 -v3 0 /-1 o v3 0 

3/2- .!....1 0 0 0 0 3/2 1 0 0 0 0 
, {3 .. =2 aij - 2 - 1J 

y3 0 -1 0 \ -y3 0 -1 0 

0 0 0 0 0 0 0 0 

------------------------- /8/ * Eq. (6) does not coincide completely with eq. (71) of . 
In the present paper we used additionally the equality 
tfr(p 1,t:) = tfr(-p~_,k-+) which follows if we impose on the 
two-body potential the condition V(r)='V(-t}. 

8 

1 -3 v3 
-v3l ,( -~ 

-3 -.;3 v3 
- --

1/2 1 I -3 1 v3 ...,Y3 - 1/2 1 -v3 v3 
a =-

ij 4 . : ) l V3 V3 1 3 -v3 ......;3 1 

,.;3 "V3 3 -"V3 -"V3 3 1 

The two-particle off-shell matrix is defined by the 
equation 

ti(k',k,.,),'V.(k'.:k)-~f dk"'Vi(k~") ........ 
1 fi2 (2rr)3(k"2_.,) ti(k':k,.,) (7) 

with ........ 
-+ -+ -ik r __,. ·v. (k) = f dr e ·v. (r). 

l 1 

The terms ·vi ar~ given in (2). Since the three particle 
wave function tfr{'(f, k-+) is not needed e1plic~ly to 
solve the problem but only the quantities ri (kmn ,I<£) we 
will find an integral equation for these quantities. Let us 
first consider the inelastic scattering. We apply the 
limiting procedure (5b) to the integral equation (6) and 
get 

s --> --> 4 dk' s --> s -+ 
r. (k ,ko )=If --

3
{a .. t.(f,-p2 ,7j)+f3 .. t.(f,p 2 ,7j.)]x 

1 mn L j=l ( 2rr) 1J 1 1J 1 

s .... .... 'I .... .... xtfr.(p1,k) k=k£ 
J --> -+ 

f=kmn 

Here we used the relations 

- 32 32 2 32 2 32 2 
TJ :1) -:rk, "1 ="4k1 +k23="4k2 + k31 =:rk 3 +kl2 

(8) 

(9) 
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Since all the quantities on the right~hand sid~ of eq. (8) 
are defined for arbitrary values k and f we can 
replace r f (k:m, k .... r ) by r f<J, k). 

Then the wave function f ~ (f, k} can be written in the 
furm 

1 

s .... 3 .... .... .... 
f i( f,k)=(2rr) ¢/f)o(k-k0)oli 

s ........ 
ri(f,k) 

2 3 2 
(f + '4 k -71) 

(10) 

Inserting (10) into the right-hand side of eq. (8) we get 
an integral equation for 

.... s .... s.... s .... 
s ........ G(~ 0 )tn(f,p20 ,0 4 dk' tii(f,p2 ,vr/t5\,k ') 

T, (f,k )=- . -If- (ll) 
1 

(1'12/m)(p1
2
0 + at2 ) i=l (2rrY\h 2/m)(k2 +kk'+k' 2-.,) 

4-+ -+-+-+ 

with p10 =(k +k 0/2) ,pal =(k/2+k 0 ) and an effective two-
body t -matrix defined by 

s .... s .... .... s .... ..+, 

t .. (k, k',.,)=a .. ti(k ,-k;71)+ f3iJ' ti(k, k ,.,). (12) 
IJ IJ ... 

Moreover we introduced a form factor G (k ) by 

G (k) = ( -1i 
2 I m )( k 2 +a 2 ) ¢ (k). (13) 

t d 

Now we turn to the corresponding equation for the elastic 
scattering. First of all we replace the space dependent 
wave function in eq. (5a) by its Fourier transform 

s .... .... dk
1
dk

2 
i(kl Pe +k23P:n > 5 .... .... 

f i (pmn' Pf) = f . _ . 10 3e f i (k2 3' kl ) • (14) 

According to the transformation formulae for Jacobi 
coordinates and momenta {see eq. (7) in ;1l/ ) we can 
write 

10 

~-+ -+-+ -+-+ -+-+ -+-+ 
(kip +k p }=(k'p +f'p ), (k ',f')= 

f 2 3 mn I 2J 

(1,2,3) 

for ( e ' rn ' n) = ( 3 ' 1 ' 2 ) 

(2 ,3' I) 

Then eq. (5a) can be written 

.... 

.... .... 
(kl, k23) 

( k k ) <f-31 
.... .... 

(k3,kl2) 
(15) 

er (k )=2._.!t_fim (k 2 --k 2
) f dkz3 ¢ (-f')o(k-k')f~(k , k). 

i f 4 m k2-+k2 0 ( 217)3 d 1 23 l 
0 

At first we investigate the case (f ,m,n) =0 ,2,3). 

(16) 

We get 

dk .... 2 .... .... 
er ( k) r.f .-ll¢ (-k )[2h..eim (k 2 --k2)r/1.5 (k ,k) ]. (17) 

i 1 3 d 23 4 m 2 2 o 1 Zl 
( 2rr) k -+k 

0 

According to eq. (102 we can replace the wave function 
in eq. (17) bl ~~ <§23 ,k) . Then we apply the limiting _prg
cedure to Tj (kZl ,k) usingeq. (ll). The amplitude rr (k23 ,k) 
has a pole singularity at k = k0 which is caused by a pole 
in the two particle transition matrix t 1 . We have 

3 n2 2 2 .... .... .... .... 
-- fim (k

0
--k )t

1
(k',k,.,)=G(k ')G(k), (18) 

4 m k2 .... k2 
0 

where we used the relations ( g 0 , g - two particle 
Green functions without and with potential correpondingly) 

t =g:g ·v =g~~ 1¢n><¢n!'V = 'VI¢d><¢di'V 
n (E -E n) ( E- E d ) ' E :: E d 

(19) 
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--> --> --> --> 

t(k',k,TJ) =<k'ltlk>= <k'I'Vi¢d><¢di'VI~ G(k')'G(k) 
( tt2/m)(7J+a2 ) (tr2/m)(7J+a 2) 

t t 

It should be noticed that only the quantity e r I 5 
23 gives 

a contribution different from zero. For all oilier index 
combinations the integral in eq. (16) has no singularity 
at k =k 0 . 

Using eq. (18) formula (12) reads 

--> --> 

ts(k'k )=s G(k')G(k) s =as+ s __ 2 
I
1
· • ,TJ YI. 2 2 'Y .. - .. f3 .. , TJ- a 

J (n 1m)(7J+a
1 

) 'J 'J 'J t 

(20) 

Regarding eqs. (17), (11), (18) and the normalization 
--> 

f _j.i_ ¢d (-0¢ (0= 1 (21) 
(2rr) 3 d 

for the elastic scattering we get finally 

--> . .... 

s ~ s G(pi o)G(p2o ) 
e r I (k I)= [ -yll 2 2 2 

(n /m)(p +a ) 
10 t 

--> s --> .... 
G(p2)r j (pi,k ') 

4 .... 
"" s f dk' -"'-Y. -x 

j=l I! ( 2rr )3 

X -+-+ _,.., - ] 

(1i2/m)(k2+kk'+k'2-TJ) k =ko 

(22) 

2.2. Graph representation of the Faddeev 
equations 

We introduce the following graph elements /S/ 

a) ===<k A G(k') vertex 

effective two-body matrix (s.eq. (12)) 

b) r.>===<k·" s c·- ) t ..f j k 
1
) koJ7 

12 

(23) 

' 

1\ 
C) 0 .. o ( E fpl-E - [0) - 1 , -

E(p)=p2;2m propagator 

t:J I .. (23) d.) 1\ dE d P F(f p )closed loop -
(2 7T)3 ) 

Additionally we have the conditions: 
e) Energy and momentum conservation must be valid 
for each node of the graph. 
f) The total mathematical expression corresponding to 
a given graph is obtained by multiplying the expressions 
for the different graph elements. 
Then the integral equation system for the quantities 
r i ( l. It) may be represented in the form 

... ..... 

~ ~(r= 
ko 

... _,. 
-k0 k 

~ -. 
- f ko 

(24a) 

--

For the elastic scattering we get 
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- ... - -k0 k.., 
5~ 

="1.1~ 
~ ro -k.., -k1 (24b) 

.... .... -
~~~~ 
1=1 1 ... -

ko k1 

As can be seen from (24b) to find the elastic amplitude 
·we need not solve an integral equation if the inelastic 
amplitude is already known. In this case the elastic 
amplitude can be found simply by integration. 

3. Faddeev Equations in Zero Range Approximation 

If the two particle interaction is choosen in zero 
range approximation of the effective range theory the 
graph elements defined in the preceding chapter are given 
by /8/ 

2 2/ -> t? -- --> -> 4rr1i /m --> --> 4rr1i m 
G(k)=--~8rrat,ti(k',k,ry) . ',t 2(k',k,ry) . •(25) 

m (at+tV17J (as+l{Tf) 
t3= t 4= 0. 

with yry=iVlTfl for ry<O. 
We define the following quantities 

14 

~ 
l 

I 

3/2 --> -> . . -> --> ->2 2 
ri (f,k)== 4rrGa (k)=4rrGa (k)/(k -k), 

3/2 3/2 0 

->-> - --> -> 2 2 
r

1
112(f,k)=4rrGa (k)=4rrG a (k)/(k -k

0 
) , (26) 

. t Ij2 

I /2 ->--> - --> -> . 2 2 
r 2 (f,k)=-4rr'Ga

8
(k)=-4rrGbi/2 (k )/( k -k 0 ). 

Inserting the expressions (25) and (26) irito eq. (11) we get 

-> 
--> - (k ') 

; k = _ 1 [ , 1.... + f d k' a3/: .... ] , 
3/2( ) (y -a ) N(k,k

0
) 2rr 2 N (k, 'id 

k t 

a. {k.) = 1 [ 112 d k-->' [ 1/2 a Ji/)+ 3/2 as (k_,')] 1 
+f-2 -->-> ' 

(y -a ) N(k-+k) 
k t , 0 

2rr N(k,k') 
(27a) 

- ( k,...,) 1 [ 3/2 dk, [3/2a (k')+l/2a- (k ')] 
a = +f-- t s ] 

s (yk-as) N(k~k .... 
0

) 2rr 2 N(k,k') . 

with 

--> _, 2 --> --> 2 
N(k,k

0
) =( k + kk

0
+k

0
-., ), 

{

v )k 2/4 -ry 

yk = --

-i VT/ - 3k2/4 

> 
·for (3k 2/4 -ry) < 0 

The equations (27a) are identical with the well known 
equations of Skornyakov and Ter-Martirosyan /1 4 /. For 
the elastic scattering we get from eqs. (22) and (25) 

2 --> - ( k') 3 2 -> 
r3/2(k )=~[ 1 +f dk' a3/2 ] = rrna (k) . 

I I t.2 -->--> 2r? N(k k'"' ') k-L m 3/2 'k=k 
u N(k,k

0
) • -·-u o 
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T 1 /2(k,.. )- mG [ 1/2 dk' [1/2at 07')+3/2a (k11 
1 1---- +J- s_ 

n 2 N(k, k~) 2rr2 N( I{, k ') k=ko 

2 -> 

= 3rrn at (k \=ko 
m 

(27b) 

To get the last equality on the right-hand side of eq. (27b) 
we used the definitions (26) and the fact that Him ( y k -at)/ 

2 ~ k~ 
(k -ko' =3/Ba t • 0 

4. Calculation of the Pole Graph and the Square Graph 

4.1. Method of calculation 

In chapter 2 we have shown systematically how to 
calculate the elastic and inelastic p-d scattering starting 
from a given two-body local potential. It is not the aim 
of this paper to deal with mathematical methods to solve 
these equations. We only investigate the physical meaning 
of the inhomogeneous term (pole graph) and of the first 
iteration (square graph) of the integral equation (27). 
In this case the amplitude is given by 

a (t: > = -f < k H 1 . - 1 <k> L 
3/2 t N(k,ko) t 

a (k ) = r < k ) [ l/2 + 1... 1 {ic ) + _
4
9 1 (k )] , 

t t ->-> 4 t s 
N(k,k

0
) 

(28a) 

-> 3/2 3 . -> 3 . -> a
8 

(k) = f 
8

( k) ( + T J (k) +
4
- }

8 
(k)] · 

N(k,k
0

) q t 

16 

with 

-> 1 -> f,a( k') 
J (k) = - f dk, -> -> -> -> ' f3 

f3 2rr 2 N(k ',k
0
) N( k ',ko) 

singlet 

triplet 
(28b) 

In actual calculations instead of the zero range approxi
mation we used the linear approximation for the two-body 
matrix elements. It is given by 

f rlk). -I - '_!Il!_y~ ) 
(-af3+yk 2 

as= scattering length, r of3= effective radius. In simplified 
gtaphical representation we have for eq. (28) 

; ~J a L(~=~J <; 
K0 ko 

--
(29) 

~ 

--f 
+ 

.L ._n 6 _. k )> k 
0 

The first graph has been investigated in the papers 18
•
131 

It turned out that this graph contains both the spectator 
model (impuls approximation) and the final state inter
action model (Watson-Migdal approximation). 

The calculations at 7 MeV proton energy have shown 
that the general features of the experimental spectra are 
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reproduced by this graph but that the theory overestima
tes the absolute value by about an order of magnitude. 

In the present paper we calculated the pole graph for 
energies up to 100 MeV. Additionally the second graph 
(square graph) was calculated. Here the main problem 
consists in calculating the integral (28b). To do this the 

...... ...... ..... -t 
functions N(k, k 0 ) and N( k, k') in the dominator of eq. 
(28b) were decomposited into a series of Legendre poly
nomials. After some simple calculations we end up with 

.... .... 
.... 2 00 kk 

J ( k) = I ( 2f +0A{Je<k )P11 ( -
0-), 

f3 rr k k0 !ko L "o k · 

(30) 

Af3 (k )= j dk 'f ( k ')Q (-A(k '))Q (-Ilk') ) 
f 0 f3 f kk , f k k, ' 

0 

where 
A(k }=(k '

2
+k:_71), B(k ')={k' 2+k~ -71). 

The functions PI and Q I are the Legendre polynomials 
of the first and second kind correspondingly. In the region 
0~ k ' < oo the integrand in (30) has two pole singularities 
caused by f t (k ') and two logarithmic branch points which 
are contained in Q f · Thus to calculate the integral we 
have deformed the integration contour into the complex 
k' -plane (compare IN ). To check the numerical results 
independently of the described method the integral (28b) 
was additionally solved by another method. In this case the 
integration over the angles k 'I k ' was done analytically 
by standard methods and the integration over k' was 
performed numerically. No contour deformation was used 
in this case. Instead of this in the vicinity of the poles of 
f t (k ') the integral has been solved analytically by decom
posing the integrand into a series. The logarithmic singu
larities are so weak that we can leave out small regions 
of the integration contour containing the singularities 
without causing great error in the results. 

II 

4.2. Results and conclusions 

The results of the calculations are given in fi-
gures 1 to 5. We can make the following conclusions: 

For the break-up case the pole graph describes the 
main features of the experimental spectra (FSI and QFS 
mechanism). The agreement of the theoretical and experi
mental absolute values is improving with increasing 
energy. For the p-p quasi free scattering we have an 
approximate agreement of the theoretical and experimen
tal absolute values at 100 MeV {fig. 3). It should be noted 
that the experimental n-p quasi free scattering cross 
section in the investigated kinematic region (fig. 1) is 
about twice the value of the p-p quasi free scattering. 
This difference cannot be explained by the antisymmetri
zation effect as can be seen comparing the theoretical 
curves for the n-p and p-p quasi free scattering in 
fig. 1. To explain this we must intrbduce either Coulomb 

forces or assume the p-p and n-p nuclear potentials 
to be different. As concerns the square graph it describes 
qualitatively the FSI mechanism whereas it has a minimum 
in the region of the QFS mechanism. From the curves 
representing the sum of the two graphs we see that the 
square graph in general gives a correction in the wrong 
direction. The calculations for the elastic scattering show 
that the inclusion of the square graph gives an improvement 
of the angular distribution in forward direction as compared 
with the pole graph alone. The absolute magnitude of the 
spectra however cannot be reproduced. 

In general we can conclude that under the given 
assumptions for the two particle interaction and in the 
discussed energy region the investigated models can be 
used to describe some qualitative features of the spectra, 
but for a quantitative description a more accurate solution 
of the integral equation is necessary. 
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Fig. 5. Proton-deuteron elastic scattering. Experimental 
points taken from /19,20/. 
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