


1. INTRODUCTION

Deep inelastic heavy—ion collisions are mainly characterized
by the strong energy damping and the large number of nucleons
exchanged between the two ions. In the last time the latter
process has been studied very successfully in the framework of
diffusion models /1% These models assume that after an
approach and excitation process, which is rather short in time,
the two ions reach a state of thermal equilibrium while forming
a double nuclear system. Then, the nucleon transfer is the
result of a stochastic exchange and can be described, for
example, by Fokker-Planck or master equations. Many efforts
have been done in order to apply transport theories to further
processes, as the energy or angular momentum dissipation, and
to calculate the transport coefficients microscopically /6-18/,

In contrast, we are interested in a more detailed knowledge
about the first stage of the collision where the main amount
of the relative kinetic energy is dissipated and thermalization
happens. With a similar aim Schmidt et al/!?"" have investiga-
ted the energy dissipation using a particle-holie formalism.
Here, this formalism 1s extended to the mass exchange. Like in
ref. ’17/ we restrict ourselves to the consideration ot ‘single-—
particle states, although other mechanisms, as for example, the
excitation of collective modes /18, may also be important.

In our model the energy dissipation as well as the nucleon
exchange is described by particle-hole excitations. In the
first case, the particle and the hole are in the same nucleus,
whereas in the second, the particle is created in one nucleus
and the hole in the other. The relative motion of the ions
is treated classically. The basis set for the definition of our
particle and hole creation and annihilation operators
is the sum of the unperturbed bound single-particle
states of the two nuclei moving along the classical trajectories
S;(t) and 8,(t), respectively. Originally such a treatment
has been developed in the work of Dietrich and Hara 1%/, where
also the nonorthogonality of this dual basis has been discussed
in detail. The creation and annihilation operators defined ac-—
cording to this work are explicitly time—independent and fulfil
the usual anticommutation relations for Fermi-operators. Note
that in this way, the antisymmetrization of the whole system
wave function 1is included.

In a quite similar treatment, but with a poor product wave
function for the whole system, Bartel‘anﬂ‘Féidm@?éfv?&w;hnve




studied the one-bedy and two-body contributions to the energy
dissipation. The result of this work showing that the ofe-
body part yields the larger amount motivates us to restrict the
consideration to mean field effects. Furthermore, the particle
and hole rescattering is neglected in this work.

2. THE MODEL
We start with the Hamiltonian
H=Hy +Hy,+H, , (1)

where ﬁOI.and Hy, are the unperturbed intrinsic Hamiltonians
of the two nucleil given by
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As is mentioned above, the single~particle functions of H

and H ge and the particle (hole) creation and annihilation ope-
rators a*’(Bh ) and ag (Bh } areé’ time-independent in the
system moving w1th the nucleus 1(1 =1,2). For the time-depen-—
dent interaction Ht we write
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where the first two terms describe the excitation in both nuc-—
lei,whereas the last two terms govern the transter. Thevpihiare
the usual one-body matrix elements, and 1, j=1,2 indicates 1f
the particle (hole) is in nucleus one or two. The matrix
elements depend on the relative distance and relative velocity
of the two ions and, therefore, the interaction (3) becomes
time-dependent. .

In order to calculate the wave function we use Dirac's time-
dependent perturbation theory. Then, the wave function which
shows in general the form
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can be determined by
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where T is the time-ordering operator. (Here and in the following
we use the interaction picture.) The time scale is fixed
in a way that at t =0 the two nuclei begin to interact. For
t<0 the nuclei are in their ground states ( ph —vacuum) and
the interaction (3) is zero. The sums in eq. (4) include
states of both nuclei 1 and 2.
Since the interaction (3) 1is restricted to the creation and
annihilation of ph-pairs, it is sufficient to calculate the

amplitudes f o® ’fph (t), etc., in the lowest order. This
leads to
fo =1, (6)
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The higher order components can be obtained from the 1plh -—compo-
nent according to
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It should be noted here that the resultlng wave function is
not normalized.
We define the operator
~ + +
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whose expectation value
of the nucleus one

A, = (10)

and, therefore, represents the measure for the change of the
mean value of the mass distribution. Evaluating the variance

B_<AA2>-<AA>2 of the distribution we need the expectation
value of the operator
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With eqs. (4), (6) and (8) the expectation values can be

derived:
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Let us consider only terms of the second and fourth order in
vpn and neglect the higher order contributions. Within this
approximation we get
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the expectation value (12) vanishes and eq. (lhf becomes
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The time derivation of ‘this expre551on yields a quantlty simi-
lar to the diffusion coefficient in a Fokker-Planck equation
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As can be seen below, D is a strongly time-dependent quantity
and behaves very differently than the corresponding quantity in
a diffusion model. The, fourth-order terms in eqs. (15) and
(16) contain transfer as well as excitation contributions.
is reasonable since the Pauli-principle acts independently
of the fact whether a state is occupied by way of transfer
or excitation.

To obtain numerical values for ag

This

and D a practlcable way
seems to determine the trajectories ﬁﬁ and 32@) of the
ions by means of a classical friction model ’ Then, the
matrix elements which are time-dependent via the relative
distance and velocity can be computed using a suitable single-
partlcle set. Furthermore, the formalism presented here also
allows one to determine the dissipative force acting on the
relative motion due to transfer and excitation. This force
can be used in the classical equation of the relative motion
instead of an ordinary friction force. Since the dissipative
force again depends on the relative motion this leads to

a self-consistent calculation. Such a treatment which needs

no more phenomenological inputs has been suggested in ref /17,

3. A SIMPLE ESTIMATION WITH CONSTANT MATRIX ELEMENTS

In order to get some qualitative 1n31ghts we perform a simp-—
le estimation for the quantities derived in the last section.
First, we neolect the relative motion and assume that the in-
teraction fi, is switched on at t =0 and does not change its
amplitude. Furthermore, we assume the excitation probability to
be the same for all states. These idealizations lead to con-—
stant matrix elements. We replace the summations by integra-
tions over the particle-hole energies ¢€py - For equidistant
single-particle states the particle-hole density pkph)
can nearly be expressed by

plepy) = E—Ep*/A R (17

2
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where py is the single-particle density. The exponential func-
ion in eq. (17) ensures that only bound states can be excited.

The advantage of all this handling is that omne obtains an
analytical expression for the second-order term
t2AZ )
£2 (18)
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and can evaluate the exchange term approximately:
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Here, Vpn denotes an averaged matrix element. The time deri-
vation of the expressions (18) and (19) gives
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Using eqs. (18)-(21) the mass variance ag and its time—deri-
vative D have been calculated. The results are shown in the
figure. In order to discuss the time evolution the results
for D are more illustrative. Considering a typical reaction

time in the order of 10

21 5, D increases rapidly and reaches

its maximum at a very short time. Also the width. of this peak
is rather small. This behaviour shows that the system reacts
very fast on the switching on of the interaction. This res-—
ponse time is small compared with the collision time or a

time typical for the change of the collective degrees of free-

- dom.

4. CONCLUSIONS

{

A time—dependent particle-hole formalism has been applied to
heavy—-ion collisions.The interaction has been restricted to the
excitation of particle-hole pairs due to the effect of the

hweclear mean field. In order to obtain the wave function Dirac's

time-dependent perturbation theory has been used. Within'this
formalism the dissipation of relative kinetic energy as well
as the mass exchange can be described.

As an example, we have studied the time-evolution of the
mass variance o2

s

for symmetric systems. The operator of this

quantity has been derived, and it has been shown that its
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Variance of the mass distribution (a) according
to eqs. (20) and (21) and its time-derivative (b)~
according to eqs. (22) and (23) as a function of
time (full lines). The broken curves show the 2nd-
ordey and the chain curves the 4th-order contri-
butions to the quantitie§. Note that the 4th-order
contributions have ‘a negative sign.







