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I. INTRODUCTION 

The two-body part of the time-like component of the weak 
axial-vector current attracts attention since Kubodera, Delorme 
and Rho 11

' have pointed out that it is of the same magnitude 
0 ( l 1\1) as the one-body part. Due to the approximate chiral in
variance of the strongly interacting nucleon system the two-
body part (the mesonic exchange correction (HEC)) could give 
rise to large effects even in the one-pion exchange (OPE) limit. 
This can be proved by calculating the nuclear axial charge den
sity. For this aim the purely axial weak processes of the beta 
decay and the muon capture between 16 N(O 1, T ,..1)and 16 0(0 i· T .. Q) 
are well suited because they are rather sensitive to the time 
component of the current. The ratio J\ 

1
j J\ (:3 of the partial muon 

capture rate f1u(O+ .... 0-) to the partial beta decay rate 1\,B(O-,Q~) 
gives us information how the induced pseudoscalar coupling con
stant g P is related to the axial nucleon form-factor g A (ref. /Z/). 
The importance of accounting for HEC in this first forbidden 
transition has been discussed in a series of papers/3-3/.The most 
extensive investigation was performed by Towner and Khanna '8/. 
They estimated for the soft pion HEC operator/If the operator 
renormalization for a variety of residual interactions by se
cond-order perturbation theory along the standard line of the 
link~d valence cluster expansion of Brandow. For one residual 
interaction (OBEP) out of six they reproduced the experimental 
values for J\

11 
and J\,13 only with meson exchange corrections in

corporated in the transition operator for gp/gA~lO.Here we 
concentrate our attention on the form of the two-body operator, 
which is of more complicated structure than it is predicted 
by soft-pion low energy theorems. In order to construct the two
body current operator we exploit the phenomenological Lagran
gian (PL) version/9,!0/of the hard pion model/11,12/.Further we 
investigate the interplay between the heavy meson exchanges and 
the nuclear structure correlation effects. We calculate direct
ly the effects from the 2p-2h admixtures to the 0 + and 0- nuc
lear states using shell model wave functions with configuration 
mixing 'l3,'. The latter are evaluated by diagonalization of a resi
dual interaction due to Tabakin. The o+ wavefunction contains 
all possible non-spurious 21it,, -excitations whereas the o- wave
function includes only selected 3hw-excitations. 

The two nucleon HEC operator is developed in sec.2. The par
tial transition rates are calculated in sec.3. Concluding re-
marks are given in sec.4. - ---~· 
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2. THE TWO-BODY AXIAL MEC OPERATOR 

Constructing the two-nucleon MEC operator in the one-boson 
(tree-) approximation we start with the hard pion model for 
the :A 1 prr-system as proyosed by Ogievetsky and Zupnik/9/ which 
was extended in ref./ 10 to the N6(1236):A 1 prr-system in order 
to describe the nuclear muon capture and beta decay. The PL of 
the hard pion model is chosen to be invariant under the local 
SU2xSU 2 transformation. This chiral gauge invariance is assumed 
to be broken only due to the non-zero masses mp and m A 1 of the 
p - and A 1 -mesons, respectively. The :A 1 -meson guarantees the 
consistency of the chiral approach with vector dominance /11,12/, 
The PL of the hard pion model provides a good description of 
hadron amplitudes up to ""I GeV already in the tree approxima
tion. In the Ogievetsky-Zupnik version of the hard pion model 
the effective PL for the A 1prr-system is completely determined 
by four phenomenological parameters: the masses of the respec
tive mesons and their coupling constants (gp ,gA

1
).In this way 

an unambiguous counting of the pion arid heavy meson exchange 
graphs is ensured. This is an advantage compared to the method 
of current algebra (CA) and partial conserved axial-vector cur
rent (PCAC) where only the pion coupling constants are fixed. 
The PL technique is convenient for practical calculations, be
cause it enables one to apply the standard Feynman rules. We 
define the two-nucleon MEC operator as a set of all possible 
tree-graphs which are required for a given process. The result
ing operator possesses the correct chiral SU2xSU2 transformation 
properties and reproduces all standard PCAC results in the soft 
pion limit. The corresponding diagrams which contribute signi
ficantly to the transition rates are displayed in fig.l. In the 
subsequent calculations the space component of the exchange cur
rent will be completely neglected because it is by one order of 
magnitude smaller(O (1/M2))than its time component(0(1/M)). The 
space component of the nuclear current is considered only in 
the one-body part (i.e., in the impulse approximation (IA)) in 
the standard way /14/.rn the non-relativistic limit and after per
forming the transformation to the coordinate space (cf. the work 
of Chemtob and Rho/15/) the operator of the nuclear weak axial 
charge density reads 
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Here ; i , ;.i , ~ i ref.er to the position, spin, and isospin 
components of the i-th nucleon, k is the four-momentum asso
ciated with the axial current, g, (frrNN*) stand for the respec
tive rrNN(rrNN*)coupling constants with gf/4rr = 14.6 (f;NN*/4rr = 
= 0.23) and frr denotes the pion decay constant ( frr = 92 MeV). 
The 6(1236)-isobar, the nucleon and the pion masses are M*, M 
and m

11
, respectively, and b is the oscillator length parame

ter. J ~J~~ with (ii xij )_refers to muon capture and .I!~~~ with 
Cii x rj )fo refers to beta decay. The function F0 (r) has the expli

cit form 
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Fig. I. Feynman graph representation of the two-nucleon 
axial MEC operator in the tree-approximation (see 
ref./10/ ): a) pair term; b) isobar excitation current; 
c) constant term; d) prr-weak decay current; e) A 1prr
current; JA stands for the weak leptonic axial-vector 
current. 
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with 

a= 2 2 2) 2 .j t(l - t)k + t (m p - m 77 + m "·' 

Kv ""l-Ip -p.n .. 3.7, B .. ab /2. 

and determine the radial dependence of the contributions from 
both the p rr -weak decay current and the A 1 p rr -current (graphs 
d, e, in fig. I). The correct treatment of F0 (r) is necessary in 
the muon capture becaus~ of the large four-momentum transferred 
(k ""O.sm;). The. term with the denominator 1/M(M*-M) represents 

the small contribution coming from the t'J. -isobar and will be 
neglected. In the soft current limit (k->0) and for m 

77 
/mp«1, 

m 
77 

I M « 1 in Fo (r) the. exchange operator of the hard pion mo
del (2.1) can be separated into two parts. The first onere
presents nothing else than the MEC operator developed from the 
low energy theorems/ 1•3•7 /.From now on the symbol J Jfi f3l will 
be used in order to denote the one pion exchange operator. In 
doing this we obtain 

J4(J1,/3)!"' J4(1L,f3l+~ fik-~i ; .. ; .. c'
2
v

1
(Ampr)i(;.x;. ).,. , 

exch k-+0 OPE i,lj 1 IJ ' J .,. 

2 2 ...... 
J 4(p., {31 

OPE ~ 

g m ik·r· 
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I j +' 
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g,mp Kvmp 

C'2 ~ ----- (1 + ). 
8rrgAM2 4M 2 

(2.3) 

·It should be noted that the term C 2 is larger by a factor 
(1+K vm2 /4M2)-1.6 as compared to ref. /7/ where only the prr-ex

change ~raph was considered. This is due to the contribution 
coming from the coupling of the p-meson to the anomalous mag
netic moment of the nucleon. 

3. RESULTS FOR THE MESONIC EXCHANGE CORRECTIONS 
TO THE TRANSITION RATES 

He consider the muon capture reaction 

- 16 + ) 16 ( -p. + 0 (0 l ; T X 0 ... N 0 1 ; T"' 1) + Vp. 

4 

1) 

~t n~ 

and the inverse reaction of beta decay 

16 - 16 + - -N(0 1;T=1)-> O(O~;T .. O)+e +v.,• 

.. The partial transition rates are given by/7: 

Ap.(o+ ... o-),.,8.375(/2 gA(k 2 ) 2xl03 \<0-\J(p.l\0+>!
2

, 

gA(k 2 )~ 1.24, 

- + - 2 - ({31* + 
i\{3(0 ... 0 ) ... 10.65 ( ,; 2 gA(O)), I <1) I J \0 >1 2• 

g A (0) K 1.26 . 

(3.la) 

(3. I b) 

The current operators .J (1.£> , i/31* which include the mesonic ex
change corrections have the form 

J(p.,f3*l ,. J (p..f3*l + _1_ J (p.,f3*l. 
!A 1.2- exch 

' gA 

The one-body operators J(f~/3*l are kept in mind as 

with 

(p.). 1 (p.) -+ -> -+ (~) (ILl -> ~ -> 
JIA (i)= -j 0 (k r.)CJ .. o. (r ).-g j 1(k r.)a.-r.(r ). M I I vI - I I l 1 - I 

( (3) * . 1 . ( {31 ... ... ... ( {31 . ( {31 ... ~ ... 
JIA (1) .. MJ 0(k ri)ai.V'i (r_); + g J 1 (k -r,)a,.rJ•_\ 

(ILl gn Ev 
g "'(1- ( _....._ -1) --). 

gA(k2) 2M 
gp/gA"'7.5, 

({31 3a Z 
g "'0.932 (1 + ----). 

2RE 0 
R .. 3.51 fm, a• 

1 

137 ' 

(3. 2a) 

(3. 2b) 

k(p.l "'E vb/!lc, {{31 0 A. l k .. E b;nc, Ev=95. 21MeV, Eo=l1.05MeV,b-1.7fm. 

In order to obtain information about the relevance of the 
heavy meson exchange contributions we consider first a rather 
simplified situation by assuming that the o+ state in a closed 
core and the o- state is built up by only one particle-hole 
configuration \(2sl/2) 1(1p 1J2)- 1; J,.M .. O; T,. l,T3 .. -1>.In this case 
the nuclear matrix element reads 
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<0-1 J(ll•P*> I o+ > .. 

1 (11, {3*l 1 
=-=(2sl/211J·IA/ .111Pl/2)+ ~--X 

J3 ,/2 gA 

1 J+T' - T 
x -== }2 J1-o(nPj)(1p 112 )(-) ·/2J+1(-) 

2.j3 nfjzlSJ/2• 
1 p l /2>• lp 3 /2 

.I 2 0 '1, 2; 

T,T':0,1 
(/Zs1 r2 ; n r j ;JTII J !~~f*l II1PI/2;nE j; JT') · 

(3. 3) 

We define the renormalization of the nuclear matrix element fiS 

4(11, {3 *) + 
_ <0-l J rxrh I 0 > 

-- -----0'1\--
/2 g <0-1 J (11," 'I o+> · 

A lA 

0 (f.i. {3) - 1 + 

where the quantity 

(I -

2 
r'i (L 

02 
{3 

lA 
I\ (1 I\ (-3 

/\1-lf\IA 
~' tL 

(3. 4) 

(3.5) 

determines the reduction of the ratio ,<\ / .<\ /1 compared to the 
value /\ 1A/ /1. 1~ calculated without exchd~ge effects. The cor
respondJ'~g results are· 'given. in table 1·. It can be seen from 
the table ~hat the partial rates derived from the hard pion ope
rator J!~~ ) are smaller tha~~hose obtained by the standard 
version J 0\~'t~1l (compare ref.'· ). This results because the 
heavy meson graphs lead to an additional term ( C~ from (2.3)) 
whith is of sign opposite t;o J~(~~~· Due to the contributions 
from the p TT - and A 1 p TT -diagrams tJte . quantity e changes" in 
the right direction. The e~perimental value of the ratio 1\JL/.<\ {3 
is well reproduced, however, the predicted partial transit~on ' 
rates are still too large. This is a consequence of the rather 
restricted configuration space. 

Now we shall improve the description of the nuclear struc
ture by using shell model wavefunctions with <;onfiguration 
mixing. The relevant nuclear matrix elements are _calculated 
applying the hard pion operator (2.1) and nuclear wavefunctions 
from ref./ l3/ in which 2p-2h-admixtures are explicitly present. 
The groundstate wavefunction of 16 0 was obtained by diagona
li6ation of a non-local separable potential of Tabakin in the 
whole space of all non-spurlous (Otw,2tw) configurations. The 
wavefunctions of the negative parity states contain some uncer
tainties. A straightforward diagonalization of the Hamiltonian 
'6 

I 

) 

:) 

Table I 

The renormalization of the single-particle matrix 
element (2s 1/2 - 1p1; 2 ) due to mesonic exchange corrections 
(eq. (3.3)) both for the,muon capture and the beta decay. 
The reduced matrix elements (r.m.e.) of the two-body 
exchan!ie 9J2erator a~e labelled by ((nej) 1 (nPj) 2 ; 
JT II J (f.i,p~l II (nfj) 3 (nfj) 4; JT'). For other symbols 
see the text. Experim.ental rates are 1\ 11 =~1.57.!.0.10)XI03s-l 
(ref .. /16/) and 1\13 = 0.41.!.0.06 s-1 (ref. II I) 

quantum numbers 
o!· the r.m.e. 

n gi JTT' 

2s112 1s112 1p112 1s112 101 
110 

251/2 1P1/2 1P1/2 1P112 001 
110 

291/2 1P3/2 1P1/2 1P3/2 '110 
101 
210 
201 

<<f iJ 4(f.i,f3*!o+> 

< o-IJ(f.~ f3*l i o+> 

8 

muon capture 
r.m. e. 

J 4(f.i) 
OPE 

J 4(Jl) 
exch 

-.0593 
.0586 

-.~ 

.0489 

-.0007 .0018 
.0432 .0304 

.0219 .0118 

-.0003 .0008 
.0500 .0392 

-.0004 -.0002 

-.1335 -.0'::)86 

-.3246 

1.23 1.17 

beta·deca;y 
r.m.e. 

J 4({3*> 
OPF. 

-.0592 
.0698 

.0086 

.0557 

.0240 

.0037 

.0677 

.004-e 

J 4({3 *) 
exch 

I 

-.0445 
.,0606 

.0130 

.04371 

.0161 

.0056 

.0553 

.0072 

·-.1511 -.1144 

-.1098 

1.77 1.58 

'\,t,{3l(s -I) '+o14x103 3o74x103 1.28 1.02 

T y p e .of t h e o p e r a t o r 

e 

J 4(11,{3*) 
OPF: 

0.48 

J 4(11,{3*) 
exch experiment 

-
0.55 (0.57) 
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matrix for the 0- state in the complete (rhw,3nw) configuration 
sp'ace would require about 1800 several components of 2p -2h and 
3p-3h type. In ref ,/13/ several wavefunctions of negative parity 
states were built up upon much more restricted model space. 
They describe correctly. e.g., the integral transition rates 
of the (ll, v11 )and (rr-,y) reactions. As for the partial transi
tion rates to the low lying negative parity states they are 
still too collective. The predicted values for A~(o+~r) in the 
IA are by a factor 1.5-2 larger than the measured one (for de
tails see ref. 118

/). In spite of this we use the n~clear seruc
ture model proposed in ref. /l9/ in order to inv-estigate the pos
sible consequenc-es of3hw- admixtures to the Oi (120 keV) state. 
In the wavefunction we preserve the admixtures (about 1% each) 
of two 3liw-configurations which come the stron?est (normaliza
tion of the function is indeed that of ref./ 13, ) • 

116 N;O},T=1>',. 0.9505j(2s 1; 2) 1(1p 1jz)-IJ .. O,T .. 1> + 

+ 0.0158! (1d3 ; 2)1(1p 3!z)- 1J .. O, T,. 1> 
(3. 6) 

. 1 1 2 
-0.1108j[(ldsf2) {lfs/2) Jp=O,T

11
=0; ClPI/2)- Jh"'O,Th=l]J .. O,T .. l> 

~O.l036j[(2s 1 r2) 1 (1f7;2) 1 J =3,T =1; (lp3 ;2 )- 2 Jh=3,Th=O]J~O,T=l>· 
I p p . 

In the model subspace spanned over the l's 1; 2 up to 2p 1/Z os
cillator shells the J ~xch operator is determined by 975 various " 
non-vanishing reduced matrix elements in the jj -coupling scheme. 
Due to the spreading of the 2p-·2h admixtures over all possible 
2tw -excitations for the o+ state and over the two selected 
3tw -excitations (eq. (3.6)) for the o- state the most important 

1natrix elements (900) enter the calculation*. The result ,of 
this extended calculation of the transition rates A~(o+~o-) and 
Af3(0- -.o+ )is given in table 2. For the nuclear matr~x elements 

of the exchange operator (2.1) we obtain 

<o -, J :~~ 1 o + > ,. -0.0812 

<o- 1 J 4(/3lh* 1 o+ > .. -0;0945. 
exc 

Compared to the calculation without configuration mixing(table I) 
the.matrix element of the two-body operator between the initial 
and final nuclear states reduces approximately by a factor of 
R .. a 0 (3 0 ,where a 0 and f3o are the respective weights of the lead
ing components(IOp-Oh>, I (2Sl/2(1Pl/2)- 1 J,.O,Tx1>) of the 
o+ and o- states ( ao = 0.89, f3o= 0.95). In other words it 

*In the calculation without configuration mixing only 8 matrix 
elements contribute. 
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Table 2 

The partial transition rates (in s- 1 ) calculated with 
the shell model wavefunc~ions with configuration mixing 
for two different values of the ratio gp /gA. A !land A~ 
stand fo~ the parti~l rates evalua~ed using the exchange 
operator of the hard pion model (see eq. (2.1)) for the 
tquon capture and the beta decay, respectively. ·The expe
rimental value of the ratio of the transition rates 
is ( A II I A {3) = ( 3 . 8 +0. 8) X I 0 3 

r exp -

gp /g A 7.5 10.5 
-

A 1 A (0 + .. o-) 
11 I .8xl03 I .3 xiO 3 

A'Aco-... o+) 
f3 o. 18 0.18 

f\ 
11 

co+ .. o-·) 2. 5 ';.;10 3 I. 9xl03 

A 13co-.. o+) 0.53 0.53 

all I. 17 · I. 20 

~H.co+...o-) 
4.7xi03 3. 7xi0 3· 

A f3 co - ... o+) 

means that the main effect from the higher configurations is due 
to the change in the weights of the closed shell configuration 
of 16o and of the dominating lp-lh configuration in the o- state 
in 16 N. A similar result was found in ref/81. However, this·. 
simple picture does not take place for the one-body part of the 
current (14 single particle matrix elements in the model sub
space of consideration). As discussed above the predicted va
lues for the partial transition rates in the IA appear to be 
overestimated. This is one of the reasons why the partial tran
sition rates A 11 and A f3 calculated in the present investiga
tion are somewhat larger than the reported data. Other changes 
in transition rates are to be e~pected from finite size ef- . 
fects/6/ as well as from dependence of the rrNN vertex on pion 
momentum in the two-body operator. 

4. SUMMARY AND CONCLUDING REMARKS 
In the present paper we studied in detail the mesonic ex

change corrections in the o+•-+ 0-, ~T-1 weak axial transi~ion 
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in A= 16 nuclei by using shell model wavefunctions with confi
guration mixing. The results are as follows: 

i) We have £ound that the MEC effect depends less on de
tails of the nuclear wavefunction than the impulse approximati
on results. 

ii) The main contribution to MEC effect is due to OPE part 
of the two-body operator (table 1). However, the heavy meson 
exchanges (graph ld,le! cannot be neglected in·detailed calcu
lations. Their influence is of the same order (-20%) as that 
expected from other corrections. 

iii) The HEC effect is important for describing the nuclear 
weak axial charge density (table 2). 

These results support strongly the concept presented and 
advocated in r-ecent paper 1 191 by Guichon and Samour. As discus
sed by them the reason why MEC are expected to play an essenti
al role in the 0 ~ • 0- transition is of a principal nature' and 
reflects the approximate global chiral symmetry properties of 
the strongly interacting nucleon system. The chiral invariance 
of a system consisting of non-zero mass particles can be rea
lized only via the mechanism of spontaneous symmetry breaking, 
which leads to the appearance of massless Goldstone particles 
which could be, with a good accuracy, identified with pions. 
If the philosophy of chiral invariall,fe of strong interaction is 
true and the mechanism of spontaneous symmetry breaking takes 
place, one should not expect, that the generator of axial chiral 
rotation (the axial charge) ca,n be obtained as a simple sum of 
the purely nucleonic contributions with the pionic mode comple
tely neglected, as impulse approximation suggests. 

The authors are indebted to Dr. L.A.Tosunjan for the commu
nication of the o-wavefunction and to Dr. R.A.Eramzhyan for 
useful conversations. One of them (M.K.) is grateful to Dr. 
E.A.lvanov for his aid in mastering of the elementary particle 
technique for constructing the MEC operator, to Drs. V.V.Pash
kevich and V.Yu.Ponomarev for some valuable advices in programm
ing and to Drs. H.Schulz and R.Wlinsch for very agreeable help 
and constructive criticism in writing the basic version of the 
manuscript. 

APPENDIX 

The Reduced Hatrix Elements of the Weak Axial Charge 
Density :t--IEC Operator 

The separation of the relative coordinates from the centre
of-mass coordinates in (2.1) leads to the following expression 
for the time-like component of the weak axial-vector :t--IEC opera-
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' 

tor: ->-+ 
k.R A 
i~ 

J4(fl,f3*l"'.!. :£ e J2 :£ ±U 
oxch 2 i <j +, _ 

-+..... -+-+ 
brA k.rA 
i~ -i--:-

)2 ± E I 2 )(;, 
1 

l C 1 Y 1 (Am 
17
r) + C 2 F 0 ( r) l i ( ;i x r) _ , 

-+ 1 -.-. 
R"" --(r. + r. ). 

b .f2 I J 

+a->, ). ;iJ' - I 
(A. I) 

The antisymmetrized wavefunction of two particles in the well 
of the spherical harmonic oscillator is transformed from the 
absolute coordinates to the relative and centre-of-mass coordi
nates according to the prescriptions of the cl,ssjcal shell mo
del by use of the Brody-Moshinsky coefficients 20 .we decompose 
the operator (A.I) into spherical tensors and apply the standard 
Racah-algebra technique in order to obtain the reduced matrix 
elements: 

4( ~*) 
(nPS(j); NL; JT\\ J e~:{;' 1\nTS'(j'); N'L'; JT') .. 

- D; D; 1 ·A; J+j.'+f+s' S+S' ~ ~ ~ ~ 
18\12((-) ( O O 0 ) (-) .f;[l+(i (-) ]JA;.A;D; D; 

g= 1,2 

r , f' L D · L' j j' D i 1 S S' 
s S' TT' j'j pp 'LL' ( 0 ~I 0 ) ( 0 0 I 0 ) I L, L J II 1/2 1/2 1/2 I 

(A.2) 

1 

{
T T' 1} {A; 
1/2 1/2 1 f s , "" , (IL,f3l D;} 

J C g£ Rn p(r) J Di (Q r) ¢g(r)Rn •e•(r)x 

1/2 1/2 1 f' S' j' x r 
2
dr 

"" ( {3l 
f RNL(r') j 01 (Q ll• r') RN 'L'(r')r'

2
dr'. 

0 

In practical calculations we keep only i • 1.2. 

Q (1-1, fil - k (1-1, {3) 

..;2 
i• 1; Ai•l, D; .o, (;•1 {g"'l Y1(:Am77 r) 
. , , ¢ (r)- . 
1-2, :Ai .. o, D;·l. (;-1 g g .. 2 F0 (r) 

Here R n b(r) denotes the normalized radial function of the har
monic oscillator, jL(x), is the regular spherical Bessel function 

I . 
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A -~~ il i2 j3) 
and L:~J2L+t; Cm1 m

2
m

3 
j 1 h j31 
el r2 r3 

the 3j, 6j and 9j Wigner~s symbols. 
ref J20/. 
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Erep x.-Y., KHpx5ax M., TpyrnHK 3. E4-82-772 
Me30HHbie o5MeUHbie nonpaBKH K nnoTHOCTH 
H,o;epHoro CJiaCioro ai<cHanMwro 3apH;u;a B Mop;enH 
JKeCTKHX riHOHOB H 0+ -• 0- nepexop; B Hp;pax C ~A,. 16 

.[(BYX'-laCTH<r!IaH l.laCTb DpeMeiUIOH I<OMriOHeHThl cnaooro aKCHanbHO
BeKTOpHOI'O TOI<a CTpOHTCH B MOp;enH JKeCTI<HX llHOHOD C MHHHManhHh!M 
KHpanbHO~HHBapHaHTHhiM <lJeHOMeHonOI'Hl.leCKHM narpaiDl<HaHOM B ITpH-
6nHJKeHHH ,o;epenben. PaccMaTpHBaiOTCH rpa¢HKH c o5MeuoM rrHona, 'P 
H ~A 1 Me30H8. TionyqelliibiH OOMeHHhiH onepaTOp npHMeHHeTCH p;nH OriH 
caHHH cnaooro '-lHCTo ai<cHanbHoro rrepexo,o;a 0 +,.._ o·-, t.·r .. t B H,o;
pax c ~A "' 16. KoppenH~HOHHbie 3¢¢ei<Tbi Hp;epHoi'i CTPYKTYPbl Oim
CbiBaiOTCH ITPH riOMOII.IH BOnHOBbiX tPYHKIJ;HH MOp;enH o6ono'-leK CO CMe
IllHBaHHeM KOH¢Hrypa~HH. YCTaHOBneHO CHnhHOe B03paCTaHHe IT.riOT
HOCTH Hp;epHOrO Cna6oro aKCHaJihHOI'O 3apHp;a ITO cpaBHeHHIO 
C HMITynhCHbiM I1pH6nHJKeHHeM. 

P a5oTa BbiriOnHeHa B J1a5opaTOPHH Teope'rHl.leCKOH ¢H:iHKH OlliiH. 

npenp~IHT 06beAHHeHHOrO 11HCn1TYTa .R,£1epHhiX 11CCJ1eAOBaHHi:1. ,lly6Ha 1982 

Jager H.-U., Kirchbach M., Truhlik E. E4-82-772 
Meson Exchange Corrections to Nuclear Heak Axial 
Charge Density in Hard Pion Model and o+oot__.o- Transition 
in ~A = 16 Nuclei 

Starting with the hard pion model based on a minimal chiral 
invariant phenomenological Lagrangian, the two-body part of 
the time component of the weak axial-vector current is const
ructed in the tree-approximation. Pion, rho- and ~AI-meson 
exchanges are considered. The mesonic exchange operator ob
tained is applied to describe the purely \veak axial ot... o-' 
t.T-ltransition in the nuclear •A = 16 system. In order to 
treat nuclear structure correlation effects explicit use of 
shell model wave functions with configuration mixing is made. 
We confirm the large' enhancement of the nuclear \veak axial 
charge density with respect to impulse approximation. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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