


1. INTRODUCTION

The complexity of the many-body problem quickly increases
with the number of particles A.The microscopic description of
the nuclear structure is a typical situation where we must
use the efficient approximation techniques to be able to de-
rive the measurable quantities from the first principles (two-
body interaction V(r)) since the "exact" numerical solution
of the underlying Schrddinger equation

A te
Hy = By, :2 —A o+ 2 V(r ) (1.1)
—12m Ty i>j=1
is extremely compllcated Also the perturbation approaches
may start from the only solvable many—body with the harmonic
-oscillator (HO) forces V() -~ r2 in spite of the strong na-
ture and various phenomenological shapes of the nucleon-
nucleon forces, long range of the Coulombic interaction,etc.
It meets therefore serious formal as well as practical dif-
ficulties. For example, the convergence can rarely be proved
or achieved within the reasonably large truncated basis.

Usually, the simple-minded perturbation strategy is there-
tore being moditied by the alternative (variatlonal, etc.)
techniques adapted to the specific nature of the particular
question considered (for example, Faddeev-Yakubovsky equati-
ons for the few-body energies, expS description of the struc-
ture of magic nuclei, etc.). In the present paper, we shall
investigate the new possibility inspired by the recent exact
solution of the one-body problem with the anharmonic oscilla-
tor (AHO) interactions using the formalism of the matrix con-
tinued fractions/1/ (MCF).

The main idea of our approach consists in the possibility
of replacing any "realistic" central force by the polynomial
approximat&ons

V(F)= : g, GH", g,50, p2tl (1.2)

with arbltrary precision, and to apply the same or slightly
modified and complemented MCF method 'Y for any A >2, or, at
least, for the few-body systems. We shall be interested in
the bound states only, so that tlie necessary value of degree
p in the AHO force Eq. (1.2) may be expected to be reasonab-
ly small owing to the spatial confinement of any suff1c1ent1y
strongly bound system.
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Our belief in the efficiency of the MCF strategy is sup-—
ported by the encouraging numerical results of Ref.l and by
the consequent reinterpretation of the traditional effective-
force concept/241n connection with the present wide-spread
possibilities to employ in partical calculations the small
and mediumsize computers, our methematical formalism’/? using
the interative algorithms working with the relatively small
matrices seems to be a highly promising technique which might
bridge the gap between the analytical and the purely nume-
rical picture of the physical processes (cf. the popular and
fruitful doorway- and hallﬂyy-state hypothesis used in a
somewhat different contex . From the analytic methods,
we hope to inherit the advantages of the strict proofs and
some useful properties of the classical continued fractions
surviving their matrix generalization (as an illustration,
we may quote, e.g., Ref./sl). In the numerical context, MCF
formalism (we give its short review in Sec.II) may be expec-
ted to preserve merits of the Lanczos algorlthm

One of our main conclusions is an unusual observation that,
once the anharmonicityp in Eq. (1.2) is fixed, the increase
of A, especially the transition to the genuine many-body prob-
lem (A=25 A =3+ ...) is surprisingly "smooth" from the
technical point of view, first of all in the case of the iden-
tical particles. Because of the pedagogical reasons, we re-
vert the presentation of the material and start from the
distinguishable particles in Sec.III where the existence of
the very MCF solvability of the AHO A> 2 Schrddinger equa-
tion is emphasized. In Sec.IV devoted to the identical par-
ticles, neglecting the spin variables for the sake of brevity,
we show how the group theory helps to elucidate the structure
of the optimal basis’?” and to minimize the dimensions of
the continued-fraction matrices, i.e., the practical requi-
rements concerning the computer capacity. In the simplest
examples we consider as illustrations, this factor is irrelevant
after all - we never need matrices larger than, say, 5x5 to
reach quite a fair convergence of the three-bosonic ground-
state energies for the elementary model—-potentials with "core".

/4/

II. THE MATRIX CONTINUED-FRACTION METHOD

Linear equations of the Schrddinger type may be treated by
various methods reaching from the analytic representations
of y and E to their purely numerical approximations. The MCF
method lies somewhere in between these two extremes and repre-
sents a reasonably flexible formalism comprising many specific
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approaches as special cases. In the present context, we may
explain its structure by recalling the inspiration of our pa-
per, namely, the solution of the one-body AHO problem in the
one spacial dimension as given by Graffi and Grecchi’ V. In

this case, the use of the HO basis (Hermite polynomials) im-
plies the band structure of the Hamiltonian H.In full analo-
gy with the classical treatment of the three-diagonal (Jacobi)
matrices’/® the authors arrive at the MCF representation of

the Green function and identify its numerically determined
poles with the AHO energy levels. e/

In detail, the formalism is worked out in Ref. and it
looks as follows: To the partitioned HO ba51s|X:5.m =1,2,...M,
k =1,2,..., and to the related Hamiltonian matrix in the
k —partitioned block-three~diagonal (BTD) form

. ij in
Ay By 0 ... Ag=Ay ,By=B, , 2.1)
+ . .
H=| Bl A, B, 0 ... |, ij=212.,M, n=1,2..M
0 B} ... k=12..

we may assign the auxiliary sequence Fy(E),k=1,2,... satisfy-
ing the recurrences

- +1-1
F (B =(ElI-A, -B F_ (BB, 17", (2.2)
The Liuniie iLiuncation of the matrixz T ic o5t iwzalont o tha

initialization F +(B) =0 of Eq. (2.2). It is assumed that
the limit N»«»ex1sts and defines each MCF Fy (E) in the same
way as the classical continued fractions are defined as li-
mits of their finite approximants - they coincide with the
one-~dimensional (Mk—l) case of the present MCF's,

Assuming the existence of the MCF sequence F, (E)in the
v1c1n1ty of the AHO energy levels E=E_,we may 1§ent1fy aE) =
= detF, (E) with the Green function og the Schrédinger Eq.
(I.l). Moreover, the Schrddinger equation becomes reduced to

the finite-dimensional model-space form
M; .
(eto i
Z(Esij Ky )Dy=0, j=12..,M,, (2.3)

where the effectlve Hamlltonlan is deflned explicitly by the
exact MCF expression K¢ r°-A1+ B, F (E)B .. Once the ener-
gles E=E; are determined numer1ca11y as the poles of Q(E), the
projections Di—-<x‘|¢> of the exact solution on the model-
space bases may be %ound easily from the M,xM ,~dimensional
linear algebraic Eq. (2.3). As a consequence, the complete
solution of Eq. (1.1) with any H of the BTD form (2.1) may be
written in the compact form



00 Mk . .
1 1 )
y=a T T [X>D . D =D B F (B k21 (2.4)
The normalization formula determining «,
gl =a® = T DD, (2.5)
k=1 i=1

follows from the orthonormality of the HO basis.

The proofs of convergence are an important ingredient to
the MCF formalism converting the formal solution into the
analytical one. In the present contex, they are still missing
even when A=1, expecially for the infinite series (2.4). At
the same time, their numerical A=l tests’Y have inspired our
expectation that the favourable numerical properties might
survive the transition to the many-body AHO cases.

IIT. DISTINGUISHABLE PARTICLES

The A=1> A=2-body or the one - three-dimensional exten-—
sions of Ref.’! are trivial and need not be explained in
detail., In a way, their further A=2 5 A=3 5..., generalization
is a matter of mere technicalities as well - they will be
worked out in what follows.

A. Anharmonic Forces in the Jacobi Coordinates

The firsl teciuical yuesiiow we musL Lesolve when consiae—
ring the A>2 systems is the removal of the center—of-mass
(cms) degrees of freedom. This step is entirely standard -
assuming for simplicity that all the particle masses are
equal =2mi=1, i=1,2 ve, A, we may define the Jacobi
coordinates

fi = (Ei sing, cos¢,, £ sinf; sing,, £, 08¢,) =

(3.1)

o1 - . N
—[-1(1-0' l)]lz (—lrl+l +j§1r))’ l_lrzl--,-,A l,,A,

where ?A+1 =0. Since the kinetic-energy operator remains pro-
portional to the sum of Laplacians in the new variables (3.1),
we may put

HooAg oHy, U=y e

and obtain the AHO Schrddinger Eq. (1.1) in the translational-
ly invariant form

ikafa -
o E=Egr kg (3.2)

A-1
- _ _ (A, p)
Hy ¥y =By s H0—~i=1AE}+ Vano -

an_ § 5% it B v € enay)
VAH0= j=22 i=21 mE—l gm[(ri tl) ! m=lgm m 1 A-t

viD = v (B L€ pyp 8wy ), 08wy = cosf; cosf ; + (3.3

+ sin6; sind; cos(d; —b; ), 1<i<j <A1

Here, ¢, is independent of E; and Véﬁg) is a genuine many-

body operator. ) )
The exceptionality of the HO interaction (p =1) lies es-
sentially in the removal of this many-body character of V

since A-1

(A1) 2
Voo 814 I €0

Starting from the first nondegenerate (quartic, P =2) case,
the angular dependence of V;ﬁg) does not drop out and we

get
2 4 2
vy = %(512‘“522)2 - 865y dn”w gy
4 4 10 2,2 8 ;2,2 B ;2,2
O esenele Bel  Peleg s Shte g hls

an 1 1R o

-~ o - o o
= % Zoos® Tl g c08” e Eofa COS Wog +
+—§--£1‘§2ms w12+—§'-{,‘-1§3w5 W4g + 3 fg§3 23

8 2
t- t;———-fffz £ g0Swy, W8wy g + _':;“\'/‘7‘2'—?—"'(5 1~ £9)pE s 050 55 »
3V 2 ]
etc. The derivation and structure of the gengral formula is
rather lengthy but straightforward - we obtain

A B-1 _ - 2.m
N (B) (B) _ - 1™ -
vi® 5, ¥ Vi 3=21 (-1, )
B-2
B-1 B2 N2 -
= j=21 !BETB_1+ nEJ T,+ (=D " Tj 4+ 2B nfj Sh B-1
B-2 n-1 B-2 m
. - j~DSj-qn} »
- 2B( - l)sj—l B-1+ 2,,51 péj SP“ 2 nz=j G-DS8j-1n

T, = &2/ln@a)], n=1,..A-1,

ve .
o ' VS o 1<i<i<A-1, m=12..0
8, = & & o080y, /i G+D G+ D] =

. . . (A0) _
and observe that the complexity of the explicit Vano Pre

scription increases rather quickly with p. Nevertheless, the



corresponding lengthy formulas may comfortably be generated
for any fixed A and p by an appropriate symbolic-manipula-
tion language algorithm on the computer.

We note that the general structure of VE{};%) characterized
by the explicit presence of the angular variables resembles
strongly the case of the noncentral anharmonic potential
solved by the MCF technique in Ref.”®’ forA=1. This is the
main inspiration of the following paragraph.

B. Unsymmetrized Oscillator Bases and the MCF Solvability

Preserving the full analogy with the noncentral modifica-
tion’8 the one-body AHO, we may get rid of the angular va-
riables in the next, still entirely standard step using the
"multipolar" partial-wave decomposition of ¥ - Of course, when
A >2, the orthonormalized and complete set of the spherical
"A -1 - polar" harmonics [{e 1> is not unique and may
be defined with the different angular-momentum couplings’9/.
In the simplest arrangement

bamt + Tace =Aags Ajpg+f =Xy, i=4-3..,2 A+l =L (3.4)

of the vector-addition scheme corresponding to the composite
index (quantum_numbers)

=101, 5 =@y 0o oAy )l sy o)l LM)
we obtain the harmonics (@, =(cos6, ,¢, ))

@0y o, (1], o> =

LM Agig Ap-zh a-2 (3.5)
- ml..;.;mA_.lcg1m17‘2“2 Eomorgug " Ve gmaola1mp
Hg - tp-g
XV m O1081) e Yo, m, Oy by )

LM
where CPma, and Yy, (4, ¢) denote the standard Clebsch-Gor-
dan coefficients and the spherical harmonics, respectively.
Another coupling pattern we shall need below,

=10l =0y g e lrg Aol L ) LM

may be obtained when we replace the m+1-th and m-th items
in Eq. (3.4) by the vector compositions

2m+1"'zm=)" Amtztd =g

The overlap with the original states coincides with the so-
called Racah coefficients

6

Aprg +lper+ln + Ag
<¥E!A_2|{Elm>=(—1) x

(3.6)
Am+z Lo+ Amer }

A A

m m

KR, + D% 2k {

and is proportional to the 8- symbol { T } .

For any coupling scheme, we introduce the partial waves
big} =<{t}jygp > and derive the radial form of the
Schrédinger Eq. (3.3) in a usual way. Since the action of
the kinetic-energy operator on the harmonics |{f}> is
well known, the detailed form of the radial equation depends
on the action of the angular variables 8,,.When we identify
COBw i with the bipolar function -4r<Q; Q{1100 >/y3 and
employ Clebsch-Gordan series

<0,0,11100><Q,Qp[l,lpAp> =

Vv 1 N2 % 1- )

=—4~"-4-u,§=0 (—'1) (!1 +1 —[l) (22+ V) X (3.7)
4 1-2 4 1

N } <O D) Lyr 12 Lo 1=, >

0. 9..1_9. |
. : i :
it is not difficult to specify the decomposition of 8;; into
the finite number of |{€’}> ‘s in accord with the trian-
gular inequalities, l;,j =Ei-1 "’1,1 b I

Concerning the partial-wave representation of the opera-
tor H,, we may therefore infer that the multipolar basis may
be ordered in such a way that Hy acquires the block—three-
diagonal operator form resembling Eq. (2.1) - an example is
given in Sec. III C below. 8/

Completing the analogy with Ref.””’, we introduce therefore
the A-body HO basis |<n> {f }>, <n>=(,0,, w0, )
as the multipolar harmonics Eq. (3.5) multip%.ied by (A-1)-
tuple products of the radial A=1 HO states

[’ 2 L
<€lnl > = (_1)n[~£‘(_n_+~12m] ‘/4 e—f /252 LE +% &2y,

3.8
Mn+l+39 ( )
n -x a+
L: (%) = exx—a—--—-—«e ' x n/n! ,
where L‘:(x) are the classical Laguerre polynomials. Since
they satisfy the fundamental identities
7



1 )
Lz ( ) = L (X) - n—l(x) ’ (3.9)

LY c@+a+ DLI® - @+ DL (D,

the action of the radial variables T, on any HO state Eq. (3.8)
is similar to the action of the kinetic—energy operator - .
it generates two other new states with nj=n; +1 only. At the
same time, the action of the ¢ -linear varlables Su is ac-
companied by the f -shift - hence, Eqs. (3.9) remain to be
applicable. This is of fundamental importance here - the
action of the full operator Hy on any state |<n>{}> ge—
nerates always the finite number of the similar states, i.e.,
the matrix representation of Hy coincides with BTD Eq. (2.1)
due to the orthogonality of the HO basis. This completes
the proof of our main statement, i.e., of applicability of
the MCF technique of Sec. II to any A>1 AHO problem. In de-
tail, we define the Green's function G(E) = detF,(E), its
poles E=Ejand the HO projections D, (E;) of y,, i.e., the
exact solution of the AHO many-body Schrddinger equation, pro-
vided that all the correspondlng N+ limits exist,

In accord with Ref. % we may specify the optimal ordering
of the basis states. This generalized Lanczos (GL) construc-
tion leads to the minimal dimensions of the blocks Mj and

‘

LUt eeTD W LU avwWL e

(a) We choose any finite "model-space' subset of the HO
|<n>{f }> states and denote its elements by the kets [XT>,
m=1,2,.., M,

(b) The action of the Hamiltonian Hj on this model space
generates the finite superpositions of the new "doorway' sta-
tes |<n’>{0"}> to be denoted as {X™, m=1,2,... M,,

(c) Repeatedly, we re-numerate the fuil HO basis in such
a way that each group |Xk+l>’ m=1,2,... M ,,of the k-th
"hallway" states contains precisely the new states
| <n?> 107> generated from the old group 1Xk> m=1,2,...

k
by the action of H

C. The Three—Body Illustration

In the simplest case with with A =3, p=2 and L =0, where
f
(1) % )
<Q,Q,10,0,00>= 82132 —«;—-—~(2E1+ 1) Pgl (08w,
m

and F (x) are the Legendre polynomicals’9 10/ the partial-wave
expansion of Y, becomes extremely simple and reads

%
1,
by = = (2+%) (3.10)

¥ rE A1l g Py @se ).

We shall further require the 171 »1'-2 symmetry of the wave
function which is equivalent to the even parity of the sum-
mation index ? in Eq. (3.10). Owing to simplicity of this
example, the radial Schrddinger equation

Hoo - E Boéiés 0 b0 (£1,€9)
Boéiés  Hop-B B0 .. $,E, &) | =0,
0 Beélty Hop E ¢8| 310y
2,2 32 (L +1) 2 9 a
H09=a2€1€2+1§1[~ 352 * {_-; +3g1€i+-2*g2€i]’
i i ,
(2+1) (L +2

a 8g (1 + 1/(4l-2)(4f +6)), By =
t 2 e I YO R X
resembles strongly that of Ref./sl - the abbreviations a2y and

B, denote also here the normalized matrix elements

<0]8g,(1+ 2sin®w 5 )| L > and </¢ \sggms2m12| {+2>,

respectively.

Let us admit that the third particle is distinguishable
from the remaining two bosons so that the Pauli principle
is satisfied. In a formal way, we may formulate the following
PROPOSITION.

Assuming that the auxiliary MCF quantities are convergent,
Eqs. (2.3) and (2.4) with M= k(2% -~ 1) represent the exact
solution of our three-body quartic AHO example.

PROOF
Denoting the basis states by |[n 1 2,9 >, the matrix H; is
three-diagonal in [ and its infinite submatrlces

Hotngy+2s Milngng+1 + Helvangn, 209 Hiegnga
contain one, three, three lower and five nonzero dlagonals,
respectively. Hence, each HO state is coupled to at most
542x3+2x1+2x3x3=31 other HO states. We may choose the one-
dimensional model space with |X;>={000> and generate the
GL ordering with M =1, M,=6, My=15,..., in accord with
Sec.III B.



IV. IDENTICAL PARTICLES
A. Action of the Pauli Principle

The complete set of the commuting operators Hy (Hamilto-—
nian), L® (square of the full angular momentum) and L, (its
projection) characterized an intrinsic state y; of the A -
body system provided that the particles are distinguishable.
The more interesting cases (identical bosons or fermions,
without spin for simplicity) necessitate an addition of the

projectors o(® (symmetrizer or antisymmetrizer, respec-—
tively). It is a matter of simple algebra to verify that the
symmetrization antisymmetrization operator of:é may be
defined by the recurrent formula

(N R R I ~

" = Y Ya-n Y/ 4.1)

w®_o 1+ we®p  w®oarep

(A) T (A-D (A) 1 (2

in the bosonic/fermionic case. Here, the operator P corres-
ponds to the interchange of the neighbouring particles T _
and ;.

The most 1mportant property of factorization (4.1) is the
simplicity of its Jacobi-coordinate representation. First,
the trivial algebra implies that P(m-+2) will be represented
by the (pseudo) orthogonal and real symmetric transformation

& c0s sin ¢ :f_
R % " ") wsg, = V@D (4.2)
‘fn’l+ 1 sin ¢, -0 séy, ¢ m+1
involving just the two coordinates (f;: & =0 for m=0). The

quantities ¢y, in Eq. (4.2) are the "Euler’ angles in the gene-
ral ratation

R(r, *'i+j)=P(l+1)P(l+2) ""P(l+j)P(1+j-1)“‘P(1+1)‘

Next, the elementary rotation Eq. (4.2) may be re-interpreted
as the '"unequal-mass" transition from the "ems" coordinates
In=R , Em+1=T to the "one-particle" variables ;=& and
'2-fm+1 If we change also the coupling of the angular momen-
ta in accord with Eq. (3.6), then Eq. (4.2) degenerates to

a transformation of a certain two-particle subset of the full
HO basis only. Of course, the P(mi-m matrix may be represen-
ted by the Moshlnsky brackets /1Y '<.../ ..>, with the mass
ratio D = tan® dn

10

<§;|n; g ><§m+1| ;+IZ;+1 > <o Q7 Q0 [ted > =

= ; z <nm+lgm+1“mem;)t|“’m 2m m+1er;1+l l/m(m+2)x
il mipe f et

x<€pin gl o><€pinp gl o<l Qe > (4.3)

so that the complete symmetrization/antisymmetrization matrix

éA? must remaln diagonal with respect to the energy quantum

number N= E (21 +g) and the parity of 2 gl As a
i=1
consequence, the BTD structu;e of ?0 s?rv1ves its symmetriza-
. » +—~_ .
tion/antisymmetrization 'U(A) 'H 0% (A L S

B. Symmetrized Oscillator Basis

Let us start this paragraph with a short summary. To the
many-body Schrddinger equation with the AHO two-particle in-
teraction we may assign the MCF solution as described in
Sec.II. This is a consequence of the BTD structure of the
Hamiltonian H, or H in the unsymmetrized GL -ordered HO
basis.

Unfortunately, the Eq. (3.5)xEq.(3.8) - product construc-—
tion of this basis is unable to reflect the singular charac-

ter of the nrn1onrnre " Tn nthar worde  +he acticn cf U ,
Tn oather worde  the ccticao cf O 08/ 2

on |<n> (> genetates a few independent new states only
which must be represented as superpositions of a large number
of the unsymmetrized products |<n> {f }|>. In this way,
H,./» 1in the form of the original BTD matrix Hymultiplied by
the BTD matrix o, will be characterized by an inadequate
increase of the h&ock-dimensional My for higher k’s -

The key to the problem lies in the symmetrization of the
basis itself, [X > ~|<n>{€}>> | Xg> ~ oay I<n> 1 1>,
In the more general setting, we must therefore construct the
basis states as such superpositions of |[<n>{f }|> "8, which
possess, besides the fixed total energy N and angular momen-—
tum L also the fixed quantum number [f] (Young tableau) characte—
rizing the irreduciable representations of the permutation
group. We may emphasize that the fixed symmetry-pattern [f]. is
the most important ingredient in the modification of the basis.
It has two aspects:

(a) We may simplify the evaluation of the matrix elements
of Hg in the way which is standard /1213 and considers each
particular component V(ri-rj) of the potential V(ggé sepa-

os/a

rately. Formally, the commutation of H, and T(A) is taken
fully into account.

11



(b) We may simply extend our discussion to the particles
with spin.

Of course, Hyp 1is diagonal with respect to N,L and [f].
so that the new symmetrized basis will be more adequate for
our purposes. There arise some new technical problems with
the complete classification and algebraic construction of
this basis. This was discussed by Kramer and Moshinsky/ in-
troducing further quantum numbers (Ax) and A numbering the
representations of the groups SU(3) and O 10 respectively.
Concerning the general case, we omit the <fetails here,

C. The Three-Body Example

For p =2 and the three identical spinless bosons in the
8 -~state, each old group |X?>, m=1,2,...M, as specified in
Sec.IIIC contains k different fixed—energy subgroups with
N=2%-2 2%, .. %&-4." The partition dimensions of the
symmetrized operator a((;)) Hy a-((;) , My = 2k(2k+l--1)(7.2_k—'1—5)/12 -
grow extremely quickly even for the low cutoffs (Ml=l, M, =
=21, Mz =230, ...), due to the non-diagonality of a((;) . Even
the fixed-energy re-partitioning with My =k(X-1)(4k-1)}/3
or, alternatively, M, =k(Rk+1)(%k +1)/3 is rather inef-
ficient (Mg=140 'or 91, respectively). At the same time, the
Kramer-Moshinsky’?/ A=3 classification

SOSLEAL T gl {2 050 | )
n1z1n2¢2 2172 \ el E2 I L /
A2 (4.4)
x4 1—n2)/2,A/2("/2)
with the Wigner function d and the SU(3) Clebsh-Gordan coeffi-
cients (@ |:) appears to be complete and sufficiently
simple for the practical purposes/1?, Its introduction redu-
ces the block-dimensions M, significantly below the values of
Sec.III (cf. Table 1).

The nontrivial optimalization of the new basis is still
possible since, rather surprisingly, H; becomes diagonal with
respect to the rotational quantum number A, which was origi-
nally introduced for the purely classification purposes. In
this way, we obtain the form of the symmetrized HO basis

|Xg > = [N(w)LMAL f1>

with fixed L=0, [f]=[3], A =0 and with k =integer part to
(N+8)/4.: In this basis, the numerical test of the MCF con-
vergence of the MCF representation of the Green's function
det F,(E) was performed.

12

Table 1

Block-dimensions My (k=1,2,...) of Hygin the symmet-
rized oscillator basis

maxN L=0 [f] =3 A =0 A =6
p =2 p=3 p=2 p =3 p=2 p=2

0 1 1 1 1 1

2

4 6 3 3

6 13 6 1

8 17 7 5

10 3

12 33 43 12 16 7

14 5

16 54 18 9

18 91 30 7

20 81 26 11

For the monotonous potentials (g31> O and gg >0), the con-
vergence proved to be extremely rapid. From the physical point
of view. similar notentiale
are, however, less interesting
than the more realistic models
of the nucleonic forces with
the repulsive core. A priori/l?
our choice of the core-simula-
ting values of g;=-g,=-10
will worsen the convergence
and is therefore well suited
also for the illustration pur-
poses. The sample results 1is
presented in Table 2 and the
Figure and shows that the ener-
gy calculations remain to be
easily managenable even on
the small computers. In Tab-

Fig. Scaling behaviour of the
ground-state energies for the
two— and three-body quartic

oscillator and different maxN.

13



Table 2

Sample of convergence of the ground-state energies
for three bosons and quartic forces

he [(MeVl. 2.4 6.5 7.0 7.5 9.0
maka

1 27.355 5.489 6.376  7.250 9.889
2 8.345 1.617 2.015  2.484 4.100
3 3.286 0.945 0.993 1.104 1.797
4 1.712 0.896 0.895 0.899 1.045
5 1.287 0.883 0.853 0.884 0.897
6 1.217 0.882 0.882 0.882 0.883
7 1.189 0.882 0.882 0.882 0.882

le 2, we demonstrate the sufficiency of the small-matrix algo-
rithms to reach the convergent results. The Figure illustra-
tes in more detail the typical core—induced oscillatory de-
pendence of energies on the variation of scale ("spring con-
stant") of the HO basis and its smoothing for higher cutoffs,
and also the similarity of this feature in the two- and three-
body systems.

V. CUNCLUSLUNS

In the one-particle quantum mechanism and its applications,
the AHO problem is an old and traditional subject testing
the practical algorithms as well as the various theoretical
ideas. The MCF solution of Graffi and Grecchi is one of the
promising approaches to its A=l (or A=2) form. In the many-
body context, the exceptional character of the HO force is
even more pronounced and the AHO corrections spoil the Schré-
dinger equation more profoundly. Nevertheless, we have shown
that for A>2, the full formal analogy with A=2 case may be
preserved. In particular, we have found that both the techni-
cal (cf. slow increase of dimensions My ) and numerical (rate
of convergence ,etc.) aspects of both the two- and three-body
AHO systems proved to be comparable from the practical point
of view. We may therefore expect that also some more realis-
tic models (with A >3, p>2, including spin, isospin, tensor
forces, etc.) will remain to be exactly solvable by the pre-
sent MCF technique.

Of course, for very high A’s the numerical performance
of the MCF formalism becomes less efficient since the BTD
blocks grow too quickly. Nevertheless, preserving even there
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the AHO-model description of the microscopic interaction, the
iterative character of the MCF representation of the hallway
effective Hamiltonians and, in particular, of the Green func-
tion F (E) seems to remain at least a useful guide for
making approximations. Preliminarily, their character might
resemble either the fixed-point techniques of Ref. or some
sort of averaging of the type employed in the reaction-theory
context ' ¥.
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