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I . INTRODUCTION 

The complexity of the many-body problem quickly increases 
with the number of particles A.The microscopic description of 
the nuclear structure is a typical situation where we must 
use the efficient approximation techniques to be able to de­
rive the measurable quantities from the first principles (two­
body interaction V(r)) since the "exact" numerical solution 
of the underlying Schrodinger equation 

A h2 A _ _ 
Ht/I=Et/1, H=-I -~- + I V(r.-r.) (1.1) 

1=12m r1 i>j=l 1 J 
I 

is extremely complicated. Also the perturbation approaches 
may start from the only solvable many-body with the harmonic 
-oscillator (HO) forces V(r) - f'2, in spite of the strong na­
ture and various phenomenological shapes of the nucleon­
nucleon forces, long range of the Coulombic interaction,etc. 
It meets therefore serious formal as well as practical dif­
ficulties. For example, the convergence can rarely be proved 
or achieved within the reasonably large truncated basis. 

Usually, the simple-minded perturbation strategy is there­
tore be1ng mod1t1ed by the a1ternat1ve ~var1at1ona1, etc.) 
techniques adapted to the specific nature of the particular 
question considered (for example, Faddeev-Yakubovsky equati­
ons for the few-body energies, expS description of the struc­
ture of magic nuclei, etc.). In the present paper, we shall 
investigate the new possibility inspired by the recent exact 
solution of the one-body problem with the anharmonic oscilla­
tor (AHO) interactions using the formalism of the matrix con­
tinued fractions 1 1/ (HCF). 

The main idea of our approach consists in the possibility 
of replacing any "realistic" central force by the polynomial 
approximations 

- p 2.. m 
V(r)=Igm(rJ, gP>O, 

m=l 
p 2:. 1 (I. 2) 

with arbitrary precision, and to apply the same or slightly 
modified and complemented MCF method1 i?l for any A 2 2, or, at 
least, for the few-body systems. We shall be interested in 
the bound states only, so that the necessary value of degree 
p in the AHO force Eq. (1.2) may be expected to be reasonab­
ly small owing to the spatial confinement of any sufficiently 
strongly bound system. .-·-- •.... ~· .. ~------..... 

.:·· ~~·'tf•"::,-.,t-;~~~'i .. ): !( r\~ r~ · 
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Our belief in the efficiency of the MCF strategy is sup­
ported by the encouraging numerical results of Ref. I and by 
the consequent reinterpretation of the traditional effective­
force concept12(In connection with the present wide-spread 
possibilities to employ in partical calculations the small 
and mediumrsize computers, our methematical formalismiVusing 
the interative algorithms working with the relatively small 
matrices seems to be a highly promising technique which might 
bridge the gap between the analytical and the purely nume­
rical picture of the physical processes (cf. the popular and 
fruitful doorway- and hallw:l-state hypothesis used in a 
somewhat different contex 1 ) • From the analytic methods, 
we hope to inherit the advantages of the strict pr~ofs and 
some useful properties of the classical continued fractions 1 ~ 
surviving their matrix generalization (as an illustration, 
we may quote, e.g., Ref. 151 ). In the numerical context, MCF 
formalism (we give its short review in Sec.II) may be expec­
ted to preserve merits of the Lanczos algoritbm 161• 

One of our main conclusions is an unusual observation that, 
once the anhamonicity p in Eq. (1.2) is fixed, the increase 
of A, especially the transition to the genuine many-body prob­
lem (A =2-> A =3 ..... ) is surprisingly "smooth" from the 
technical point of view, first of all in the case of the iden­
tical particles. Because of the pedagogical reasons, we re-
vert the presentation of the material and start from the 
distinguishable particles in Sec.III where the existence of 
the very MCF solvability of the AHO A> 2 Schrodinger equa-
tion is emphasized. In Sec.IV devoted to the identical par­
ticles, neglecting the spin variables for the sake of brevity, 
we show how the group theory helps to elucidate the structure 
of the optimal basis 171 and to minimize the dimensions of 
the continued-fraction matrices, i.e., the practical requi­
rements concerning the computer capacity. In the simplest 
examples we consider as illustrations, this factor is irrelevant 
after all -we never need matrices larger than, say, SxS to 
reach quite a fair convergence of the three-bosonic ground­
state energies for the elementary model-potentials with "core". 

II. THE MATRIX CONTINUED-FRACTION METHOD 

Linear equations of the Schrodinger type may be treated by 
various methods reaching from the analytic representations 
of 1/J and E to their purely numerical approximations. The MCF 
method lies somewhere in between these two extremes and repre­
sents a reasonably flexible fomalism comprising many specific 
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approaches as special cases. In the present context, we may 
explain its structure by recalling the inspiration of our pa­
per, namely, the solution of the one-body AHO problem in the 
one spacial dimension as given by Graffi and Grecchi11(In 
this case, the use of the HO basis (Hemite polynomials) im­
plies the band structure of the Hamiltonian H.In full analo­
gy with the classical treatment of the three-diagonal (Jacobi) 
matrices161the authors arrive at the MCF representation of 
the Green function and identify its numerically determined 
poles with the AHO energy levels. 

In detail, the fomalism is worked out in Ref :' 21 and it 
looks as follows: To the partitioned HO basis~~~. m =1,2, ••. Mk, 
k =1,2, ..• , and to the related Hamiltonian matrix in the 
k -partitioned block-three-diagonal (BTD) form 

ij in 
At B, 0 . • • ) At=Ak • Bk = B k • (2. I) 

H =I a+ A~ B2 0 . . . , i,j = 1,2, ... ,Mk. n = 1,2, •••• ~ +l 1 
0 B2 ... k = 1,2_ ... 

we may assign the auxiliary sequence Fk(E),k=l,2, ••• satisfy­
ing the recurrences 

Fk(E) =(EI- Ak -Bk Fk+l(E) B~]- 1 . (2.2) 
• -~ -- -&...! -~- -I: .a...1-- __ ..__,: __ IT ! ,.. ,...,..~ • ..:.,...,...,, ,..._+- +-,.... +-'h,... 

J.llt:: .1..1..LL..LLC L&.U.I.I.\..CI.L..L~I.l. v.a.. L.J.&.._ I.U..,.'-.a...A.•~ a.& --~ -,-.-w-.--··- -- ----
initialization F~+fE) =0 of Eq. (2.2). It is assumed that 
the limit N-> ooex1Sts and defines each MCF Fk (E) in the same 
way as the classical continued fractions are defined as li­
mits of their finite approximants - they coincide with the 
one-dimensional ( Mk =I) case of the present MCF' s. 

Assuming the existence of the MCF sequence F (E)in the 
vicinity of the AHO energy levels E=E

0
, we may iaentify ((E) = 

= detF 1 (E) with the Green function of the Schrodinger Eq. 
(1.1). Moreover, the Schrodinger equation becomes reduced to 
the finite-dimensional model-space fom 

Mt ( eff) i 

0 
I (E8ij _}( tj )0 1=0, J= 1,2, .. ~;:M 1 , (2.3) 

1 = 1 
where the effective Hamiltonian is defined explicitly by the 
exact MCF expression J<(eff) =A 1+ B1 F 2 (E) B~ • 0 Once the ener­
gies E = E0 are detemined numerically as the poles of ((E), the 
projections 0 1 = <X1 1 1/J > of the exact solution on the model­
space bases ma~ be tound easily from the M1xM 1-dimensional 
linear algebraic Eq. (2.3). As a consequence, the complete 
solution of Eq. (1. I) with any H of the BTD form (2.1) may be 
written in the compact form 
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oo Mk 
r/1 =a I I 

k=1i=1 
i i 

IXk > Dk Dk+1=DkBkFk+1(Eo)• k> 1 

The normalization formula determining a, 
oo Mk 

(2. 4) 

2 i i Jlr/111 =a I I Dk Dk (2.5) 
k=1 i= 1 

follows from the orthonormality of the HO basis. 
The proofs of convergence are an important ingredient to 

the MCF formalism converting the formal solution into the 
analytical one. In the present contex, they are still missing 
even when A =1, expecially for the infinite series (2.4). At 
the same time, their numerical A=l tests1 11 have inspired our 
expectation that the favourable numerical properties might 
survive the transition to the many-body AHO cases. 

III. DISTINGUISHABLE PARTICLES 

The A=]_. A =2-body or the one -+ three-dimensional exten­
sions of Ref. 111 are trivial and need not be explained in 
detail. In a way, their further A=2-+ A=3 -+ ••• generalization 
is a matter of mere technicalities as well - .they will be 
worked out in what follows. 

A. Anharmonic Forces in the Jacobi Coordinates 
,.,,_ r! _ • . " • 1 . ... - . 

.J..u.~ J....LJ...::JL. L.t;;.\...UU.l.\...CI..l. "'::.UCi:»L.J...UU W~ lHU:::iL Lt!t:iOJ.Ve Wilen COllSJ.Qe-

ring the A~2 systems is the removal of the center-of-mass 
(ems) degrees of freedom. This step is entirely standard -
assumin~ for simp~icity that all the particle ~asses are . 
equal (11 =2m 1 = 1, 1 = 1, 2, · .. ., A) , · we may defl.ne the Jacob1 
coordinates 

( 1 = ((
1 

sint91 coscjli' ( 1 sint9 1 sinc,6 1 , .; 1 oosc,6 1 ) = 

1 - i -
= ----~(-ir 1 + 1 +.I rj ), i= 1,2, ..... A-l,A, 

[ i(i + 1) ] 2 J = 1 

(3. I) 

where rA+ 1 =0. Since the kinetic-energy operator remains pro­
portional to the sum of Laplacians in the new variables (3. 1), 
we may put - -

_ ikA(A -2 
H =- ~ (A+ H0 , · r/1 = r/10 e , · E = E0 + k A (3. 2) 

and obtain the AHO Schrodinger Eq. (1.1) in the translational­
ly invariant form 

Ho r/Jo = Eo r/Jo ' Ho 
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A-1 (A, P) 
I ~ -· + V AHO 

i = 1 .; i 

j 

:. 

(A,p) A J-1 P - - 2 m P (A) - -
V = I I I g [(r. -rj) 1 · = I gm vm <.;1 , .... ,.;A-1)' 

AHO j = 2 i = 1 m = 1 m 1 m = 1 

v ~A) = v ~A>(.; 
1 

, ... ,.; A- 1, oosw1J ) , cosw iJ' = oost9 1 oost9 j + (3.3) 

+ sint91 sint9j oos(c,6 1 -q,J ), 1< i < j <A - 1.: 

Here, r/Jo is independent of .; A and V l~g> is a genuine many­
body operator. 

The exceptionality of the HO interaction (P =I) lies es-
sentially in the removal of this many-body character of V 

since A- 1 
(A,U 2 

V AHO = g 1 A i : 
1 

.; i . 

Starting from the first nondegenerate (quartic, P =2) case, 
the angular dependence of V~6) does not drop out and we 
get 

( 3) 9 ( t- 2 t: 2 ) 2 se 2e 2 . 2 
v 2 = 2 "' 1 + "'2 - "' 1"' 2 Sln w 12 • 

( 4) 4 4 16 4 10 2 2 8 2 2 8 2 2 
v 2 = s.; 1 + 5.; 2 + 3.; 3 + 3~ 1.; 2 + 3~ l3 + 3 .;2.; 3 + 

nn. - 1t:! ... ,... n 1A 'l Q 9 

+-; ~ 1't;oos'"w 12 + ~; ~;.;;oos~w 13 + 3~2~3-cos w23 + 

16 2 8 2 2..l: l: 
+ ---.:::::.e 1.; 2.; 3 ooswt2 ooswt3 + -..=-<.; 1- .;2 1"'2"' 3 oosw 23 • 

a..; 2 a..;2 
etc. The derivation and structure of the general formula is 
rather lengthy but straightforward - we obtain 

A B-1 
v<A> = I w<B>. w<B>= I [(r -r )2 1m = 

m B= 2 m m j= 1 B j 

B-1 
I 

j = 1 

2 B-2 
I B TB_1+ I 

n=J 

B-2 
T n + (j -1) 

2 
T j _ 1 + 2B n ~ j S n B-c 

B-2 n-1 B-2 m 
- 2B(j-l)SJ·-1 B-t+2 I I. Spn-2 I (j-1)Sj-1n1, n = j p =J n =j 

2 Tn =.;n/[n(n+1)], n=1, ... ,A-1, 

~J = .;
1 

.;Joosw
1
J /[ij(i+1)(j+.t)].v

2
, 1_s:i <j -s_A-1, m=1,2, ... ,p 

and observe that the complexity of the explicit V~H~ pre­
scription increases rather quickly with p. ·Nevertheless, the 
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corresponding lengthy formulas may comfortably be generated 
for any fixed A and p by an appropriate symbolic-manipula­
tion language algorithm on the computer. 

We note that the general structure of V~~~ characterized 
by the explicit presence of the angular variables resembles 
strongly the case of the noncentral anharmonic potential 

. . f 181 f A I h. . h solved by the MCF techn1que 1n Re . or = . T 1s 1s t e 
main inspiration of the following paragraph. 

B. Unsymmetrized Oscillator Bases and the MCF Solvability 

Preserving the full analogy with the noncentral modifica­
tion181 the one-body AHO, we may get rid of the angular va­
riables in the next, still entirely standard step using the 
"multipolar" partial-wave decomposition of tft. Of course, when 
A >2, the orthonormalized and complete set of the spherical 
"A -I - polar" harmonics II e I> is not unique and may 
be defined with the different angular-momentum couplings/9/. 
In the simplest arrangement 

e-A-1 + iA-2 = >:A-2· -;.i+1 +~ =Ai. i=A-3, ... ,2 • .\2+e1=x:. (3.4) 

of the vector-addition scheme corresponding to the composite 
index (quantum,numbers) 

If I= H I A-2 = ceA-1 ~ A-2 (A A-2 H A-3 (A A-3 > ... e 1 LM) 

we obtain the harmonics (0; = (oose; , ¢; )) 

<01 02 ... OA-til £1A-2> = 

~ C LM C A21L2 
mr·•:mA-1 f1m1A21L2 £2m2A31L3 

AA-21L A-2 
Ce A-2D A-2£ A-1 rnA-{ 

IL2 ··· IL A-2 

X Ye m (01'¢1) ... Ye m (OA-1 ,c/JA-1 ) • 
1 1 A-1 A-1 

(3.5) 

LM 
where C em A,J, and Yem (0, ¢) denote the standard Clebsch-Gor-
dan coefficients and the spherical harmonics, respectively. 
Another coupling pattern we shall need below, 

te I= 1£ lm = eA-1 ··· em+2 (Am+2 )em+1 em (A)(Am)fm-1 LM 

may be obtained when we replace the m+1-th and m -th items 
in Eq. (3.4) by the vector compositions 

f -m+t+fm=A A m+2 +A =Am 

The overlap with the original states coincides with the so­
called Racah coefficients 

6 

.. 

J 

.. 

<If I A-2 !If I m > = (-1) Am+2 + em+l + tm + Am 
X 

~ {A fm+ 1 Am+1 } 
(3.6) 

x(2\m+l + 1) (2\ + 1) ~ m+2 
tm Am A 

and is proportional to the 6-j symbol { : : : } . 

For any coupling scheme, we introduce the partial waves 
¢tn =<lelli/lo > and derive the radial form of the 
Schrodinger Eq. (3.3) in a usual way. Since the action of 
the kinetic-energy operator on the harmonics llfl> is 
well known, the detailed form of the radial equation depends 
on the action of the angular variables s 11 • When we identili 
OOSCt.lij with the bipolar function -4rrdlj Oj j110 0 >/y3 and 
employ Clebsch-Gordan series 

<0 10 2!11 0 0><0 10 2 !f 1f 2 AIL > 

.../S 1 IL+V ~ ~ 
=- ~ (-1) ( t 1 + 1 -IL) ( f 2 + 1- II) X 

4rr IL• II =0 (3. 7) 

i £2 +1-211 e2 1} 
X <01021 f1+1-21!, f2+1-2v, A~t> v. , .... 1 - ?.. ~ 

' ... .1. • 

it is not difficult to specify the decomposition of sij into 
the finite number of !It' I > ' s in accord with the trian-
gular inequalities, fi i = fi j , f 1 j ± 1.: 

Concerning the partial-wave representation of the opera­
tor flo , 'We may therefore infer that the multipolar basis may 
be ordered in such a way that H0 acquires the block-three­
diagonal operator form resembling Eq. (2.1)- an example is 
given in Sec. III C below. 

Comp.leting the analogy with Ref.181 , we introduce therefore 
the A-bodyHObasis l<n>lfl>, <n>=(n 1,n , ... ,nA_ 1 ) 
as the multipolar harmonics Eq. (3.5) multiplied by (A-1)­
tuple products of the radial A=! HO states 

<elnf >= (-l)n[ 21\n+t)_]~ e~2/2gf Le +~ (g2), 

f'(n+2+312) 
a 1 - dn -x a+n 

L (x) = e x -- e x /nt 
n ~ 

where L:(~ are the classical Laguerre polynomials. Since 
they satisfy the fundamental identities 1101 

(3.8) 
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a-t a a· L 
0 

(x) = L
0

(x) -L 
0

_ 1(x), 
(3.9) 

a+ 1 a a L (x) =(n+a+l)L (x) -(n+l)L +1(x), 
n n n 

the action of the radial variables Ti on anyHO state Eq. (3.8) 
is similar to the action of the kinetic-energy operator -
it generates two other new states with n; = ni ~I only. At the 
same time, the action of the ~ -linear variables Sii is ac­
companied by the f -shift - hence, Eqs. (3.9) remain to be 
applicable. This is of fundamental importance here - the 
action of the full operator Ho on any state \<n>121> ge-
nerates always the finite number of the similar states, i.e., 
the matrix representation ofHij coincides with BTD Eq. (2. I) 
due to the orthogonality of the HO basis. This completes 
the proof of our main statement, i.e., of applicability of 
the MCF technique of Sec. II to any A~ I AHO problem. In de­
tail, we define the Green's function G(E) = detF 1(E), its 
poles E=E 0 and the HO projections {\(E 0) of.;,0 , i.e., the 
exact solution of the AHO many-body Schrodinger equation, pro­
vided that all the corresponding N ... "" limits exist. 

In accord wilh Ref. IV we may specify the optimal ordering 
of the basis states. This generalized Lanczos (GL) construc­
tion leads to the minimal dimensions of the blocks Mk and 
-.- .......... ,..,-...3 ........... C~1 1 -~--- • 
r~~---~~ -~ ~~~~~~v· 

(a) We choose any finite "model-space" subset of the HO 
\ < n > le I> states and denote its elements by the kets \X~>, 
m= I , 2, ••• ~1 1 , 

(b) The action of the Hamiltonian H0 on this model space 
generates the finite superpositions of the new "doorway" sta-
tes \<n'> 1 £'1> to be denoted as \Xm>, m=l,2, ••• M2, 

(c) Repeatedly, we re-numerate the full HO basis in such 
m a way that each group \Xk+ 1>, m=I,2, •.• Mk+ 1of the k-th 

"hallway" states contains precisely the new states 
\<n">! f"l> generated from the old group \X~>, m =1,2, ... l\1k 

by the action of H0 . 

C. The Three-Body Illustration 

In the simplest case with with A =3, p =2 and L =0, where 

(-l)f Yz 
<fl 10 2 \f 1 f 200>=8e f -----(2f 1 + 1) Pe (oosw 1 ~ 

1 2 477 1 

and Pe (x) are the Legendre polynomicals 19• 101 , the partial-wave 
expansion of .;,0 becomes extremely simple and reads 
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;\ 
'J 

) 

r/10 
Yz 

I <f+Yzl_ cPf(~1'~2) Pe (oosw12). 
f ~1 ~2 

(3. I 0) 

We shall further require the r 1 ... r 2 symmetry of the wave 
function which is equivalent to the even parity of the sum­
mation index f in Eq. (3. 10). Owing to simplicity of this 
example, the radial Schrodinger equation 

H oo- E ~0~ ;~: 0 ... ) ( ~. (( •• (,1 

~0 ~;~: Ho2-E ~ 2~12e: ... c1> 2 <e 1 • e-2> I = o, 

0 ~2e~e ~ Ho4- E ... c/>4<e1.e-2> 1 (3. II) 

2 2 2 

Hof=ae~1~2+ .I[-
1 = 1 

~ + iJ!.~!l + 3g ~.2 + !.g e-.4]' 
ae~ e~ 11 221 

I I 

U+1)(f+2) ae = 6g (1+ 1/(4f-2)(4f +6))' ~f =6g -----------=--·--.,...,.. 2 2 (2h 3)(2f +l)Yz (2f + 5) Yz 

resembles strongly that of Ref. 181 
- the abbreviations ae and 

~P denote also here the normalized matrix elements 

<f\3g2(1+ 2sin 2w12 )\ e > and <e l6g2oos 2w121 e + 2 >, 

respectively. 
Let us admit that the third particle is distinguishable 

from the remaining two bosons so that the Pauli principle 
is satisfied. In a formal way, we may formulate the following 
PROPOSITION. 

Assuming that the auxiliary MCF quantities areconvergent, 
Eqs. (2.3) and (2.4) with Mk= k(2k-1) represent the exact 
solution of our three-body quartic AHO example. 
PROOF 
Denoting the basis states by In 1' n2. e >, the matrix Ho is 
three-diagonal in f and its infinite submatrices 

Hfrn~ 2 +2' Hee~n 2 +t • HH+2n 2n2 and Hefn 2n2 
contain one, three, three lower and five nonzero diagonals, 
respectively. Hence, each HO state is coupled to at most 
5+2x3+2xl+2x3x3=31 other HO states. We may choose the one­
dimensional model space with ]X!> = I 000 > and generate the 
GL ordering with M1=1, M2 =6, M3 =JS, .•. , in accord with 
Sec. III B. 
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IV. IDENTICAL PARTICLES 

A. Action of the Pauli Principle 

The complete set of the commuting operators H0 (Hamilto­
nian), L2 (square of the full angular momentum) and Lz (its 
projection) characterized an intrinsic state ~0 of the A­
body system provided that the particles are distinguishable. 
The more interesting cases (identical bosons or fermions, 
without spin for simplicity) necessitate an addition of the 
projectors ~i±) (symmetrizer or antisymmetrizer, respec­
tively). It 1s a matter of simple algebra to verify that the 
symmetrization antisymmetrization operator ~~~-) may be 
defined by the recurrent formula 

~(±)=W(±)w(±) ... w<±>/A! (4 I) 
(A) (A) (A-1) (2) • 

w (±) = 1 ± w (±) p 
(A) (A-1) (A) 

w (±) = 1 ± p ( 2) 
1 

in the bosonic/fermionic case. Here, the operator P(i) corres­
ponds to the interchange of the neighbouring particles f 1_ 1 
and f 1 • · 

The most imp~rtant property of factorization (4.1) is the 
simplicity of its Jacobi-coordinate representation. First, 
the trivial algebra implies that P (m + 2) will be represented 
by the (pseudo) orthogonal and real symmetric transformation 

(- ) ~~ 

~~+1 (
oos¢\n sincf>m) (~m )· <X>Bcf>m = V(m+1) 

sincf> -ooscf>m ~ m+1 m 

(4. 2) 

involving just the two coordinates <(m= (' = 0 for m =0). The 
quantities cPm in Eq. (4.2) are the "Euler!? angles in the gene­
ral ratation 

R(rt ->ti+J) =P(i+l)p(i+2) .... P(I+j)p{i+J-1)"'p(l+1)• 

Next, the elementary rotation Eq. (4.2) may be re-interpreted 
as the "unequal-mass" transition from the "ems" coordinates 
~m = R, (m+ 1 = r to the "one-particle" variables r 1= ~(o and 
r2 = (~+1' If we change also the coupling of the angular momen­
ta in accord with Eq. (3.6), then Eq. (4.2) degenerates to 
a transformation of a certain two-particle subset of the full 
HO basis only. Of course, the P (m+ 2) matrix may be represen­
ted by the Moshinsky brackets I1V < ... / ... >0 with the mass 
ratio D = tan 2 cl>m 

10 

<~'In' m m e~><~~+11n~+1e~+1 > < .... n ~ n~ + 1 ... II ~ ' I m > 

f I. f <nm+1 2m+1 °m em; i\.ln'm e~ n~ + 1 f~+ 1; A> 1/m(IH2) X 
0 m m0 m+1 m+1 

x<~m lnmfm><~m+ 1l 0 m+tfm+1>< ... !lm!lm+l ... 112 I m > (4. 3) 

so that the complete symmetrization/antisymmetrization matrix 
~(±)) must remain diagonal with respect to the energy quantum 

(A A-1 A-1 
number N = I. (2n. +f.) and the parity of I. f .. As a 

i = 1 I I j = 1 I 

consequence, the BTD structu7e of Ho1~urvives its symmetriza­
tion/antisymmetrization ~~~)-)H 0 ~~~) -)= H os/a • · 

B. Symmetrized Oscillator Basis 

Let us start this paragraph with a short summary. To the 
many-body Schrodinger equation with the AHO two-particle in­
teraction we may assign the MCF solution as described in 
Sec.II. This is a consequence of the BTD structure of the 
Hamil toni an H or H 1 in the unsymmetrized GL -ordered HO 

, 0 OS a 
bas1s. 

Unfortunately, the Eq. (3.5)xEq.(3.8)- product construc­
tion of this basis is unable to reflect the singular charac­

rr T,.., nrho,... T.T,.,,...,.1... +-1.....-.. ~~ ..... .: ............... & u tPr nf ~h~ nrn;~~rnrc 
\dJ --- ------ .. ----· --·- -----·· -- "os/a 

on l<n > If I> generates a few independent new states only 
which must be represented as superpositions of a large number 
of the unsymmetrized products I< n > If I>. In this way, 
Hosla in the form of the original BTD matrix Ho multiplied by 
the BTD matrix ~14) will be characterized by an inadequate 
increase of the block-dimensional M k for higher k' s.: 

The key to the. problem lies in th~ symmetrization of the 
basis itself, IX~> -l<n> If I>-> IX~>- ~(A) l<n>l e 1>. 
In the more general setting, we must therefore construct the 
basis states as such superpositions of I <n > l e I> , s, ·Which 
possess, besides the fixed total energy N and angular momen­
tum L also the fixed quaptum number [f] (Young tableau) characte­
rizing the irreduciable representations of the permutation 
group. We may emphasize that the fixed symmetry-pattern [f], is 
the most important ingredient in the modification of the basis. 
It has two aspects: 

(a) We may simplify the evaluation of the matrix elements 
of Ho in the way which is standard I 12,131 and considers each 
particular component V(r 1 -ri) of the potential v<tf6 sepa-

rately. Formally, the commutation of H0 and ~(A) is taken 
fully into account. 

II 



(b) We may simply extend our discussion to the particles 
with spin. 

Of course, Ho is diagonal with respect to N, L and [ f], 
so that the new symmetrized basis will be more adequate for 
our purposes. There arise some new technical problems with 
the complete classification and algebraic construction of 
this basis. This was discussed by Kramer and Moshinsky 171 in­
troducing further quantum numbers (~) and A numbering the 
representations of the groups SU(3) and 0 A.-l' respectively. 
Concerning the general case, we omit the details here. 

C. The Three-Body Example 

For p =2 and the three identical spinless bosons in the 
s -state, each old group IX~>, m=l ,2, .•• Mk as specified in 
Sec. IIIC contains k different fixed-energy subgroups with 
N = 2k- 2, at, .... , 4k- 4. · The partition dimensions of the 

· d <+> (+J k k+t k-t I symmetr~ze operator e1( 3) H0 e1( 3) , Mk = 2 (2 -1)(7.~ -5) 12-
grow extremely quickly even for the low cutoffs (M 1 =I, M2 = 
=21, M3 =230, ... ),due to the non-diagonality of e1{~{. Even 
the fixed-energy re-partitioning with Mk=k(2k-1)(4k-1)/3 
or, alternatively, Mk = k(2k+ 1) (4k + 1)/3 is rather inef-
ficient (Ma=l40 or 91, respectively). At the same time, the 
Kramer-Moshinsky 171 A =3 classification 

l!~.'fl'\ ,~ .... r#.,_ - • , " ••• ({n10)(n20) 
1"~\'\f-LJ~•~IJI.l .I.J / = .W llltl~l~ L2.1 .. HYI/ \ e 

n1 f 1 n J 2 1 f 2 

A/2 
X d(n C~)/2,A/i7T/2) 

( -\!) \ 

L ) 
(4.4) 

with the Wigner function d and the SU(3) Clebsh-Gordan coeffi-
cients ( : : I : ) appears to be complete and sufficiently 
simple for the practical purposesi1V. Its introduction redu­
ces the block-dimensions Mk significantly below the values of 
Sec.III (cf. Table 1). 

The nontrivial optimalization of the new basis is still 
possible since, rather surprisingly, Ho becomes diagonal with 
respect to the rotational quantum number A, which was origi­
nally introduced for the purely classification purposes. In 
this way, we obtain the form of the symmetrizedHO basis 

IX~>= IN(~)LMA[ t'J> 

with fixed L =0, [ f] = [ 3] 1 A =0 and with k =integer part to 
(N + 6)/4.: In this basis, the numerical test of the MCF con­
vergence of the MCF representation of the Green's function 
det F 1 (E) was performed. 

12 

Table I 

Block-dimensions Mk(k=l,2, ... ) of H08 in the symmet­
rized oscillator basis 

maxN L=O [ f] =3 A =0 A =6 

p =2 P=3 p =2 p =3 p =2 p =2 

0 
2 
4 6 3 3 
6 13 6 
8 17 7 5 
10 3 
12 33 43 12 16 7 
14 5 
16 54 18 9 
18 91 30 7 
20 81 26 II --

For the monotonous potentials (g 1 > 0 and g 2 >0), the con­
vergence proved to be extremely rapid. From the physical point 

nf viPw_ ~imil~r nn~Pn~i~l~ 

E 

11. 

1.2 

10 

1.6 

1.1. 

1.2 

1.0 

2 I. 6 8 hw 

are, however, less interesting 
than the more realistic models 
of the nucleonic forces with 
the repulsive core. A priori11o/ 
our choice of the core-simula­
ting values of g 1 =- g2 =-10 
will worsen the convergence 
and is therefore well suited 
also for the illustration pur­
poses. The sample results is 
presented in Table 2 and the 
Figure and shows that the ener­
gy calculations remain to be 
easily managenable even on 
the small computers. In Tab-

Fig. Scaling behaviour of the 
ground-state energies for the 
two- and three-body quartic 
oscillator and different maxN. 
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Table 2 

Sample of convergence of the ground-state energies 
for three bosons and quartic forces 

hw [MeV]. 2.4 6.5 7 .o 7.5 9.0 

maxMk 
I 27.355 5.489 6.376 7.250 9.889 
2 8.345 1.617 2.015 2.484 4.100 
3 3.286 0.945 0.993 1.104 I. 797 
4 1.712 0.896 0.895 0.899 1.045 
5 I. 287 0.883 0.853 0.884 0.897 
6 I. 217 0.882 0.882 0.882 0.883 
7 I. 189 0.882 0.882 0.882 0.882 

le 2, we demonstrate the sufficiency of the small-matrix algo­
rithms to reach the convergent results. The Figure illustra­
tes in more detail the typical core-induced oscillatory de­
pendence of energies on the variation of scale ("spring con­
stant") of the HO basis and its smoothing for higher cutoffs, 
and also the sim1larity of this feature in the two- and three­
body systems. 

V. CUNCLU~lUN~ 

In the one-particle quantum mechanism and its applications, 
the AHO problem is an old and traditional subject testing 
the practical algorithms as well as the various theoretical 
ideas. The t1CF solution of Graffi and Grecchi is one of the 
promising approaches to its A=! (or A=2) form. In the many­
body context, the exceptional character of the HO force is 
even more pronounced and the AHO corrections spoil the Schro­
dinger equation more profoundly. Nevertheless, we have shown 
that for A >2, the full formal analogy with A=2 case may be 
preserved. In particular, we have found that both the techni­
cal (cf. slow increase of dimensions Mk) and numerical (rate 
of convergence,etc.) aspects of both the two- and three-body 
AHO systems proved to be comparable from the practical point 
of view. We may therefore expect that also some more realis­
tic models (with A >3, p>2, including spin, isospin, tensor 
forces, etc.) will remain to be exactly solvable by the pre­
sent MCF technique. 

Of course, for very high A's the numerical performance 
of the MCF formalism becomes less efficient since the BTD 
blocks grow too quickly. Nevertheless, preserving even there 

14 

the AHG-model description of the microscopic interaction, the 
iterative character of the MCF representation of the hallway 
effective Hamiltonians and, in particular, of the Green func­
tion F1 (E) seems to remain at least a useful guide for 
making approximations. Preliminarily, their character might 
resemble either the fixed-point techniques of Ref.

151 
or some 

sort of averaging of the type employed in the reaction-theory 
context 131• 
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3HoHMn H., HaHnMHr n. CMCTeMa MHOrMX ~aCTM~ c aHraPMQHM~eCKMM E4-82-76 
B3aMMOAeikT8MeM 

PaCCMOTpeHa B03~HOCT~ nony~HMA 6wcTpo CXO~XCA ~HMH /Co6CT8eH­
HWX 3Ha~eHMH M co6CT8eHHWX ~YHK~MH/ MHOrO~aCTM~HOrO ypa8H8HMA ~PBAHHrepa. 
0oKa3aH0 0 ~TO 8SaMMOAeHCT8Me aHraPMQHM~HOrO OC~KnnRTOpa V(~ • ltfl+ eer4 
AOnycKaeT sanMC~ peweHMA ypa8H8HMA ~PBAMHrepa 8 8MA8 Henpepw8HOH Ap05M 8 
MaTpM~HOM npeACTaBneHMM. RoKa3aHO, ~TO MCnon~S08aHMe TpaHcnA~MOHHOrO-MH8a­
pMaHTHOrO 6aSMCa MHOro~aCTM~HWX 80nH08WX ~YHK~MH 0 xapaKTBPMSYeMWX K88HT08W­
MM ~McnaMM HenpM80AMMWX nPBACTa8n8HMH rpynn 80(8) M O(A -l) /8palll8HMA 8 A -1 _, 
MePHOM npocTpaHCT8e/ pe3KO COKp-.aeT pa3MePHOCTM MBTPM~ M C~8CT88HHO ynpo­
~aeT KOHKP8THWe pac~eTW. ~KTM8HOCT~ npeAnaraeMOrO ~ero MeTOAa ~HMA 
MHOrO~aCTM~HOrO ypa8HeHMA ~PBAMHrepa npoAeMOHCTPMPQ88Ha H8 DPMM8P8 A•3 M 
V(r) m -r2 + r 4. 

Pa6oTa 8WMOnHeHa a na6opaTOPMM TeopeTM~ecKoA tMSMKM OMRM. 

Coo&leHMe 015l.eAMHBHHOrO MHCTMTyTa AAePHWX MCCneAOBaHMA. AYC5Ha 1982 

Znojll H., Hajllng L. The Hany-Body Anharmonic Oscillators 
and the Hatrlx Continued Fractions 

E4-82-76 

For the class of the anharmonic two-body forces, we recollect and show 
In detail how the A-body Hamiltonian may be converted Into an Infinite 
block-three-diagonal matrix In the properly arranged translatlonally Inva­
riant oscillator basis. This generalizes· the recent reformulation of the 
anharmonic one-dimensional A·1 problem by Graff! and Grecchl. As a conse­
quence, the exact Green function and all the projections of elgenstates of 
the microscopic Schr6dinger are expressible In terms of the matrix conti­
nued fractions, the convergence of which Is demonstrated by the simple 
three-body example. In this ~ay, the nonperturbatlve method of solving the 
many-body bound-state problem Is established. Its Iterative alteration may 
be based on the systematic polynomial approximations to arbitrary realistic 
potentials and is applicable to both the identical and distinguishable 
particles. 

The investigation has been performed at the Laboratory of the 
Theoretical Physics, JINR. 
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