


1. Introduction

Over the last years a large number of investigations have de-
monstrated the effectiveness of the time-dependent Hartree~Fock
{ TDHRF) approximation/1/ as a theory of large amplitude nuclear dy-
namico (oce LUor example refs./2"4/ and literature cited therein).

Beoides the classical {deterministic) character of the TDHF
initial value problem the emisaion of the two-body correlations cau-
sed by the residual interaction is one of the main disadvantages
of the theory. Furthermore, ordinary TDHF as well as such extended
mean~-Tield theories cannot deal with realistic nucleon-nucleon forces
due Lo the strong repulsion between the particles at short distances.
To avoid diverging matrix elemenis and to consistently resum certain
higher order terms of the full many-body problem the bare interac-
tion ioc replaced by an effective interaction commonly taken in the
phenomenological Skyrme form/2"4/

Our aim is to propose an extension of TDHF which, in som+s appro-
ximation to be discussed below, includes two-body correlations on a
level of microscopic reversibility relating them to realistic nucleon-
~-nucleon forces. Because we are not able to realize such a program
with respect to the full range of the two-body potential we restrict
ourselves to the conasideration of strong short-range components of
the potlential on a level of correlations only between nearest neigh-
bours. Wle consider higher order effects as well as long-range cor-
relations only to the extent to which they contribute to the mean
tield which, of course, is not the same as in TDHF because of the
explicit description of short-range correlations {SRC) in lowest
order.,

The mean-field theory iteself relies on the astatement that up to
a certain energy, e.g.pin a heavy ion reaction, the Pauli exlusion
principle effectively suppresses LRC's, On the other hand SRC's being
connected with very large momentum transfers up to several Fermi
momenta are not influenced by the Pauli principle at all and essen-
tially contribute even to the nuclear ground state energy (for a
recent example sce ref_/S/). Such high-lying components in the nue-
leonic momentum distribution cannot be reproduced by any determinantal
wave function 6/.




Therefore, it seems to be an interesting task to include SRCrs
from the outset and to look for its dynamical realizations in the fra-
mework of the proposed picture.

In the present paper we outline an extension of the mean~field
theory starting from the method of correlated basis functions (CBF)
/7"9/, which provides a natural framework for the description of
strongly interacting Fermi systems, A more detailed version of this
work is given in ref. 10/, In sect. 2 we derive the extended mean-
field equations, Sect. 3 deals with the corresponding correlated sta~
tionary problem and the choice of appropriate initial conditions,

The one-body density matrix of the correlated system is evaluated in
gect. 4.

2. BExtended Mean-Field Equations

We gtart with the choice of time-dependent many-particle trial
wave functions as
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with ¢=<¥/+) and 4 being the A-particle entisymmetrizer. F is

a symmetric, trenslationally invariant correlation operator having

the cluster decomposition property/7/. The single-particle model sta-

tes ¢; are required to reflect properly the dong-range order of the

nuclear system while f has the task of incorporating the most

eggential dynamical correlations, the short-range correlations in our

cagse., The choice of a single determinantal configuration in eq. (2.1)

does not exhaust the full power of the CBF method/7/ but reflects

our approximation that LRC's are considered only via the mean field.
The time-dependent operator F 1is chosen in the form
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according to a local central symmetric two-body potential
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with fz being the projector onto the l-th partial wave of rela-
tive motion of nucleons 1 and j at distance ry; . The real,
non-negative correlation functions é(r) are to be small (or zero)

inside the small- » core region and approach unity at large r
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We rewrite the ngclear Hamiltonian identically as

H=Zew+2 vip= Z H, (i) + % Vieg Cij,t) (2.4)

introducing an arbitrary time-dependent one-body potential U(:,t)
and a time-dependent residual interaction b/res ('5,t) as

H,G)= £+ UlLe) (2.5)

Vies Cint) = V0ii) = sy [ UG8 + UG )] (2.6)

In general, if choosing an unreasonable form of the potential u R
the residual interaction defined by eq. (2.6) is of very long range.
We wish, however, to realize our approximation to include LRCts !
only via a certain mean field as

Vies (1, 2) = 0
2.
e e dy (t) (2.7)
and, consequently,
, TLe (r,t) = (2.8)
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with range parameters dc(}) to be determined below, but certainly
small (In principle, we could choose them at will depending on what
part of the bare interaction we want to consider explicitly).
Thus, we have to consider {(J to be the time-dependent poten-
tial which comes out in a solution of a corresponding TDHF problem

it f =[5 P2 UTP; (2.9)

with readjusted Skyrme force parameters.

We now proceed to the derivation of evolution equations for the
single~particle orbitals ¢; and the correlation functions fk in
a self-consistent manner invoking a least action principle, In this
approach one seeks solutions of
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We rewrite the ngclear Hamiltonian identically as

H=Z e +x vip= Z H, (i) + Z< Vieg Cij t) (2.4)

introducing an arbitrary time-dependent one-body potential U(:,t)
and a time-dependent resmidual interaction b/res ('i,t) as
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the residual interaction defined by eq. (2.6) is of very long range.
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Thus, we have to consider (J to be the time-dependent poten-
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Before performing the variation simultaneously with respect to the
functions @, and ¢ we have to simplify the very complicated
expression (2.11).

A first step in this direction is the restriction to a consi~
deration of correlations between nearest neighbours onlj, requiring
that higher order effects, i.e.,correlations between distant neigh-
bours, which are known to have a wdight of the order of 1C% in the
nuclear binding energy 5 , contribute only to the mean field read-
justed in the sense mentioned above. Thus, we do not neglect them
at all but consider them in the same fashion as the mean-field theoxy
does in all orders. For finite nuclear systems traditional cluster-
-expansion procedures can provide the framework for evaluating mean
values of any operator ¢od= <¥ 10[/¥> with CBF's (see for example
ref.” T/ and references cited therein).

We apply the so-called Factor-Aviles-~Hartog-Tolhoek (FAHT) ex~
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pansion in lowest order to eg. (2.11) arriving at (compare

ref./10/)
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with d(t)= mgxidelé)g . The last two terms in eq. (2.12) would
cancel if d(t)>»0, i.e.,we would arrive at the "TDHF Lagrangian".
For nonvanishing values of the parameters df¢) eq. (2.12) can be
interpreted as a subtraction of the mean-field contribution of two
particles at small distances combined with the addition of the
corresponding correlated term, The energy funciional obviously has
the same structure.

Now, for simplicity, we assume a spin-isospin symmetric system
and perform all the spin and isospin sums in eq. (2,12). In the
following we denote the remaining spatial quantum numbers by . ¥
etc. The appearing spatial symmetric and entisymmetric uncorrelated
two-~particle wave functions (mv> andmv-VYm7 as well as the com-
bination U(E,t)+(j(a,t) appearing in eq., (2.15) we decompose igto
a Taylor expansion series around the center of mass position

R=2(P+7) of the two particles of relative distance F=r-T .
Por a fixed R  the integration over F in eq. (2.12) involves only
single-particle orbitals ¢, , $. in a small volume of radius Fd(¢]

centered at ﬁ » In this region the functions ﬂ' change rapidly
from zero to unity bub the mean field as well as the functions ¢,
should change rather smoothly, Therefore, it should be & valuable
approximation to truncate the Taylor expansion series at some low
order , In any practical case one should examine very carefully the
question which order is reasonable, In the present paper, to demon-
strate the structure of the equations of motion, we retain only the
lowest order terms of the Taylor expansion, Higher order terms do
not add qualitatively new aspec}s but may be important in the quan-~
titative sense 10 . The main advantage of the truncation of the
Taylor series at finite order is to have an explicit separation of
the £ and dependence at small distances so that one is able
to perform an integration over the angles Fin eq. (2.12).

Performing all these operations we arrive at an approximate
expression for the Lagrangian used in the following
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Here the index ,,” stands for the relative s -wave which is the only
partial wave remaining in our lowest order considerations after the
action of the projectors l% (see eq. (2.2)) in eq, (2.12). In eq.
(2.21) we have introduced additional Lagrange multipliersé:v which

\



have to restore/1o/ the conservation of the single-particle wave
function overlap matrix (s«iv) in time

- (2.16)
d cpivr=0
or, if starting with orthonormal orbitals ¢, at time £=0 ,
2,
Lpalvd> = S/W (2.17)

at any time ¢ .
Starting from egs. (2.13)-(2.15) a simultafleous variation with
respect to the functions f, and ¢ with

Po(t)= 2 Re 7, (t) (2.18)

following directly from eq. (2.15), gives
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Eqa. (2,19) formally resemble a Schrodinger equation with an
"energy" given by the coefficient -h]»-?i(ehqa.ﬁm determined mainly
by the single-particle orbitals (eqs. (2.15)), which in turn are coup-
led to the correlation function f. according to eqs. (2.20). The
first term on r.h.s, is a correlational kinetic energy term while the
second term represenis a kinetic energy term connected with the un-
correlated motinn of & pair. In higher order & cross term would appear,
the form of which, however, crucially depends on the truncation, The
potential term consists of two parts: the bare potential in the s -
channel and a time~-dependent potential which is determined by the
mean field (compare eq. (2.15)). For a system of only A=2 particles
the second potential term vanishes, as it should, because its rela-
tive motion does not proceed in a medium of some other particles,
Eqs. (2.19) are, however, not to be viewed as an eigenvalue problem
but rather as gecond order differential equations in the coordinate

r with two boundary conditions,

It can be shown that one of the two independent solutions of
eqs. (2.19) is singular at r=# (F=0 for a soft-core potential),
The second, however, is well behaved and the function fe as well
as ite first derivatives are non-negative in this point/1o/. There-
fore, one can gtart the numerical integration at r=r, (or 0) with
any small value of the quantity £, . According to the behaviour of
the potential it will then increase rapidly with increasing r and
reach a certain point /=d,¢8) with £, Cr=d.(¢),£)0 . This point
gives us the definition of the time-dependent range parameter d. (%) ,
which poasibly does not vary very strongly with time., After that
we renormalize the function f.(nrt) to be equal to unity at this
point. Such a procedure is equivalent to the boundary conditions

folr=clatt),t)

i

1 (2.23)

u

fo'(r=clofe) t) =0 (2.24)

which complete eqs. (2.19).

It should be mentioned in passing that by the outlined proce-
dure the relation

o fo(rt)xs -1 (2.25)

is8 automatically fulfilled. It is equivalent to not allow the attrac-
tive part of the potential to have a large effect on the form of the



correlation function f, , i.e.,it supresses a corresponding "over-
shooting" before it asympitotically reaches unity. However, it has
been shown that at least in the case of nuclear matter and for not
too small densities the constraint (2.25) is either fulfilled or the,
deviations are small/12/. On the other hand by obeying the relation
(2.25) we get rid of some time-dependent version of the so-called
"Emery Difficulty"’/ 12/,

From egs. (2.21), (2.22) it can be easily shown that the evolu-
tion equations for the single~-particle orbitals {2.20) lead to TDHF
(eqs. (2.9)) in the limit d,(¢)»0, The inclusion of higher partial
waves yields additional terms of the type i; and fﬁu in the r.h.s.
of eqe. (2.20) with a structure similar to jl s o  *

Finally, it is useful to rewrite eqs. (2.19)-(2.22) in the form
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collecting all time-derivative terms in the l.h,s., with an obvious
definition of the "effective" Hamiltonian Heye » Then, the energy
functional of the correlated system within our approximatiors can
be written as

T= CHOTEHIFE = 5 <91 Hee 19
=H 508,143, F]

which can also be extracted directly from eq. (2,13) omitting all
time derivatives coming from 5<PI¥7? in eq. (2.11).
Returning to the philosophy ocutlined at the beginning of this

(2.27)

gection we summarize the scheme of the proposed method as follows:

i) Adjust the parameters of the effective two-body interaction to gross
properties of the nuclear system under consideration using the ener-
gy functionel (2.27) of the correlated system in the statiocnary
case. This probably requires a several times simultaneous solution
of a corresponding HF problem since its solution enters eq.{2.27)
via the HF mean field defined by the HF orbitals Y .

ii) Perform a TDHF calculation of the process using these read-
justed parameters to get the time evolution of the mean field
appearing in egs. (2.19) and (2.20).

iii) Solve egqs, (2.19), (2.20) with the boundary conditions (2.23),
(2.24).

To complete this section we emphasize that the total energy of
the system (eq. (2.27)}) can be shown to be conserved exactly by
derivation (see ref./1o/).

3, Stationary Case and Initial Conditions

Starting with the solution of the stationary HF problem

£, (Fie) = Po(F) exp§-L eJ7¢8 (3.1)

it can be straightforwardly seen that an ansatz

$u(Fe) = Po(Mrexp § -k avtd (3.2)

makes the effective Hamiltonian f{e;, stationary and the function fe(rnt)
becomes a time-independent function £, {r) which in turn is defined
now by

~
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The single-particle energies d, of the correlated system introduced
in eq. (3.23 are connected with the eigenvelues &, an%}the eigen-
functions ¢J of the stationary effective Hamiltonian Heff

ge“: ‘Pv(?) =&y CPv(?) ) (3.5)
via
~ ?}A >, 7 oy T 2
Ev=ay-do 2 (a,+a/,)fdk[¢ﬁ(K)¢,,(R)’ (3.6)
/A=1 .

A
a8 can easily be deduced from eq. (2.26) with =0 ,



Thus, the stationary single-particle functions &:(F? as well as
the stationary correlation function i:(r) are found by simultane-
ously solving eq. (3.3), diagonalizing the stationary effective Ha-
miltonian Here and inverting the algebraic system of eqs. (3.6).
In order to propose appropriate initial conditions for solving
the "correlated TDHF" equations derived in sect. 2, we check now,

whether a Galilean translation of the stationary solutions é;(in,

i:(r) is a solution of the time-dependent problem (2,19), (2.20).
Introducing

PRy P (P-e) exp§-i[el s gvit -mV P} (3.7)

NGE E(P-\-”'t)exP$~-;£[(a.,+%1v‘)f_mVPJg (3.8)

it is easy to show that
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fe’ (1) B
( ,Z:’u) - ’\; ’ (3.9)
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Ry

Introduction of eqs. (3.9)-(3.11) into eqs. (2.19) immediately yields
£57(rt) = fu Cr) (3.12)

which can be shown to hold also if higher partial waves are involved.
A somewhat more tedious but simple procedure shows that by inser-
ting eqs. (3.7), (3.8), (3.12) into the time-dependent equations
(2.20) and making use of egs. (3.6), one s led to the stationary
equations (3.5). Thus, we have shown that initial conditions

b, (Ft=0)= §, () expytL mvFg (3.13)

fFolre=0)= fotr) (3.14)

similar to the ones conventially used in the TDHF initial value pro-
blem can be used to describe a heavy ion reaction.
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4., The One-Particle Density Matrix

In order to evaluate the one-~particle density matrix ffﬁfﬁt)
we write it in the form

SR = (P Z JCB-F) & (F) 1) (4.1)
' with @;(7) defined by

~n

b QiCR)V (P o Fry s Fa) = PR, P D) (4.2)

i

which is obviously equivalent to the usual definition, In lowest
’ order of the FAHT cluster expansion, we get

1A .
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<3 N

Using the same approximations as in sect., 2, we get
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Thé expressions (4.4), (4.5) show that the one-particle density

matrix ie indeed hermitean .

Frre) = %P ALY . (4.7)

Furthermore, congidering the diagonal part S$(f /%)  only, the
integral over 14, in eq. (4.5) vanishes and the integral over V.
ranges over a sphere of radius () centered at P « Therefore,

if integrating eq. (4.4) over ¥ , the numerator and denominator
cemcel so that

{scp)dP= A (4.8)

at any time. This property in turn is a general advantage of the FAHT

cluster expansion and holds order by order/11 ™~
In order to further simplify expression (4.4) one could decompose

once more the quantities ¢, in the small integration volumes (4.6),

i.e., in lowest order, replace iz by P in the arguments of ¢w

in the region V,, and by $(#+/)in the region |4, . In this case the

integrations over the angles E_ can be even performed analytically

in the region M. (but not yet in Vie ). In this additional crude app-

roximation the diagonal part of the density matrix takes the simple
form

ta
St = 4a-M Z (bl

+ €(8) L‘(A-ﬂ}ﬁ I$2(R) ~£., [, )2 (Fe) ] oo (8)] (4.9)
z L(3)- 4ot e 3)]

obviously also obeying eq. (4.8). In the limit do(+)—>0 (that is,
fo?1, ¥ ) we get from eq. (4.4)

@
S(RAE)= b2 SRy (Fie) (4.10)

i.e.,the TDHF density matrix.

We emphasize that if one calculates from eq. (4.4) the density
matrix sLV(t) using either the functions ¢, or the TDHF orbitals
fs as a time-dependent basis completed by evolving also the corres-
ponding functions for unocccupied states, one gets

Suv (1) #0 (4.11)

and, in particular, the occupation numbers 5w (¢) are no more cons-
tent in time as in usual TDHF. This does not contradict the state~
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ment that equations (2.18), (2.20) are invariant under iime re-
versal. That is, by solving these eguations with initial condi-
tions of the type (3.13), (3.14) up %o a certain time ¢ and then
going back, one would arrive at the initial state of the system at
¢=0 . This situation is similar to the TDHF case: In the statio-
nary HP basis it is known that eq. (4.11) holds too, although IDHF
is time reversal invariant on the microscopie level, In our case
eq. (4.11) involves particle-hole excitations even in the TDHF
basis caused by the inclusion of short-range correlations.

TMnally it should be pointed out, that with eq. (4.4) one has
the possibility to calculete the evelution of the momentum distri-
bution (the Wigner iransform of the density matrix) which is expec-
ted to have large momentum components and should be exsmined in
the future with respect to a possible dynamical realization of SRC's
ag discussed in the introduciion.

5. Sunmary
Ve have demonstrated an extension of the TDHF method to

deal in lowest order with two-body correlations of short range as-
suming higher order effects as well as effects of LRC's being suf-
ficiently described by a mean field which comes out from a solu-
tion of the corresponding TDHF problem with readjusted parameters
of the effective interaction. The method was demonsirated for the
lowest order contributions to the relative S - wave only.

In principle, three-body clusters could be involved analog-
ously, by investigating the next order of the PAHT cluster expen-
sion. This, however, would lesd to a much more complicated theory
possibly not suitable for numerical investigations at all.

The use of a more realistic potential including spin-orbit and
tensor forces is poassible. As a consequence we would have to con-
gider a larger number of correlation functions *}:T and end up
with e system of directly coupled equations for them instead of
eq. (2.19) for each separate £ .

Further simplifications of the proposed formglism are desi-~
reble. One of them could be the derivation of some kind of viscous
hydrodynamics by methods similer to those used to derive non-viscous
hydrodynemics from IDHF (compare,e.g.,ref./z/). Another possibi-
1ity of an essential reduction of the derived equations is to
restrict the model functions ¢, from the outset to be the TDHF
orbitals and to solve "only" an ordinary TDHF problem together with
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eqs. (2.19) which are not so difficult to hanfle. One could also
try to guess the form of the correlation functions fe or take
them time-independent in a simple form as in many phenomenological
applications of the Jastrow approach in the stationary problem
{(for en example see ref. ). It should, however, be pointed out,
that along this line problems with the energy conservation arise,
gince the basic ingredients of the theory are no more taken from a
gelf-consistent variational problem.

The author is grateful to R.V.Jolos, R.Reif, J,A.Maruhn,

'L.Munchow and S.Frauendorf for valusble discussions.
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