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1. ln.,.!;.roducti.£!l, 

Over the last years a large number of investigations have de
monstrated the effectiveness of the time-dependent Hartree-Fock 
(':l'DHl'') approximation/1/ as a theory of large amplitude nuclear dy
namics ( uce l"or example refs./2- 4 / and literature cited therein). 

Booidoo the classical (deterministic) character of the TDHF 
initial value problem the emission of the two-body correlations cau
sed by tho residual interaction is one of the main disadvantages 
of tho then r·y. Furthermore, ordinary TDHF as well as such extended 
mean-field theories cannot deal with realistic nucleon-nucleon forces 

due Lo the strong repulsion between the particles at short distances. 
To avoid diverging matrix elements and to consistently resum certain 
higher order terms of the full many-body problem the bare interac
tion jo replaced by an effective interaction commonly taken in the 
phenomenological Skyrme forn/2-4/. 

Our aim is to propose an extension of TDHF which, in sorr< appro
ximation to be discussed below, includes two-body correlations on a 
level or microscopic reversibility relating them to realistic nucleon
·-nucloon forces. Because we are not able to realize such a program 
with respect to the full range of tbe two-body potential we restrict 
ourBelves to the consideration of strong abort-range components of 
che potential on a level of correlations only between nearest neigh-
bours. We consider higher order effects as well as long-range cor-
relatione only to the extent to which they contribute to the mean 
field which, of course, is not the same as in TDHF because of tbe 
explicit description of ehort-range correlations (SRC) in lowest 
order. 

The mean-field theory itself relies on the statement that up to 
a certain energy, e.g. 1 jn a bP.avy ion reaction, the Pauli exlusion 
principle effectively suppresses LRC 1s. On the other hand SRC's being 
connected with very large momentum transfers up to several Fermi 
momenta are nol influenced by the Pauli principle at all and essen
tially contribute even to the nuclear ground state energy (for a 
recent example see ref./5/). Such high-lying components in the nuc
leonic momentum distribution cannot be reproduced by any determinantal 
wave function/6/. 
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Therefore, it seems to be an interesting task to include SRC·'s 
from the outset and to look for its dynamical realizations in the fra
mework of the proposed picture. 

In the present paper we outline an extension of the mean-field 
theory starting from the method of correlated basis functions (CBF) 
/7-9/, which provides a natural framework for the description of 
strongly interacting Fermi systems. A more detailed version of this 
work is given in ref./101. In sect. 2 we derive the extended mean
field equations. Sect. 3 deals with the corresponding correlated sta
tionary problem and the choice of appropriate initial conditions. 
The one-body density matrix of the correlated system is evaluated in 
sect. 4. 

2. Extended Mean-Field Equations 

We start with the choice of time-dependent many-particle trial 
wave functions as 

A 

f(-t ... A,t) =c·f F .Jf--T! </>:C;,t) . -~ " 
(2. 1 ) 

with c =(-l'lf) and~ being the A-particle antisymmetrizer. F is 
a symmetric, translationally invari;nt correlation operator having 
the cluster decomposition property/71. The single-particle model sta
tes if>: are required to reflect properly the il.ong-range order of the 
nuclear system while F has the task of incorporating the most 
essential dynamical correlations, tho short-range correlations in our 
case. The choice of a single determinants! configuration in eq. (2.1) 

does not exhaust the full power of the CBF method/7/ but reflects 
our approximation that J,RC 's are considered only via the mean field. 

The time-dependent operator F is chosen in the form 

F ==- IT FC;J',i.) 
"~:Si <:j~A 

FC;j,t) = ~ fe( f;j,t) Pe_ 

according to a local central syn~etric two-body potential 

VC'j)"" Z lie Cr:j) fe 
e 

(2. 2) 

(2. 3) 

with ~ being the projector onto the 1-th partial wave of rela-
tive motion of nucleons and J 

non-negative correlation functions 
at distance r,j • The real, 
fe.Cr) are to be small (or zero) 

inside the small- r core region and approach unity at large r 
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We rewrite the nuclear Hamiltonian identically as 
• 

1-/==L.t.G)+f:yc;i>= ~ H ... U,t)+ ~. V,.es(;j,t) 
I• I,"'(.J I J <J 

(2.4) 

introducing an arbitrary time-dependent one-body potential UC,t.) 

and a time-dependent residual interaction V res ( ::.,t) as 

/-L, C,t)=- t c;) + uc;,t:; {2.5) 

llre,C;j,t-) = V(;j)-(A:'1) [UC,tl + U(j,t}] (2 .6) 

In general, if choosing an unreasonable form of the potential U , 
the residual interaction defined by eq. (2.6) is of very long range. 
We wish, however, to realize our approximation to include LRC's 
only via a certain mean field as 

c r t)j 
Vre s e ' r ~ cle (t) 

- 0 
(2. 7) 

and, consequently, 

fe (r,t) j 
' l'?ole(t) 

=--1 (2 .8) 

with range parameter~)' de (t} to be determined below, but certainly 
small (In principle, we could choose them at will depending on what 
part of the bare interaction we want to consider explicitly). 

Thus, we have to consider U to be the time-dependent poten
tial which comes out in a solution of a corresponding TDHF problem 

• [ 1; ...... l ] ifi f',. "" -u;, \7 + u f; (2.9) 

with readjusted Skyrme force parameters. 

We now proceed to the derivation of evolution equations for the 
single-particle orbi tale 4>: and the correlation functions fe in 
a self-consistent manner invoking a least action principle. In this 
approach one seeks solutions of 

t. 
~f Jt £ [..P(t), fU:)];: 0 (2.10) 

t. 
with the Lagrangian 

£['fCt), 'f(t)] = < ·-Y<·O I ;t; ~t:- HI -ret)) . '(2.11) 
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Before performing the variation simultaneously with respect to the 

functions fe and ~: we have to simplify the very complicated 

expression (2.11 ). 
A first step in this direction is the restrict~on to a consi

deration of correlations between nearest neighbours only, requiripg 

that higher order effects, i.e. 1 correlations between distant neigh

bours, which are known to have a weight of the order of 10% in the 

nuclear binding energy/51, contribute only to the mean field read

justed in the sense mentioned above. Thus, we do not neglect them 

at all but consider them in the same fashion as the mean-field theory 

does in all orders. For finite nuclear systems traditional cluster

-expansion procedures can provide the framework for evaluating mean 

values of any operator <o>= <..Y I 01-f'/ with CBF's (see for example 

ref,/7/ and references cited therein). 

We apply the so-called Factor-Aviles-Hartog-Tolhoek (Ji'AHT) ex

pansion/117 in lowest order to eq, (2.11) arriving at (compare 

ref/101 ) 

i.. ~ i~~IIT ~ f <;li~tt- H.,('l,t}/i/' 

-t ;~_; (ij I i~ ft- H-.£1,i)- H.,(2,t)f;j -ji'> (2. 12 ) 

- .z.. <: ij I F-I-(-T2,t) [it? tt -H. (i,t)- H. (l,t.)-Vres(12,tl]Fl12,t)I;J·-j;)/ 
t<,J '/ 

r.. .. '$ J(t) 

with dlt)= mcndcleU)~ • The last two terms in eq. (2,12) would 
e 

cancet if dCt>-'>0, i.e., we would arrive at the "TDHF Lagrangian". 

For nonvanishing values of the parameters cHI:) eq, (2,12) can be 

interpreted as a subtraction of the mean-field contribution of two 

particles at small distances combined with the addition of the 

corresponding correlated term. The energy functional obviously has 

the same structure. 
Now, for simplicity, we assume a spin-isospin symmetric system 

and perform all the spin and isospin sums in eq, (2,12). In the 

following we denote the remaining spatial quantum numbers by .M- ,v 

etc. The appearing spatial symmetric and antisymmetric uncorrelated 

two-particle wave functions f)A""> and fj-<" -V.r) as well as the com

bination UC~,t)rUC~,t) appearing in eq, (2.15) we decompose i~to 

a Taylor expansion series around the center of mass position 

R
-+ :l..... ~~~ 

"' 2. ( r~ + rz.) of the two particles of relative distance r«r.- rz. • 

For a fixed R the integration over r in eq. (2.12) involves only 

single-particle orbitals rp, , f>,... in a small volume of radius i d(-t;} 
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centered at R • In this region the functions ~ change rapidly 

from zero to unity_ bu11 the mean field as well as the functions rp., 
should change rather smoothly. Therefore, it should be a valuable 

approximation to truncate the Taylor expansion series at some low 

order • In any practical case one should examine very carefully the 

question which order is reasonable. In the present paper, to demon

strate the structure of the equations of motion, we retain only the 

lowest order terms of the Taylor expansion. Higher order terms do 

not add qualitatively new aepec~s but may be important in the quan

titative sense/101, The main advantage. of the truncation of the 

Taylor aeries at finite order is to have an explicit separation of 

the ? and K dependence at small distances so that one is able 

to perform an integration over the angles r in eq. (2.12). 

Performing all these operations we arrive at an approximate 

expression for the Lagrangian used in the following 

~-A ~A · o 

..p ~ 1
• '> :L <"11/d,~ +~ Y/ 1

- Ucf:-tllv) +it; 2 E .,(t) ~rlv> 
rJ- T l "":::"' ..,t; '2-"""' l""•vc1 ::>r 

J.w 
[ . £ ] z~tn J .,f~ ) -«..(t) ,t;l' .. (t)-1-'f-,..,c'>oli)-lf.,Cil +(A-·n'lofi) r ;,(r,t olr . 

J.Ct) 

-t11rrj3.(t)J r 1 [;t;, foCr,t)f.,Cr,t)- !, .. {f.'Cr,t)r-- V .. (r) f .. Cr,t)E 

with 

and 

(3.,(t) 

"! .. (t) 

6.(t) 

'Z .. (t) 

0 

> "'· (-(;) 
ol..(t)"' ·nrr(d;(t) -frfo,.Cr,t)Jr) 

D 

~A J ..... * 4 jf ... =~~=1 dR ~, • ...(R,t)cp., (R,t) 

1 
L 
~t 

v'2. 
vCR,tl 

¢,...CR,t) ~-.~C~,t) 

(2 .13) 

(2.14) 

(2.15) 

Here the index .o• stands for the relative$ -wave which is the only 

partial wave remaining in our lowest order considerations after the 

action of the projectors Pe (see eq. (2.2)) in eq, (2.12). In eq. 

(2.21) we have introduced additional Lagrange multipliersJ"., ~hich 
~ 
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have to restore/101 the conservation of the single-particle wave 
function overlap matrix <~IV) in time 

cl ~ <rt-v) = o 

or, if starting with orthonormal orbitals p, at time 1;:0 , 

<?1-v> = Sr-J 

at any time t 

(2 .16 ) 

(2.17) 

Starting from eqs. (2.13)-(2.15) a simultai:ieous variation with 
respect to the functions fe. and ;>.,;r. with 

~ .. <tl = z R.e if.,Ct) (2. 18) 

following directly from eq. (2.15 ), gives 

[ -t, J,.,7'.W]f (rt)::: -1i.L[Vz.+_.5.(tL] f.(r,t) 
/3• (t) o ' m ft. foo{t) 

(2.19) 

[ 
'l..(A-1) flo (f) ]f ( ) t V. ( r) + TA _1 ) -{f;(t) o r, t 

and 

[it. &t: + 
2
:, V1-U(i!,tl] 4>vlt, tl = IAAr.t) -;t; %.f ;r (t) ¢~" cr,t) (2 .20) 

with 
<tA 

f:l'"{t)" 1 ~ [ ~ .. (t) !;-" J iR I ~K(R,tf cp;: (R,t) ~v CR,t) S (2.21) 

i, =d.(t)l: ~; Cf;tl [;t, ~ -t-~ Vz.- 2 U(r,t>) ¢>,... (r,t) 
J.(t) 

+121T ~1 f4Jr ( r,t) rJ R' [Vo<RJf., ... U~,tH·! (f,'u~,t)Y-; t. fo f.]JR 

" 

(2. 22) 

ci.Ctl ~A 

_z4-rr ( R'"fo~(R,t)dR L. ,;ct,t) Uer,t)~,._cr,t) 
(A-1)) r ~., 
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l 
Eqs. (2.19) formally resemble a Schrodinger equation with an 

"energy" given by the ~oefficient -;,J,.. 7'.,(r)/f3.Ct), determined mainly 
by the single-particle orbitals (eqs. (2.15)), which in turn are coup
led to the co,rrelation function f. according to eqs. (2.20). The 
first term on r.h.s, is a correlational kinetic energy term while the 
second term represents a kinetic energy term connected with the un
correlated motinn of a pair. In higher order a cross term would appear, 
the form of which, however, crucially depends on the truncation. The 
potential term consists of two parts: the bare potential in tt~e s -
channel and a time-dependent potential which is determined by the 
mean field (compare eq. (2.15)). For a system of only A=2 particles 
the second potential term vanishes, as it should, because its rela
tive motion does not proceed in a medium of some other particles. 
Eqs. (2.19) are, however, not to be viewed as an eigenvalue problem 
but rather as second order differential equations in the coordinate 

r with two boundary conditions. 

It can be shown that one of the two independent solutions of 
,eqs. (2.19) is singular at r=r .. (r .. o for a soft-core potential). 
The second, however, is well behaved and the function f. as well 
as its first derivatives are non-negative in this point/101. There
fore, one can start the numerical integration at r,r< (or 0) with 
any small value of the quantity f., • According to the behaviour of 
the potential it will then increase rapidly with increasing r and 
reach a certain point r= cl,lt) with f,'(r:d.,Ct),t)~o • This point 
gives us the definition of the time-dependent range parameter d. (i:) , 

which poaaibly does not vary very strongly with time. After that 
we renormalize the function f. (r,t) to be equal to unity at this 
point. Such a procedure is equivalent to the boundary conditions 

f,( r:c(.,(t),t)"'..., (2.23) 

f,' (r=clo(t),t) = 0 (2. 24) 

which complete eqa. (2.19). 

It should be mentioned in passing that by the outlined proce
dure the relation 

0 ~ fo c r, t) ::;:;;: 1 (2.25) 

is automatically fulfilled. It is equivalent to not allow the attrac
tive part of the potential to have a large effect on the form of the 
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correlation function fo , i.e., it supresses a corresponding "over
shooting" before it asymptotically reaches unity. However, it has 
been shown that at least in the case of nuclear matter and for not 
too small densities the constraint (2.25) is eii;her fulfilled or the, 
deviations are small/121. On the other hand by obeying the relation 
(2.25) we get rid of some time-dependent version of the so-called 
"Emery Difficulty"/1 2/. 

From eqs. (2.21 ), (2.22) it can be easily shown that the evolu
tion equations for the single-particle orbitals (2.20) lead to TDHF 
(eqs. (2.9)) in the limit ci.C-1:)~0. The inclusion of higher partial 
waves yields additional terms of the type £~ and f;~ in the r.h.s. 
of eqs. (2.20) with a structure similar to f. , f:,... 

Finally, it is useful to rewrite eqs. (2.19)-(2.22) in the form 

:1 -1-J\ 
• • ... -t .. \' if J 
rt;[ t[>,..+J;)v,.,.lt) ~r -.{ 0 (t)}"1 ~ ...... ~ </JI' ... cf>.., 

(2. 26) 
tJ.(t) . :1..4 

+1zn[R~r.c~~..tJi.(R,t}rJ.RI t<P,..!''·t~>"] == Heff <P..., 
,~A•"f I 

" 

collecting all time-derivative terms in the l.h.s., with an obvious 
definition of the "effective" Hamiltonian Heff • Then, the energy 
functional of the correlated system within our approximations can 

be written as 

1£ = < -.f ( t) I N / f ( t}) == ~ .. <vI HeH I "") 

~ Je. [ l fv~ 1 ~ tP ... §, fo] 
(2. 27) 

which can also be extracted directly from eq. (2.1)) omitting all 
time derivatives coming from it..(of'l.f/' in eq. (2.11 ). 

Returning to the philosophy outlined at the beginning of this 

section we sununarize the scheme of the proposed method as follows: 
i) Adjust the parameters of the effective two-body interaction to gross 

properties of the nuclear system under consideration using the ener
gy functional (2.27) of the correlated system in the stationary 
case. This probably requires a several times simultaneous solution 
of a corresponding HF problem since its solution enters eq.(2.27) 
via the HF mean field defined by the HF orbitals f,. • 
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ii) Perform a TDHF calculation of the process using these read
justed parameter~ to get the time evolution of the mean field 

appearing in eqs. (2.19) and (2.20). 

iii) Solve eqs~ (2.19), (2.20) with the boundary conditions (2.2)), 

(2.24 ). 

To complete this section we emphasize that the total energy of 
the system (eq. (2.27)) can be shown to be conserved exactly by 
derivation (see ref,/101). 

J, Stationar;L Case and Initial Conditions 

Starting with the solution of the stationary HF problem 

fv ( r, t) = fv cr ) ex p [ - i; t :" t- 5 (J .1 ) 

it can be straightforwardly seen that an ansatz 

fvCr,t) = ~(r)exp t-~ Qvt~ ().2) 

makes the effective Hamil toni an He« stationary and tre function f.Cr,t) 

becomes a time-independent function f:cr) which in turn is defined 

now by 
,_, "-' 

ir-) t. .. [ ... 1. 8o J') [ )2(A-2> il..]f""'c> <JJ) fr To(l" =-m 'i/ + 1,,...,. To(f + V.(r +CA-1") 
13
....,- or, • 

(JO "'t" /!Jo • 
.1'\..J ,.._ """" /'\..-

where (3~ 1 do 1 tz_. are given by replacing <P ... by <}>, in eq. (2 .15) and 
<1 

,..._ <tA s :t ,.._ ... "" /"2. <f o = L Ov d f< Jl[> ,..-. Ct~.) 4>v ( ~) · 
,...,v•-r 

().4) 

The single-particle energies a... of the ,correlated system introduced 
in eq. (3.2) are connected with the eigenvalues Ev and the eigen

functions ~ ... of the stationary effective Hamiltonian Heff 

"" '"" ~ Heu <P..,.ct) = cv <f..,cP) (J. 5) 

via 
-:1 

,..... 4A ( -> "' ..., ,.._ 11 
Cv = Cl,.- d.o }: .. ( o.., + Clr)J ell<. ( ~r' UO o/., CR_) 

as can easily be deduced from eq. (2,26) with f..= 0 

(3.6) 
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Thus, the stationary single-particle functions 4::, (r) as well as 
the stationary correlation function {.:Cr) are found by simultane
ously solvi~g eq. (3.3), diagonalizing the stationary effective Ha
miltonian HE'H and inverting the algebraic system of eqs. (3.6}. 

In order to propose appropriate initial conditions for solving 
the "correlated TDHF" equations derived in sect. 2, we check now, 
whether a Galilean translation of the stationary solutions ~(r), 

l:,(r) is a solution of the time-dependent problem (2.19), (2.20). 
Introducing 

. 
f. t,.(.., f."'( ..... ) s "[ "" ) ........ ]~ ..., r,t)== .. r-vt exp(-t (t., -+'?!vt t- rnVr ~ 

<P:· C;t,t)= ~ c~-vt)exp ~ -i [Ca .. +~ v'-)t- WI v P]~ 

it is easy to show that 

( 
(3oi.'{i)) = ( ~) 
'lot'(i) fl.o 

tr • '"'- '\.. -"~A ( _.. "-If ""*-'> J: J. 
"to {t)== --::["to +~v-.f>.] -1v L )JR <f>_... f..J V 'Yr 'f'-.1 

rc,v=., 

it:r(t)= ~-0- 9:~:vtp-., +z;:vr fJ;fr¥:v;~-~ 
,I"', 'II=~ 

(3.7) 

(J.S) 

(3. 9) 

(3.10) 

(3.1.1) 

Introduction of eqs. (3. 9 )-(J .11 ) into eqs. (2 .19) immediately yields 

fot"(r,t) = fo (r) (3.12) 

which can be shown to hold also if higher partial waves are involved. 
A somewhat more tedious but simple procedure shows that by inser
ting eqs. (3.7), (3.8), (3.12) into the time-dependent equations 
(2.20) and making use of eqs. (3.6), one •is led to the stationary 
equations (3.5). Thus, we have spown that initial conditions 

cp"iCP,t=o)-= f,cP} exp~ tt ~vi'S 
fo ( r, f: = o) = f: ( r) 

(3.1)) 

(3.14) 

similar to t~e ones conventially used in the TDHF initial value pro
blem can be used to describe a heavy ion reaction. 
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4. The One-Particle Density Matrix 
t 

In order to evaluate the one-particle density matrix ~(~?;t) 
we write it in the form 

rcr;t;t)-= <--Pet)!~ Jc~-P>G.;Cf')l--t'Ct)> . 
with Q; U'') defined by 

.... -..., -._ ......., -.. ~ ... , ~) 
Q ;( r ) -f ( r .. , .... I r,. I ••• , rA) = f' ( r .. , ... ,r, ... JA 

which ia obviously equivalent to the usual definition. In lowest 
order of the FAHT cluster expansion, we get 

tA ;~r 
~cr;f'~t):: trcz-A)L q>., (F',t)1>vcr;t) 

<~="' 

+ 2 ( ~) ~ < ij IF +(1Z,i) S Cf:,-f) Q.,(?') fC 11,t)( i.;.- j i > 
-~ .(, ij I F +(12,t) FC12.,t) I ij --j i? 
I'..) 

Using the same approximations as in sect. 2, we get 

§'r~ P;t J::: 4 cz-M ¥ 4>.," cr',t> ~ .. <P;t) 
.Y="''' 

~ ~A • + 2. (A) [Z(A-1) !f>/Cf;i){pi(r',t) -,..!;'~., 8/'-'-v(f',;;t)] 
2. [ (~)- 4-cl.o(i){3oli)] 

with 

B, rrrtJ= 6 ~ fdt "'1f(r-tr.. t).J.,Ifcr+-r:.. t) 
,M "lf ~ I I ( l. Jr :il I 'f"'v :;!. f 

Vu(P_f','t] 

[ 
"'\,... ..,, r:. x -r- f.,(lf'-"f:.l,-t)f.(lr~~P..I,t)] ~,....( t _:r~ ,t) </>"~ ( ':_ .. , t) 

+[ f olG_ ~; (Pit. ,t)</>~~Cr+f.,t{1-foCif'-t..l,til frC~,t)tp.,(r:,t.) r h.c] ~ 
~o<;:;r';t) 

Here the integration limits are 

v.:cPr"t> ~ lf'-r'../:!!ioloCt) .,0 I I 
I pr_ ;=': P• d o(t) 

vl.,u:;.~;o ~ lr"-f'../:!!'o/.,{1:) 1 r"''- r~l.s- ci.,Ct) 

ll 

(4 .1 ) 

(4. 2) 

(4. 3) 

(4.4) 

(4. 5) 

(4.6) 



The expressions (4.4), (4.5) show that the one-particle density 
matrix is indeed hermitean 

~(Pr't) = ~*cr~' f't) 
I I I I 

(4.'7) 

Furthermore, considering the diagonal part !?Cf; f',-t) only, the 
integral over V,0 in eq. (4.5) vanishes and the integral over ~o 
ranges over a sphere of radius J.,(i) centered at P • 'l'herefore, 
if integrating eq. (4.4) over r . the numerator and denominator 
cancel so that 

Jfu~,t)clf': A (4 .8) 

at any time. This property in turn is a general advantage of the FAHT 
cluster expansion and holds order by order/11 1. -

In order to further simplify expression (4.4) one could decompose 
once more the quantities ~~ in the small integration volumes (4.6), 
i.e., in lowest order, replace ~ by f in the arguments of ~ 
in the region ~. and by "f(;'+F'') in the region 11,.. • In this case the 
integrations over the angles ~ can be even performed analytically 
in the region v,. (but not yet in VLo ). In this additional crude app
roximation the diagonal part of the density matrix takes the simple 
form 'b 
SU~t)~ lfl2-A)Z [</>,Ct',t)/ 2 

.., . .., 
.f tr.( A) [{A-1)x ltt>~C~t>l].-x.1 /tt>,...cr,tW/tk,,(t,t)/,_o(o(t)] 

:z. [(~)-4.£ .. (!)(!>.(-l:)] 

obviously also obeying eq. (4.8). In the limit d.(i) ~ 0 

fo-"1, V' r ) we get from eq. (4.4) 

fcr',f',t) :=: tr}:: q,..,*cf',-~:)4> ... cr;t>, 

i.e.,the TDHF density matrix. 

(4. 9) 

(that is, 

(4.10) 

We emphasize that if one calculates from eq. (4.4) the density 
matrix ~.., (t) usi~g either the functions 4>., or the TDHF orbitals 
r~ as a time-depe~dent basis completed by evolving also the corres
ponding functions for unoccupied states, one gets . 

fp~ (t) + 0 (4.11) 

and, in particular, the occupation numbers Y,....Ct) are no more cons
tant in time as in usual TDHF. This does not contradict the state-
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ment that equations (2.18), (2.20) are invariant under time re
versal. That is, by solving these equations with initial condi
tions of the type (3.13), (3.14) up to a certain time t and then 
going back, one would arrive at the initial state of the system at 
t=O • This situation is similar to the TDHF case: In the statio
nary HF basis it is known that eq. (4.11) holds too, although TDHF 
is time reversal invariant on the microscopic level. In our c~se 
eq. (4.11) involves particle-hole excitations even in the TDHF 
basis caused by the inclusion of short-range correlations. 

Finally it should be pointed out, that with eq. (4.4) one has 
the poosibility to calculate the evolution of the momentum distri
bution (the Wigner transform of the density matrix) which is expec
ted to have large momentum components and should be examined i~ 
the future with respect to a possible dynamical realization of SRC's 
as discussed in the introduction. 

5. Sun1IIlll.rJ: 

We have demonstrated an extension of the TDHF method to 
deal in lowest order with two-body correlations of short range as
suming higher order effects as well as effects of LRC'a being suf
ficiently described by a mean field which comes out from a solu
tion of the corresponding TDHF problem with readjusted parameters 
of the effective interaction. The method was demonstrated for the 
lowest order contributions to the relative 5- wave only. 

In principle, three-body clusters could be involved analog
ously, by investigating the next order of the FAHT cluster expan
sion. This, however, would lead to a much more complicated theory 
possibly not suitable for numerical investigations at all. 

The use of a more realistic potential including spin-orbit and 
tensor forces is possible. As a consequence we would have to con
sider a larger number of ~orrelation functions fJsr and end up 
with a system of directly coupled equations for them instead of 

eq. (2.19) for each separate e 
Further simplifications of the proposed formalism are desi

rable. One of them could be the derivation of some kind of viscous 
hydrodynamics by methods similar to those used to derive non-viscous 
hydrodynamics from TDHF (compare,e.g.,ref./2/). Another possibi
l'ity of an essential reduction of the derived equations is to 
restrict the model functions q,., from tho outset to be the TDHF 
orbitals and to solve "only" an ordinary TDHF problem together with 
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eqs. (2.19) which are not so difficult to hannle. One could also 

try to g~ess the form of the correlation f~~ctions fe or take 

them time-independent in a simple form as ±n many phenomenological 

applications of the Jastrow approach in the stationary problem 
(for an example see ref./5/). It should, however, be pointed out, 

that along this line problems with the energy conservation arise, 

since the basic ingredients of the theory are no more taken from a 
self-consistent variational problem. 

The author is grateful to R.V.Jolos, R.Reif, J.A.l~uhn, 
1L.MUnchow and S.Frauendorf for valuable discussions. 

References 

1. Dirac P.A.M., Proc.Camb.Phil.Soc., 1930, 26, p. 376. 

2. Koonin S.E., in Progress in Particle and Nuclear Physics, 

ed. D.H.Wilkinson, vol. 4, Pergamon, Oxford, 1980, p. 283. 
3. Nagele J.W., preprint CPT 898, 1981, to be published in 

Rev. Mod. Phys. 

4. Davies K.T.R., Devi K.R.S., Koonin S.E. and Strayer M.R., 
preprint MAP-23, 1982. 

5. Guardiola R., Faessler A., Muther H. and Polls A., Nucl.Phys., 

1981, A371, P• 79. 

6. Bohigas 0 and Stringari s., Phys.Lett., 1980, 95B, p. 9. 

1. Clark J.W. in the Many-Body Problem, Jastrow Correlations 
Versus Brueckner Theory, Lecture Notes in Physics, eds. 

Guardiola R., Ros R., Vol. 138, Springer, Berlin, 1981, p. 184. 
8. Cla::k J.w. and Westhars P., Phya.Rev., 1966, 141, p. 833. 
9. Feenberg E., Theory of Quantum Fluids, Academic Press, 

New York, 1969. 

10. Madler P. Submitted to Nucl.Phys., A• 
11. Clark J.W. and Westhaua P., J.Math.Phys., 1968, 9, p. 131; 

P• 149. 

12. Owen J.c., Bishop R.F. and Irvine J.M., Ann.Phys., 1976, 
102, p. 170. 

Received by Publishing Department 
on September 28 1982. 

14 

I 

I i 
• ... 

I 
J 
(~ 

~b 

I 

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY'! 
You can receive by post the books listed below. Prices · in US $, 

including the packing and registered poBtage 

D13-11807 Proceedings of the III International Meeting 
on Propo~ional and Drift Chambers. Dubna, 1978. 

Proceedings of the VI All-Union Conference on 
Charged Particle Accelerators. Dubna, 1978. 
2 volumes. 

D1,2-12450 Proceedings of the XII International School on 
High Energy Physics for Young Scientists. 
Bulgaria, Primorsko, 1978. 

D-12965 

D11-80-13 

04-80-271 

D4-80-385 

D4-80-572 

D2-81-543 

D10,11-81-622 

The Proceedings of the International School on 
the Problems of Charged Particle Accelerators 
for Young Scientists. Minsk, 1979. 
The Proceedings of the International Conference 
on Systems and Techniques of Analytical Comput
ing and Their Applications in Theoretical 
Physics. Dubna, 1979. 
The Proceedings of the International Symposium 
on Few Particle Problems in Nuclear Physics. 
Dubna, 1979. 
The Proceedings of the International School on 
Nuclear Structure. Alushta, 1980. 

Proceedings of the VII All-Union Conference on 
Charged Particle Accelerators. Dubna, 1980. 
2 volumes. 

N.N.Kolesnikov et al. "The Energies and 
Half-Lives for the a - and {3-Decays of 
Transfermium Elements" 

Proceedings of the VI International Conference 
on the Problems of Quantum Field Theory. 
Alushta, 1981 
Proceedings of the International ~eeting on 
Problems of Mathematical Simulation in· Nuclear 
Physics Researches. Dubna, 1980 

D1,2-81-728 Proceedings of the VI International Seminar 
on High Energy Physics Problems. Dubna, 1981. 

D17-81-75a Proceedings of the II International Symposium 
on Selected Problems in Statistical Mechanics. 
Dubna, 1981. 

D1,2-82-27 Proceedings of the International Symposium 
on Polarization Phenomena in High En~rgy 
Physics. Dubna, 1981. 

14.00 

25.00 

18.00 

8.00 

8 .oo 

8.50 

10.00 

25.00 

10.00 

9.50 

9.00 

9.50 

15.50 

9.00 

Orders for the above-mentioned books can be sent at the address: 
Publishing De~artment, JINR 

Head Post Office, P.O.Box 79 101000 Moscow, USSR 



SUBJECT CATEGORIES 

OF THE JINR PUBLICATIONS 

Index Subjeet 

1. High energy experimental physics 

2. High energy theoretical physics 
3. Low energy experimental physics 
4. Low energy theoretical physics 
5. Mathematics 
6. Nuclear spectroscopy and radiochemistry 
7. Heavy ion phys ics 
8. Cryogenics 
9. Accelerators 

10. Automatization of data processing 
11. Computing mathematics and technique 
12. Chemistry 
13. Experimental techniques and methods 
14. Solid state physics. Liquids 
15. Experimental physics of nuclear reactions 

at low energies 
16. Health physics. Shieldings 
17. Theory of condenced matter 
18. Applied researches 
19. Biophysics 

HaAneP n. E4-82-693 
KopoTKQAeAcTe~e KOPpenR~MM • ~eHHO~ TeopMH cpeAHero nonA c aaeM
CMMOCT~D OT 8peMeH~ 

Oc~ecTanReTCR ~eHMe aaeMc~e~ oT BPeMeHM TeopMM CP8AHero nonA Ha 
)'~He MMKpocKon~e~KO~ o5paTMMOCTM nyTeM B~eHMA CMn~HMX KOpoTKQAe~CT• 
B~MX KGp~MA 1 MCXQAA M3 peanMCTM~eCKMX H)'KnoH-H)'KnoHHMX CMn. Ha OCHOBe 
npMH~Mn8 HaMMeH~ .. rO Ae~CTBMA AnA CKOppenMpoeaHHMX npo5HMX 8GnH08MX tYHK~M" 
BMBQAATCA YPB.HeHMR ABK*eHMR 4"A KOppenAUMOHHMX tYHK~M~ M OAH~aCTM~HMX MO• 
Aen~HMX ~ •YHK~MA • HMa•eM nopAAKe KnacTepHoro paano.eHMR TMna FAHT. 
~eKTM 5oftee .WCOKorO nOPAAKa M KOppenA~MM A8n~Hero Ae~CTBMA paCCMaTPM8aOT• 
CA Ton~KO • Tal Mepe, 8 KOTOpo~ OHM AaOT BKnaA 8 CP8AHee none ~epea nepeon• 
P8AeneHHOe ~TM8HOe ABYX~aCTM~Hoe 83aMMOAe~CT8Me. MCCneAYeTCA COOTBeT· 
CTB~R CTaqMOHapHaR 38A8~a M nP8AnaraOTCA nQAXOA~Me Ha~an~HMe ycno8MR 
AnA onMCaHMA T..anoMOHHOA peaK~MM. 8M80AMTCA 8Mpa•eHMe AnA OAH~aCTM~HOA 
MaTpM~M RnOTHOCTM. 

Pa6oTa 8Yn0nHeHa • na6opaTOPHM TeopeTM~eCKO~ tMSHKM OMAM. 

CooCflaeiMe CJC51.eAMHeHHOrO MHCTMT)'Ta AAePHMX MCCne,qoBaHMA. AYC5M8 1982 

Hldler P. E4-82-693 
Short-Range Correlations in an Extended Time-Dependent Mean-Field Theory 

An extension Is performed of the time-dependent mean-field theory by an 
explicit Inclusion of strong two-body correlations of short range on 
a level of microscopic reversibility relating them to realistic nucleon
nucleon forces. Invoking a least action principle for correlated trial 
wave functions, equations of motion for the correlation functions and the 
single-particle model wave function are derived In lowest order of the 
FAHT cluster expansion. Higher order effects as well as long-range cor
relations are consider only to the extent to which they contribute to the 
mean field via a readjusted phenomenological effective two-body Interac
tion. The corresponding correlated stationary problem Is Investigated and 
appropriate Initial conditions to describe a heavy ion reaction are 
proposed. The singleparticle density matrix Is evaluated. 

The Investigation has been performed at the Laboratory of 
Theoretical Physics, JINR. 

C~nlcatlon of the Joint Institute for Nuclear Research. Dubna 1982 


