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1. INTRODUCTION

The time-like part of the two-body weak axial vector current
attracts attention since Kubodera, Delorme and Rho/1/ pointed
out that it could give rise to large effects even in the one-
pion exchange (OPE) limit, This is due to chiral invariance of
the strongly interacting nucleon system and can be tested by
calculating in detail nuclear axial charge density. For this
aim the purely axial weak processes of the beta decay and muon
capture between 19N (07; 120 keV) and 60 (0%; groundstate) are
well suited because they are known to be very sensitive to the
time component of the current and the one~ and two-body parts
of the transition operator are of the same magnitude O(1/M).

The idea is to calculate the ratio A,/Ag of the partial muon-
capture rate A, (0*-07) to the partial beta-decay rate Ag(0™-0%)
in order to learn how the induced pseudoscalar coupling cons-
tant g, is related to the axial nucleon form factor gA/2/.The
answer to the question how significant is the mesonic exchange
correction (MEC) to this first forbidden transition depends on
a variety of conditions (see refs./3-8/ and the discussion there-
in) and particularly on the form of the two-body current opera-
tor,which might not be as simple as usually applied. It is our
purpose to investigate the heavy-meson exchange contributions
to the time component of the weak axial vector current. For
this aim the two-nucleon MEC-operator is constructed using the
phenomenological Lagrangian (PL) version of the hard pion mo-
del/9.10/, The meson exchanges, which are taken into account,

are those due to pions, rho- and Aj-mesons.

2., THE TWO-BODY AXIAL MEC-OPERATOR

The two-nucleon axial MEC-operator is constructed in the
one-boson approximation starting with the hard-pion PL-model
as proposed by Ogievetsky and Zupnik/“ﬂThe explicit momentum
dependence of various form factors is specified up to =1 GeV
and the current algebra (CA) and the PCAC-hypothesis together
with the important concept of the rho-dominance of the isospin
current are consistently combined. The PL-technique enables one
to apply the standard Feynman rules in order to write down all
graphs of interest for a given process. The hard-pion PL is
chosen to be invariant under the local SUy,xSU,-transformation.
This chiral gauge invariance is assumed to be broken only due
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to the non-zero massesm; andmA; of the rho- and'Aj-mesons
-respectively. The presence of graphs with:Aj-meson exchange
within the hard pion method guarantees the consistency of the
chiral approach with vector dominance/1213/. In the Ogievetsky-
Zupnik version of the hard-pion model the effective PL for the
Aypr—system is completely determined by four phenomenological
parameters,m, ,m Ay and the rho- and‘Aj-mesons coupling con-
stants g, andga; respectively. So it is well defined how many
p—-and ‘A 1-exchange diagrams must be taken into account, in other
words, in contrast to the CA- and PCAC-method, an unambiguous
counting of the pion and heavy-meson exchange graphs is énsured.
The standard ideology accepted in the elementary-particle phy-
sics is that the hard pion method works up to the energy scale
~1 GeV {lnp,nlAl) and in this domain the corresponding PL’s
provide a good description already in the tree—approximation

of hadron amplitudes. That is the reason why the two-nucleon
MEC-operator is well defined as a set of all possible tree-

"graphs in the hard-pion PL-model/9,10/. Because of the basic as-

sumption such an operator possesses the correct chiral SU,xSUs-—
transformation properties and reproduces all standard PCAC-re~
sults in the soft-pion limit. The non-Born MEC-operators,which
contribute significantly tec the transition rates AH(AB) are pre-
sented in the figure. In what follows the space part of the one-
meson exchange current will be completely neglected, and we
shall treat the space part of the nuclear current only in the
I.A. in the standard way’ !1%#.After non-relativistic reduction

and transformation to the coordinate space the time part of the
axial vector MEC-operator is obtained as:
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Here ¥, ,d; ,7?; refer to the position, spin, and isospin compo-
nent of thei -th nucleon undergoing the weak transition, k is
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Feynman graph representation of the two-nucleon axial
MEC-operator in the tree-approximation: a) pair term,
b) isobar excitation current, c) contact term, d) pr-
weak decay current, e):A;pr-current. JA stands for the
weak leptonic axial-vector current. The §-matrix is
sandwiched between the initial and final nuclear states.

the linear momentum associated with the axial current, f (f N
stands for the sNN-(#NN*) coupling constants; M*, for the mass

of the A(1236) isobar state, b is the
ter. The radial dependence Fy (1)

oscillator length parame-
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determines the contribution from both the rho-weak decay cur-

rent aimd ‘the ‘A pr-current (graphs d,e) and arises when the
functional form of the amplitude
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is transformed into the convenient integral representation

(2.3)

L >
Ic 2 ..dL —~ar + itk er
M =n2f k. ) (2.4)
The exact treatment of this quantity is necessary in the muon-
cgpture 2process because of the large transferred four-momentum
k% = 0.8m” -For zero-transferred momentum the contribution from

ttixe rho-meson exchange graphs can be simplified using the ob-
vious relation

1 1 1 1
YV - ) -
(m2+q )(mp+q ) mg—m% m2"+q2 m2p+q2
It leads to
Eia‘—; dfl) 2 2 1 -
[32,m2 1[ 324 m2 = 217 T”—m"r—(l "p1. (2.5)
Crmz 1 g%+ ml] mp—mzn
As a result, the radial dependence becomes
x| m2 m?2
Fo (0= (m2 (14 -2 (142 ¥, (Am 1)
m? —m2 " aM 2 m 2 ! "
P T P (2.6)
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According to the KSFR relation
2f2 2:: ﬂ'l2
ngp P .
and the Goldberger-Treiman relation
MgA- grfn
we rewrite (2.1) in the more convenient form
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8m g4 M2 m2 —m2 m? M2
The term in the brackets 1s exactly identical with the expres-
sion usually exploited in calculating MEC to the transition
operator of the nuclear axial charge density not only in the
beta-decay process, where the approximation k~0 is nearly va-
1id and therefore the formulae (2.6) and (2.7) are justified,
but also in the muon-capture/3.7:8/.This holds when m2/(m2——m3)~ 1,
m? /4M2<<1and m,% /m? << 1is assumed. From now on the’not&tion
MEC'#t will be used for this restricted form of the operator.
Cheng, Lorazo and Goulard calculated correctly the rho-meson
propagator in the pr-exchange graph and as an effect, the term

2 m2

p_T0 y (Am ) is added to MEcY/".
SngAM2 mg—mg m127 p
by our method the same term (Cé from (2.7)) to be larger by
a factor of (1+K'Vm2/4M2). This is due to the contribution from
the ‘Ajpr—-diagram and shows the real importance of taking into
account the :Aj-meson exchange. The last term in C4, the coeffi-
cient in front of which is 4/9 f,?NN*fg/M(M+M*) , represents the
contribution coming from the A ~isobar excited nucleon state
and is generally omitted because of its small magnitude. A cor-
rect treatment of the muon-capture rates, however, requires
the employment of the complete expression (2.1).

(2.7)

2 .2
g2 m m
T We found

3. The MESON EXCHANGE CORRECTIONS TO THE TRANSITION RATES

The partial transition rates of the muon-capture reaction
p”+ 0@0%gst) - N 120 keV) + v,

and the inverse beta-decay process
16N (07; 120 keV) » 160 (0*;gst) + e+ 3,

are usually calculated starting with the non-relativistic Hamil-
tonian/ 15/ and are determined as

Ay (@F +07) = 16.75g3(q?)10% |<0m | 3 0% > |2

Ag (07 0%) = 21.3g3(0) | <0~ | )| 0+>)?

(3.1)
V3 gA(q2)
IR - Looo:p) - L ggati0).
M V3
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The conventional values of the weak coupling constants are used

gy=0.97 gA(q2)|q2=0.8m”2=1.24 g, ="7.5g4

\ E
By =378y Gy =G, =g 1-(g,/g,~1) &) 8,0)=1.2%
gg =0.932(1+

The energy of the outgoing neutrino in the muon-capture is E,=
= 95.1 MeV and the maximal electron energy in the beta-decay
is Eg = 11.05 MeV. The operators (110) and (000;p) are defined
as

~

(110) = -v3 j, (B,1) 3ot r_ ,
(3.2)
(000;p) = jo(E, 1) 3y 7

The meson-exchange corrections to the partial transition rates
are included via

A 2, 9003 () 74
Ay (0% 07) = 16.75g3(a2)10% | <o | ), L — Teken 107 >2
/28 ,(q)

S—— AN (3.3)
VZg,0 °F

’

Agl07=0") = 21.3g3(0) | <07 EASE

J'4

h
J !-RA-F exch *

BA

In the simple picture of a closed core hypothesis for the 0%
state and particle-hole configuration for the O -excited state

_ : ) d=M =0
the nuclear matrix element in the impulse approximation is de-
termined as

<OT1T, 410> = ;1?;_ @5y /5 1l Jp 1110y /) G.4)

P

We found easily the MEC-part in this simplifited situation to
give

<07 | 7% Ll0t> - 6.5
1 1 -1 - v g 4 g TR
2 \/_:?—n&'f]s,xp Mpy /g, ali3 RSy g 0l IT [Tl 19y /inl; IT: )67
J=0,1,2
a T)T’ . .
We defined the renormalization coefficient § as
—~ 1 th | gty
8='<0_IJ |0*r> (3.6)
<07| Jpal0F>
and included also the parameter
52
7 = b (3-7)

5
Its valueé determines the reduction of the ratioA (0+-0")/AB 0™=0hH
after taking into account MEC-effects. In order to check our
formulae we calculated the remormalization of the (2s)/5~1py/9)
single—particle matrix element for the muon capture (5 ) and
the beta decay(dp) using both MECZSt and the representatlons
(2.1) and (2.7). For each operator the parameter z is also pre-

sented (see the Table).

4, DISCUSSION

The expressions (2.7) show that the correct treatment of the
heavy-meson graphs leads to an additional term(Cj), which works
in the opposite direction of the dominating one-pion exchange
contributions., As an effect the partial rates derived from the
hard-pion operator are significantly smaller as compared to
the MEC'®' -~results (the table). In the muon capture, however,
the contributions coming from the usually omltted(al~92)¢
part, which contains spherical Bessel-functions of odd power
and arises when the operator (2.1) is transformed from the abso-
lute to relative and centre-of-mass coordinates, compensate to
some extent the heavy~meson exchange corrections. In the beta-
decay process the term (7] -0 )r” is suppressed because of the
small transferred momentum. So the influence of the p- and A1 -
diagrams in this case is not strongly attenuated and the en-—
hancement of the single-particle matrix element is essentially
smaller (by 28%) as the result obtained after the standard ver-
sion MEC'', was used. The parameter z, however, increases only
by about 107 and this is in our opinion not so crucial for the
ratiog, /ga as it has been feared/7/ because of the experimen—
tal -uncertainties. So we conclude that in the simplified nuc~



Table

The reduced matrix elements of the two-body exchange )
operator is labelled by (arl ,nr2; ; JT|| I3 |Inr3, nr4; JT).
The notation 1= 18)/9, 2=1p3/2 . 3= 1p1/2 and b= 2s1/9

is used. For other symbols see the text '

guantum numbers muon capture beta decay
of the r.m.e. Tele€o f.T.i. _____
oot T T T et h- ret h-p
nrl nr2 nr3 nrd JIT* m_:cfi_ . ~M§c_4f o n_t_xEcz A “Mgcj_
5 1 3 1 001 - -.000823 - -.000125
5 1 3 1 101 ~.372979  -.283696 -.372123  =.311493
5 3 3 3 001 -.002259 . 006014 .027297  .035498
5 2 3 2 101 -, 001402 .003744 .016716  .021743
5 2 131 2 201 ;-.001809 -.001152 .021580  .027958
- 4 + -.189293  -.138502 ~.152629 <.112372
- io_ ',Jexeh,t ° 3 _________________________
CHEMN I -.324667 ~.109847
'Y 1.33 1.24 1.78 1.57
A (sec™D) 4.82 . 10° 4.2 . 100 1.29 1.01
type of the MECT8E ugchP experiment
- _ Gperator _ _ _ _ . _ . .. A L] S
z 0.56 0.62 (0.57)

- er ws am e e e m e me wr =
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lear~structure picture still much room remains for mesonic ex-
change corrections even if heavy-meson exchanges are taken in-
to account. )

The reason why MEC are expected to play an essential
role in the 0%-0 -transition is of a principal nature
and reflects the approximate global chiral symmetry properties
of the strongly interacting nucleon system. The chi¥a1 inva-
riance of a system consisting of non-zero mass particles can be
realized only via the mechanism of spontaneous symmetry brea-
king, which leads, as is well known, to the appearance of mass-—
less Goldstone particles which could be, with a good accuracy,
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identified with pions. If the philosophy of the chiral invari-
ance of strong interaction is true and the mechanism of spon-
taneous breaking takes place, one should not expect, that the
generator of axial chiral rotation (the axial charge) can be
obtained as a simple sum of the purely nucleonic contributions
with the pionic mode completely neglected, as impulse approxi-
mation suggests. In order to expose the interplay between the
heavy-meson exchanges and the nuclear-structure correlation ef-
fects explicit use must be made of the correct OF and 0 -wave
functions. The latter arise from the diagonalization of the nuc-
lear residual interaction within the complete subspace of all
non-spurious Ol - 2he (the -3K0) configurations (see for example
ref /16/), For this aim a self-contained package of computer prog-
rams CURRME for calculating the reduced matrix elements (r.m.e.)
of the one- and two-body parts of the operator of the nuclear
weak axial charge density has been written in FORTRAN IV.We ap-—
ply the standard shell-model technique to transform the antisym-
metrized two-particle wave-function from the absolute to the re-
lative and centre-of-mass coordinates and use the Brody-Moshin~
sky coefficients(see the Appendix).We generated numerically the
r.m.e. both for the muon-capture and the beta~decay processes.
In the model subspace spanned over the Isy/9 up to the 2p 1/9
oscillator shells the J&, , -operator is determined by 946 va-
rious non-vanishing (coupled) reduced matrix elements of the
type

i P 4 = . s ’ ’
(ny €y dyinglyjo; IT|[ T gxenlIngly jg; nglyj,; J°T )8y

DL PERS nylyj, ngfyj, < nglyi,

El+f2—f3 -?4 = odd

Py =2n1+0) + 20,40, py =2mg+ly +2ny +10,

lpy-pyl =1 or3 Pys Pe<B

and the 1s-shell being completely occupied.

The result of the extended calculation of the nuclear mat-—
rix element will be presented in a forthcoming publication.

The authors are indebted to Drs. E.A.Ivanov and R.A.Eramzhy-
an for numerous and stimulating discussions and to Dr. L.A.To-
sunjan for valuable suggestions. We are grateful to Profs.
V.K.Lukyanov and L.Minchow for their active interest in the
present work.



- APPENDIX

The Reduced Matrix Elements of the Weak Axial Charge Density
MEC-Operator ’

Using the standard general method of seconq quantization for
an arbitrary spherical temsorial operator F{Y of rank r, pro-
jection k in the coordinate-spin space and rank t projection r
in the isospin space the following representation (in obvious
notations) in the jj-coupling scheme can be written

~n A~ M » : : Y Y] ,
prea s nolisl 550647 (7N O e (3 b incd Te 3tk d

T 127172 my my ~M'mymy -M"« M)
126’5'2
J.M, 8,03
M78%607 co1/2 12, 07t 6
M08 (0 12 /2y 07 12 12 9

3

-3 1y T, 03 r'2 r'l -0,
x (nyfy s dy i Dy lyrdgri JOT NI FEID Prips nglylys I0)x afpratea, ay
(A.1)
n12‘ (1— 8“1?1]1, ﬂzgz] 2(-1)J+T)-1/2' (AOZ)

The antisymmetrized two-particle states are kept in mind as

lnll’ljl;nzfzjz;JM;TT3> =NyyZ (Jymyiq m2|JM)(1/2r11/2r2/TT3)
mymomp,™ e,y (A.3)

mslmszr 172

x (fymg 1/2m, | s,ml)(fzmp%/zmuz/jzmg\;%r Py (D) §y D¢, DY, (D]

The single particle state |nfmym,;1/2r> refers to the harmonic
oscillator potential and is defined by

‘png mg m

. 7 =R (n me? (O,qS)xms X, o (A.4)
where Ypn, (6,¢) are the spherical harmonics normalized over

the unit sphere,

2
T g - H1/2
. 2n! 7,72 2
Ro(M= vy 70 “L %) A.5
af \/F(n+¥+3/2) " (a.5)
/11/

LYn+l/2(r2) are the Laguerre polynomial as defined in’' *', the

radial distance is expressed in units ba\/g/Mco and the phase
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of the radial functions is chosen so that they are positive at
the coordinate origin.

Using the standard technique of spherical tensor decomposi-
tion and the Racah-algebra technique, the following expression
for the reduced matrix elements- of the operator (2.1) is ob-
tained in the framework of the classical shell-model

k=0
(n€s()i NL; IT|| 3 [|nPs’("); N'L7:JT7) =

i

VB2 T (-nSi(Cil Ay (i e ]

el 2 000

g=1,2 (A-6)
T T U N SV ZIE S SV
AA.C. C i i ] )} ¢
lIClCISSTTJJKELL(OOO)(000)’L’L }

. , T T 1| [®B; 1 ¢

(5,5 %1 d1/21/2 1980 s
/

VRARAZ e 1se 1) |00 s i

1

Y g ({ Rnﬁ ([')J ci(Q[‘)'(bg(l') Rn;ef (I')I‘2 dr

[ Ry, (05, (@0 Ry, (RIR? d

i=l IAitl Ci-O Ei =1 g:-l Yl(’Amnr)
o- |
g

\/2 i=2 ‘,Ai:-o Ciul fl =] g:u2 Fo(l')

L

The transformation to the jj —coupling scheme can then be per-
formed according to the relation
(ny €5 jying 5 jo IJTI| F]: Hnglajginglyig J°T7) =npgpngy x
~ ~ ~ o~ ~An o~ gl 1/2 ']l gs 1/2 ]3
» 2}/?/5,(,773(,)\'3' j3j4XS i1le By 1/2 jof<ly 1/2 ig
ASATS NS T Vs T

U(LEIS: M) UL T8N 57 ) <nlNLA[n, 8 nyf o>

’ F ’ . 7 ’
<EN'LA ngly 1y 0> (MO T Il 4LaSeT

x (n€8(G); NL; JT|| F* ||n’0"8°G"); N'L*;3°T" ).

A~ ZASAFT N D,
PNpy = (7~ ‘(/4///,)/41,5.?3) =2 )= 1
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