


I. INTRODUCTION 

The time-like part of the two-body weak axial vector current 
attracts attention since Kubodera, Delorme and Rho/1/ pointed 
out that it could give rise to large effects even in the one­
pion exchange (OPE) limit. This is due to chiral invariance of 
the strongly interacting nucleon system and can be tested by 
calculating in detail nuclear axial charge density. For this 
aim the purely axial weak processes of the beta decay and muon 
capture between l6N (0-; 120 keV) and l6Q (0+; groundstate) are 
well suited because they are known to be very sensitive to the 
time component of the current and the one- and two-body parts 
of the transition operator are of the same magnitude 0(1/M). 
The idea is to calculate the ratioA~/A~ of the partial muon­
capture rate A~(O+-o-) to the partial beta-decay rate A,aco--o+) 
in order to learn how the induced pseudoscalar coupling cons­
tant gp is related to the axial nucleon form factor gA/2/. The 
answer to the question how significant is the mesonic exchange 
correction (MEC) to this first forbidden transition depends on 
a variety of conditions (see refs./3-B/ and the discussion there­
in) and particularly on the form of the two-body current opera­
tor,which might not be as simple as usually applied. It is our 
purpose to investigate the heavy-meson exchange contributions 
to the time component of the weak axial vector current. For 
this aim the two-nucleon MEG-operator is constructed using the 
phenomenological Lagrangian (PL) version of the hard pion mo­
del/9 • 10/. The meson exchanges, which are taken into account, 
are those due to pions, rho- and A 1 -mesons. 

2. THE TWO-BODY AXIAL MEG-OPERATOR 

The two-nucleon axial MEG-operator is constructed in the 
one-boson approximation starting with the hard-pion PL-model 
as proposed by Ogievetsky and Zupnik/ll/.The explicit momentum 
dependence of various form factors is specified up to -I GeV 
and the current algebra (CA) and the PCAC-hypothesis together 
with the important concept of the rho-dominance of the isospin 
current are consistently combined. The PL-technique enables one 
to apply the standard Feynman rules in order to write down all 
graphs of interest for a given process. The hard-pion PL is 
chosen to be invariant under the local SU 2xSU 2-transforrnation. 
This chiral gauge invariance is assumed to be broken only due 
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to the non-zero masses mp and mAl of the rho- and!A1-mesons 
.respectively. The presence of graphs with:A1-meson exchange 
within the hard pion method guarantees the consistency of the 
chiral approach with vector dominance/12,13/. In the Ogievetsky­
Zupnik version of the hard-pion model the effective PL for the 
:Arprr-system is completely determined by four phenomenological 
parameters ,mp , m AJ and the rho- and ·A 1 -mesons coupling con­
stants gp andgA1 respectively. So it is well defined how many 
p-and!Al-exchange diagrams must be taken into account, in other 
words, in contrast to the GA- and PGAG-method, an unambiguous 
counting of the pion and heavy-meson exchange graphs is ~nsured. 
The standard ideology accepted in the elementary-particle phy­
s'ics is that the hard pion method works up to the energy scale 
-I GeV -( m p, m A 1 ) and in this domain the corresponding PL# s 
provide a good description already in the tree-approximation 
of hadron amplitudes. That is the reason why the two-nucleon 
MEG-operator is well defined as a set of all possible tree-

h graphs in the hard-pion PL-model/9,10/, Because of the basic as­
sumption such an operator possesses the correct chiral SU2xSU2-
transformation properties and reproduces all standard PGAC-re­
sults in the soft-pion limit. The non-Born MEG-operators,which 
contribute significantly to the transition rates All (Af3) are pre.­
sented in the figure. In what follows the space part of the one­
meson exchange current will be completely neglected, and we 
shall treat the space part of the nuclear current only in the 
I.A. in the standard wayll~.After non-relativistic reduction 
and transformation to the coordinate space the time part of the 
axial vector MEG-operator is obtained as: 
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Here ri , ui , 1i refer to the position, spin, and isospin compo­
nent of the i -th nucleon undergoing the weak transition, k is 
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Feynman graph, representation of the two-nucleon axial 
MEG-operator in the tree-approximation: a) pair term, 
b) isobar excitation current, c) contact term, d) prr­
weak decay current, e) !Aiprr-current. JA stands for the 
weak leptonic axial-vector current. The S-matrix is 
sandwiched between the initial and final nuclear states. 

the linear momentum associated with the axial current, f (f N~ 
stands for the rrNN-(rrNN*) coupling constants; M*, for die :kss 
of the L\(1236) isobar state, b is the oscillator length parame­
ter. The radial dependence~(~ 
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determines the contribution from both the rho-weak decay cur­
rent and 'the :A lPrr-current (graphs d, e) and arises when the 
functionalform of the amplitude 
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is transformed into the convenient integral representation 

J(f) .. rr2f _ill_ cnr + itk .-; 
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The exact treatment of this quantity is necessary in the muon­
capture process because of the large transferred four-momentum 
k

2
"' 0.8m2 .For zero-transferred momentum the contribution from 

the rho~eson exchange graphs can be simplified using the ob­
vious relation 
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According to the KSFR relation 
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we rewrite C2.1) in the more convenient form 
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The term in the brack~ts is e~actly identical with the expres-­
sion usually exploited in calculating MEC to the transition 
operator of the nuclear axial charge density not only in the 
beta-decay process, where the approximation k-0 is nearly va­
lid and therefore the formulae C2.6) and C2.7) are justified, 
but also in the muon-capture/3,7 ,B/. This holds when m 2/Cm2 -m;)-1, 
m2 /4M2«1and m2/m2 «1is assumed. From now on thepnotftion 

11 • " a . . MEC r/t w1.ll be used tor th1.s restr1.cted form of the operator. 
Cheng, Lorazo and Goulard calculated correctly the rho-meson 
propagator in the prr-exchange graph and as an effect, the term 
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-J;;.. Y1 Mm r) is added to MEC 4 . We found 
Brrg M 2 m2 -m2 m2 P 

A p 11 rr 
by our method the same term CC2 from (2.7)) to be larger by 
a factor of Cl+~<v m~ /4M 2 ). This is due to the contribution from 
the A1prr-diagram and shows the real importance of taking into 
account the :A 1-meson exchange. The last term in Ci, the coeffi­
cient in front of which is 4/9 r;NN*f;/M(M + M*), represents the 
contribution coming from the 6 -isobar excited nucleon state 
and is generally omitted because of its small magnitude. A cor­
rect treatment of the muon-capture rates, however, requires 
the employment of the complete expression C2. 1). 

3. The MESON EXCl~NGE CORRECTIONS TO THE TRANSITION RATES 
' 

The partial transition rates of the muon-capture reaction 

IL- + 160(0+; gst) -+ 
16 N(O-; 120 keV) + vll 

and the inverse beta-decay process 

16 N ({); 120 keV) -+ 
160 co+; gst) + e- + ;:;e 

are usually calculated starting with the non-relativistic Hamil­
tonian' 15/ and are determined as 
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The conventional values of the weak coupling constants are used 

gy= 0.97 gA(q
2
) I q2=o.sm;=1.24 gp=7.5gA 

I . Ev 
gM=3.7gy GA-Gp=gp-(gp gA-1) 2M) gA(0)=1.26 

g/3 =0.932(1+ 3a.Z )/8/. 
2RE~ 

The energy of the outgoing neutrino in the muon-capture isE 11 = 
= 95.1 MeV and the maximal electron energy in'the beta-decay 
is E~ = 11.05 MeV. The operators (110) and (OOO;p) are defined 
as 

(110) =-i3 j 1 (E11
r)&.; r_ 
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The meson-exchange corrections to the partial transition rates 
are included via 
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In the simple picture of a closed core hypothesis for the o+ 
state and particle-hole configuration for the a--excited state 
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the nuclear matrix element in the impulse approximation is. de-
termined as 

.<0-l JIAI o+> 1 v3 (2s1/2 II JI A II1P 1/2 ) . (3. 4) , 
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We found easily the MEG-part in this simplif~ed situation to 
give 
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We defined the renormalization coefficient 8 as 

8 = .<o- I Jh I o+>:_ 

<0-\ JIAI o+ > 
and included also the parameter 

(3. 6) 

02 
z = .:.JL (3. 7) 

0~ 
Its value determines the reduction of the ratio AIL (O+-O)/Af3 (0--0~ 
after taking into account MEG-effects. In order to check our 
formulae we calculated the renormalization of the (2s 1; 2-1p1; 2) 

single-particle matrix element for the muon capture (8
11

) and 
the beta decay (8~) using both MEG:t and the representations 
(2.1) and (2.7). For each operator the parameter z is also pre­
sented (see the Table). 

4. DISCUSSION 

The expressions (2.7) show that the correct treatment of the 
heavy-meson graphs leads to an additional term(C:!),'which works 
in the opposite direction of the dominating one-pion exchange 
contributions. As an effect the partial rates derived from the 
hard-pion operator are significantly smaller as compared to 
the MEC~t -results (the table). In the muon capture, how~ver, 
the contributions coming from the usually omitted (i7l _-;2 )•rij 
part, which contains spherical Bessel-functions of odd power 
and arises when the operator (2.1) is transformed from the abso­
lute to relative and centre-of-mass coordinates, compensate to 
some extent the heavy-meson exchange corrections. In the beta­
qecay process the term (al _;2 )·~ij is suppressed because of the 
small transferred momentum. So the influence of the{>- and !A 1 -

diagrams in this case is not strongly attenuated and the en­
hancement of the single-particle matrix element is essentially 
smaller (by 28%) as the result obtained after the standard ver­
sion MEG'4"t, was 'used. The parameter z, however, increases only 
by about 10% and this is in our opinion not so crucial for the 
ratio~ /gA as it has been feared/7/ because of the experimen­
tal-uncertainties. So we conclude that in the simplified nuc-
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Table 

The reduced matrix elements of the two-body exchange 
operator is labelled by(nrl ,nr2;; JTIIJ~xchl!nr3,nr4;JT'). 
The notation 1 .. l'SI/2, 2:.1P3/2 , 33! 1Pl/2 and 63!. 2s I/2 
is used. For other symbols see the text ' 

------ - - - - - - - - - - - - - - - - - - - - - -
quantum numbers muon capture beta decay 
of the r.m.e. r.m.e. r.m.e. 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

nr1 nr2 nr3 nr4 JTT' MECrst MECh-p MECrat l4ECh-p 
- - - _4_ - - - - _4_ - - - - 1 - - - - _4_ 

5 1 3 1 001 

5 1 3 1 101 

5 3 3 ) 001 

5 2 3 2 101 

5 2 ) 2 201 

(o- I J 4 I o+) ____ ~X£h __ _ 

__ ~o=l~1!1~+~ _ 
s 

../\ (sec-1 ) 

type of the 
2P~r~t2r_ 

z 

- -.000823 - -.000125 
- - - - - - - - - - - - - - - -

-. 372979 -.28)696 -.37212) -.)11493 
- - - - - - - - - - - - - - - - - - - - -
-.0022tl9 .006014 .027297 .0)5498 
- - - - - - - - - - - - - - - - - - - - -
·-.001402 .003744 .016716 .021743 - - - - - - - - - - - - - - - - - - - - -
-.001809 -.001152 .021580 .027958 

- - - - - - - - - - - - - - - - - - - - -
-.189293 -.138502 -.152629 -.112372 

-.324667 -.109847 - - - - - - - - ~ 
1.33 1.24 1.78 1.57 

4.82 • 103 4.2 • 103 1.29 1.01 

MECrst 
- - _4_ 

0.56 

MECh-p 
- - 4 ---
0.62 

experiment 

(0.57) 

lear-structure picture still much room remains for mesonic ex­
change corrections even if heavy-meson exchanges are taken in­
to account. 

The reason whz MEC are expected to play an essential 
role in the o+-o -transition is of a principal nature 
and reflects the approximate global chiral symmetry'pioperties 
of the strongly interacting nucleon system. The chiral inva­
riance of a system consisting of non-zero mass particles can be 
realized only via the mechanism of spontaneous symmetry brea­
king, which leads, as is well known, to the appearance of mass­
less Goldstone particles which could be, with a good accuracy, 
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identified with pions. If the philosophy of the chiral invari­
ance of strong interaction is true and the mechanism of spon­
taneous breaking takes place, one should not expect, that the 
generator of axial chiral rotation (the axial charge) can be 
obtained as a simple sum of the purely nucleonic contributions 
with the pionic mode completely neglected, as impulse approxi­
mation suggests. In order to expose the interplay between the 
heavy-meson exchanges and the nuclear-structure correlation ef­
fects explicit use must be made of the correct o+ and b--wave 
functions. The latter arise from the diagonalization of the nuc­
lear residual interaction within the complete subspace of all 
non-spurious Otlw- 2flw (tfiw- 3flw) configurations (see for example 
ref/16/), For this aim a self-contained package of computer prog­
rams CURRME for calculating the reduced matrix elements(r.m.e.) 
of the one- and two-body parts of the operator of the nuclear 
weak axial charge density has been written in FORTRAN IV.We ap­
ply the standard shell~odel technique to transform the antisym­
metrized two-particle wave-function from the absolute to the re­
lative and centre-of-mass coordinates and use the Brody-Moshin­
sky coefficients(see the Appendix).We generated numerically the 
r.m.e. both for the muon-capture and the beta-decay processes. 
In the model subspace spanned over the ls 1/2 up to the 2p 1/2 
oscillator shells the J~xch-operator is determined by 946 va­
rious non-vanishing (coupled) reduced matrix elements of the 
type 

(nl f 1 j 1 ; n2 £ 2 j 2 ; JT II J :xcJ I n 3 r 3 j 3 ; n4 £ 4j 4; J, T ') 0 JJ, 

nIp 1 j 1 .$ n 2£2 j 2 n3£3j4 < n4£4j4 

e l + e 2 - £3 - £4 == odd 

P1 = 2nl + £1 + 2n 2 + £ 2 p2 = 2n 3 + f 3 + 2n 4 + £4 

IP1-p 2 1 = 1 or3 p1, p2 <6 

and the Is-shell being comp~etely occupied. 
The result of the extended calculation of the nuclear mat­

rix element will be presented in a forthcoming publication. 
The authors are indebted to Drs. E.A.Ivanov and R.i\..Eramzhy­

an for numerous and stimulating discussions and to Dr. L.A.To­
sunjan for valuable suggestions. We are grateful t'o Profs . 
V.K.Lukyanov and L.Mlinchow for their active interest in the 
present work. 
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APPENDIX 

The Reduced Matrix Elements of the Weak Axial Charge Density 
MEG-Operator 

Using the standard general method of secon~ quantization for 
an arbitrary spherical tensorial operator F~~ of rank r,pro­
jection K in the coordinate-spin space and rank t projection r 
in the isospin space the following representation (in obvious 
notations) in the jj-coupling scheme can be written 

FkK • _.!.. }; n-1n-! ]J' 00' (-) J-M +l1- q ( J j2 j l)(J' ,i2, jJ)( J', k J ) 
tr 4 1212 -Mm 2 m1 -Mm 2m1 -MKM 
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2
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(A. I) 
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1
.. o . (-1)1+'11)-1/2 

~ 1r1 I• n2[2l 2 ' 
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The antisymmetrized two-particle states are kept in mind as · 

ln1 f1 j 1;n 2f 2j 2 ;JM;TT3> =n 12 I (j1m 1j 2 m 2 1JM)(l/2r11/2r2/TT 3 ) 
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The single particle state 1 nfmym 
11

; 1/2 r > refers to the harmonic 
oscillator potential and is defined by 

t/Jnn mom r = R o (r) Yo 
0 

(O,¢)X X , (A.4) 
t . l s nL erne m 8 T 

where Yfmy (0,¢) are the spherical harmonics normalized over 

the unit sphere, 
r2 

p -:z f+I/2 2 r f Ln (r ) (A.S) 2n! 
Rnf (r) = Jr(n+f+3/2) 

Lfn+l/2 (r2) are the Laguerre polynomial as defined id 171, the 

radial distance is expressed in units b"" JK /Mw and the phase 
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of the radial functions is chosen so that they are positive at 
the coordinate origin. 

Using the standard technique of spherical tensor decomposi­
tion and the Racah-algebra technique, the following expression 
for the reduced matrix elements;of the operator (2.1) is ob­
tained in the framework of the classical shell-model 

k=O 
(nf·s(j);NL; JTII Jt=llln'P'·s'(j'); N'L';JT')= 

J6/3(J6.)2}; (-1)ci(ci1 :Ai) (-1)J+i'+f+s'~.[1+((-1)s+s']i 
j,.l,2 0 0 0 I l 

g=l,2 (A.6) 
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The transformation to the jj -coupling scheme can then be per­
formed according to the relation 

(n1 ci i-~; n~ e~ i 2
; ~T~l F~ ~I~ 3 ~ 3 

i 3; {n 4ef
1
4i :;1~'-Ti':}"'{;:z :~~xi 3 } 
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