

сообщения объєдиивиного ииетитута ядериых

 исследоваийдубна

$$
25 / 10-82
$$

E4-82-586

M.Kirchbach, E.Truhlik*

MESON-EXCHANGE CORRECTIONS

TO THE NUCLEAR
WEAK AXIAL CHARGE DENSITY
IN THE HARD PION MODEL

[^0]
1. INTRODUCTION

The time-like part of the two-body weak axial vector current attracts attention since Kubodera, Delorme and Rho/1/ pointed out that it could give rise to large effects even in the onepion exchange (OPE) limit. This is due to chiral invariance of the strongly interacting nucleon system and can be tested by calculating in detail nuclear axial charge density. For this aim the purely axial weak processes of the beta decay and muon capture between ${ }^{16} \mathrm{~N}\left(\mathrm{O}^{-} ; 120 \mathrm{keV}\right)$ and ${ }^{16} \mathrm{O}\left(\mathrm{O}^{+}\right.$; groundstate) are well suited because they are known to be very sensitive to the time component of the current and the one- and two-body parts of the transition operator are of the same magnitude $O(1 / \mathrm{M})$. The idea is to calculate the ratio $\Lambda_{\mu} / \Lambda_{\beta}$ of the partial muoncapture rate $\Lambda_{\mu}\left(0^{+}-0^{-}\right)$to the partial beta-decay rate $\Lambda_{\beta}\left(0^{-}-0^{+}\right)$ in order to learn how the induced pseudoscalar coupling constant g_{p} is related to the axial nucleon form factor $\mathrm{gA}^{/ 2 / 2 /}$. The answer to the question how significant is the mesonic exchange correction (MEC) to this first forbidden transition depends on a variety of conditions (see refs./3-8/ and the discussion therein) and particularly on the form of the two-body current operator, which might not be as simple as usually applied. It is our purpose to investigate the heavy-meson exchange contributions to the time component of the weak axial vector current. For this aim the two-nucleon MEC-operator is constructed using the phenomenological Lagrangian (PL) version of the hard pion model/9,10/. The meson exchanges, which are taken into account, are those due to pions, rho- and A_{1}-mesons.

2. THE TWO-BODY AXIAL MEC-OPERATOR

The two-nucleon axial MEC-operator is constructed in the one-boson approximation starting with the hard-pion PL-model as proposed by Ogievetsky and Zupnik/11/.The explicit momentum dependence of various form factors is specified up to $\approx 1 \mathrm{GeV}$ and the current algebra (CA) and the PCAC-hypothesis together with the important concept of the rho-dominance of the isospin current are consistently combined. The PL-technique enables one to apply the standard Feynman rules in order to write down all graphs of interest for a given process. The hard-pion PL is chosen to be invariant under the local $\mathrm{SU}_{2} \times \mathrm{xU}_{2}$-transformation. This chiral gauge invariance is assumed to be broken only due
to the non-zero masses m_{ρ} and $m_{A_{1}}$ of the rho- and A_{1}-mesons respectively. The presence of graphs with:A1-meson exchange within the hard pion method guarantees the consistency of the chiral approach with vector dominance/12,13/. In the OgievetskyZupnik version of the hard-pion model the effective PL for the $A_{1} \rho \pi^{-s y s t e m}$ is completely determined by four phenomenological parameters, $\mathrm{m}_{\rho}, \mathrm{m}_{\mathrm{A}_{1}}$ and the rho- and A_{1}-mesons coupling constants g_{ρ} and $g_{A_{1}}$ respectively. So it is well defined how many ρ-and A_{1}-exchange diagrams must be taken into account, in other words, in contrast to the CA- and PCAC-method, an unambiguous counting of the pion and heavy-meson exchange graphs is ensured. The standard ideology accepted in the elementary particle physics is that the hard pion method works up to the energy scale $\sim 1 \mathrm{GeV}\left(\mathrm{m}_{\rho}, \mathrm{m}_{\mathrm{A}_{1}}\right)$ and in this domain the corresponding PL's provide a good description already in the tree-approximation of hadron amplitudes. That is the reason why the two-nucleon MEC-operator is well defined as a set of all possible treegraphs in the hard-pion PL-model $19,10 /$. Because of the basic assumption such an operator possesses the correct chiral $\mathrm{SU}_{2} \times \mathrm{XU}_{2}-$ transformation properties and reproduces all standard PCAC-results in the soft-pion limit. The non-Born MEC-operators, which contribute significantly to the transition rates $\Lambda_{\mu}\left(\Lambda_{\beta}\right)$ are presented in the figure. In what follows the space part of the onemeson exchange current will be completely neglected, and we shall treat the space part of the nuclear current only in the I.A. in the standard way/ ${ }^{14 / \text {. After non-relativistic reduction }}$ and transformation to the coordinate space the time part of the axial vector MEC-operator is obtained as:

$$
\begin{aligned}
& J_{e x c h}^{4}=\sum_{i \neq j} \ell^{-i \vec{k}_{\nu} \cdot \vec{r}_{i}} \vec{\sigma}_{j} \cdot \hat{r}_{i j}\left\{C_{1} Y_{1}\left(A m_{\pi} r\right)+C_{2} F_{0}(r)\right\} i\left(\vec{r}_{i} \times \vec{r}_{j}\right)_{-} \\
& Y_{1}(x)=\frac{\ell^{-x}}{x}\left(1+\frac{1}{x}\right) \\
& \vec{r}=\frac{1}{b \sqrt{2}}\left(\vec{r}_{i}-\vec{r}_{j}\right) \quad \vec{R}=\frac{1}{b \sqrt{2}}\left(\vec{r}_{i}+\vec{r}_{j}\right) \quad \hat{r}_{i j}=\frac{\vec{r}}{|\vec{r}|} \\
& b=\sqrt{\hbar / M \omega}
\end{aligned}
$$

-

$$
\mathrm{C}_{1}=-\frac{\mathrm{g}_{\mathrm{A}} \mathrm{~g}_{\rho}^{2} \mathrm{~m}_{\pi}^{2}}{8 \pi \mathrm{~m}_{\rho}^{2}}\left\lceil 1+\frac{2 \mathrm{f}_{\frac{2 N N^{*}}{2} \mathrm{~m}_{\rho}^{2}}^{9 \mathrm{~g}_{\rho}^{2} \mathrm{M}\left(\mathrm{M}+\mathrm{M}^{*}\right)}}{]} \quad \mathrm{C}_{2}=-\frac{\mathrm{g}_{\mathrm{A}} \mathrm{~g}_{\rho}^{2}}{16 \pi}\right.
$$

Here $\overrightarrow{\mathrm{r}}_{\mathrm{i}}, \vec{\sigma}_{\mathrm{i}}, \vec{r}_{\mathrm{i}}$ refer to the position, spin, and isospin component of the i-th nucleon undergoing the weak transition, k is

Feynman graph representation of the two-nucleon axial MEC-operator in the tree-approximation: a) pair term, b) isobar excitation current, c) contact term, d) $\rho \pi^{-}$ weak decay current, e) $A_{1} \rho \pi$-current. J ${ }^{A}$ stands for the weak leptonic axial-vector current. The S-matrix is sandwiched between the initial and final nuclear states.
the linear momentum associated with the axial current, $f_{-}\left(f_{\pi N *}\right)$ stands for the $\pi \mathrm{NN}-\left(\pi \mathrm{NN}^{*}\right)$ coupling constants; M^{*}, for the mass of the $\Delta(1236)$ isobar state, b is the oscillator length parameter. The radial dependence $F_{0}(r)$

$$
\begin{align*}
& \mathrm{F}_{0}(\mathrm{r})=\int_{0}^{1} \mathrm{dt} \rho^{-\mathrm{Br}} \dot{b}_{0}(\mathrm{Akrt})\left\{1+\left(\frac{1}{\mathrm{~m}_{\rho}^{2}}+\frac{\kappa V}{4 \mathrm{M}^{2}}\right) \mathrm{a}^{2}\left[1-\frac{2}{\mathrm{Br}}\left(1+\frac{1}{\mathrm{Br}}\right)\right]\right. \\
& \left.\quad+\frac{\kappa_{V}}{4 \mathrm{~m}^{2} \mathrm{M}^{2}} \mathrm{a}^{4}\left[1-\frac{4}{\mathrm{Br}}\left(1+\frac{1}{\mathrm{Br}}\right)\right]\right\} \tag{2.2}\\
& \mathrm{a}=\sqrt{\mathrm{t}(1-\mathrm{t}) \mathrm{k}^{2}+t\left(\mathrm{~m}_{\rho}^{2}-\mathrm{m}_{\#}^{2}\right)+\mathrm{m}_{\pi}^{2}} \\
& \kappa_{V}=\mu_{p}-\mu_{\mathrm{n}}=3.7 \quad B=a b \sqrt{2} \quad A=\mathrm{b} \sqrt{2}
\end{align*}
$$

determines the contribution from both the rho-weak decay current and the $A_{1} \rho \pi$-current (graphs d,e) and arises when the functional form of the amplitude

$$
\begin{equation*}
\mathrm{J}(\overrightarrow{\mathrm{r}})=\int \frac{\ell \overrightarrow{\mathrm{i}} \cdot \overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{r}} \mathrm{~d} \overrightarrow{\mathrm{q}}}{\left.\left[(\overrightarrow{\mathrm{R}}+\overrightarrow{\mathrm{q}})^{2}+\mathrm{m}_{\rho}^{2}\right\rceil \overrightarrow{\mathrm{q}}^{2}+\mathrm{m}_{\pi}^{2}\right\rceil} \tag{2.3}
\end{equation*}
$$

is transformed into the convenient integral representation

$$
\begin{equation*}
J(\vec{r})=\pi^{2} \int \frac{d t}{a} \ell^{-a r+i t \vec{k} \cdot \vec{r}} \tag{2.4}
\end{equation*}
$$

The exact treatment of this quantity is necessary in the muoncapture process because of the large transferred four-momentum $\mathrm{k}^{2}=0.8 \mathrm{~m}_{\pi}^{2}$.For zero-transferred momentum the contribution from the rho-meson exchange graphs can be simplified using the obvious relation

$$
\frac{1}{\left(m_{\pi}^{2}+q^{2}\right)\left(m_{\rho}^{2}+q^{2}\right)} \frac{1}{m_{\rho}^{2}-m_{\pi}^{2}}\left(\frac{1}{m_{\pi}^{2}+q^{2}}-\frac{1}{m_{\rho}^{2}+q^{2}}\right)
$$

It leads to

$$
\begin{equation*}
\int \frac{\ell^{\mathrm{i} \overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{r}}} \mathrm{~d} \overrightarrow{\mathrm{q}}}{\left[\overrightarrow{\mathrm{q}}^{2}+\mathrm{m}_{\pi}^{2}\right]\left[\overrightarrow{\mathrm{q}}^{2}+\mathrm{m}_{\rho}^{2}\right]}=\frac{2 \pi^{2}}{\mathrm{~m}_{\rho}^{2}-\mathrm{m}_{\pi}^{2}} \frac{1}{\mathrm{r}}\left[\ell^{-\mathrm{m}_{\pi}^{r}}-\ell^{-\mathrm{m}} \rho^{\mathrm{r}}\right] \tag{2.5}
\end{equation*}
$$

As a result, the radial dependence becomes

$$
\begin{align*}
& F_{0}(r)=\frac{2}{m_{\rho}^{2}-m_{\pi}^{2}}\left\{m_{\pi}^{2}\left(1+\frac{\kappa V^{\prime} m_{\pi}^{2}}{4 M^{2}}\right)\left(1+\frac{\mathrm{m}^{2}}{\mathrm{~m}_{\cdot}^{2}}\right) \mathrm{Y}_{\rho}\left(\mathrm{Am}_{\pi} \mathrm{r}\right)\right. \tag{2.6}\\
& \left.-m_{\rho}^{2}\left(1+\frac{\kappa_{V} m_{\rho}^{2}}{4 M^{2}}\right)\left(1+\frac{m_{\rho}^{2}}{m_{\rho}^{2}}\right) Y_{1}\left(A m_{\rho} r\right)\right\}
\end{align*}
$$

According to the KSFR relation

$$
2 \mathrm{f}_{\pi}^{2} \mathrm{~g}_{\rho}^{2}=\mathrm{m}_{\rho}^{2}
$$

and the Goldberger-Treiman relation

$$
\mathrm{Mg}_{\mathrm{A}}=\mathrm{g}_{\mathrm{r}} \mathrm{f}_{\pi}
$$

we rewrite (2.1) in the more convenient form

$$
\begin{aligned}
& J_{\text {exch }}^{4}=\sum_{i \neq j} \rho^{-i \vec{k}_{\nu} \vec{r}_{i} \vec{\sigma}_{j} \cdot \hat{r}_{i j}\left\{C_{1}^{\prime} Y_{1}\left(A m_{\pi} r\right)+C_{2}^{\prime} Y_{1}\left(A m_{\rho} r\right)\right\} i\left(\vec{r}_{i} \times \vec{r}_{j}\right)-} \\
& C_{1}^{\prime}=-\frac{g_{r}^{2} m_{\pi}^{2}}{8 \pi g_{A} M^{2}}\left\{\left[\frac{1}{2}+\frac{1}{2} \frac{m_{\rho}^{2}}{\left(m_{\rho}^{2}-m_{\pi}^{2}\right)}\left(1+\frac{\kappa V^{m^{2}}}{4 M^{2}}\right)\left(1+-\frac{m_{\pi}^{2}}{m_{\rho}^{2}}\right)\right]+\frac{4 f_{\pi N N^{*}}^{2} f_{\pi}^{2}}{9 M\left(M+M^{*}\right)}\right\}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{C}_{2}^{\prime}=-\frac{\mathrm{g}_{\mathrm{r}}^{2} \mathrm{~m}_{\pi}^{2}}{8 \pi \mathrm{~g}_{\mathrm{A}} \mathrm{M}^{2}}\left\{-\frac{\mathrm{m}_{\rho}^{2}}{\mathrm{~m}_{\rho}^{2}-\mathrm{m}_{\pi}^{2}} \frac{\mathrm{~m}_{\rho}^{2}}{\mathrm{~m}_{\pi}^{2}}\left(1+\frac{\kappa_{\mathrm{V}}^{\cdot \mathrm{m}_{\rho}^{2}}}{4 \mathrm{M}^{2}}\right)\right\} \tag{2,7}
\end{equation*}
$$

The term in the brackets is exactly identical with the expres-sion usually exploited in calculating MEC to the transition operator of the nuclear axial charge density not only in the beta-decay process, where the approximation $\mathrm{k} \sim 0$ is nearly valid and therefore the formulae (2.6) and (2.7) are justified, but also in the muon-capture ${ }^{3,7,3 /}$. This holds when $m_{\rho}^{2} /\left(\mathrm{m}_{\rho}^{2}-\mathrm{m}_{\pi}^{2}\right) \sim 1$, $\mathrm{m}_{\pi}^{2} / 4 \mathrm{M}^{2} \ll 1$ and $\mathrm{m}_{\pi}^{2} / \mathrm{m}^{2} \ll 1$ is assumed. From now on the ${ }^{\rho}$ notation MEC ${ }_{4}^{\text {rat }}$ will be used ${ }^{2}$ or this restricted form of the operator. Cheng, Lorazo and Goulard calculated correctly the rho-meson propagator in the $\rho \pi$-exchange graph and as an effect, the term $\frac{\mathrm{g}_{\mathrm{r}}^{2} \mathrm{~m}_{\pi}^{2}}{8 \pi \mathrm{~g}_{\mathrm{A}} \mathrm{M}^{2}} \frac{\mathrm{~m}_{\rho}^{2}}{\mathrm{~m}_{\rho}^{2}-\mathrm{m}_{\pi}^{2}} \frac{\mathrm{~m}_{\rho}^{2}}{\mathrm{~m}_{\pi}^{2}} \mathrm{Y}_{1}\left(\mathrm{Am}_{\rho} \mathrm{r}\right)$ is added to $\mathrm{MEC}_{4}^{\mathrm{rst} / 7 /}$. We found by our method the same term (C_{2}^{\prime} from (2.7)) to be larger by a factor of ($1+\kappa_{V} \mathrm{~m}_{\rho}^{2} / 4 \mathrm{M}^{2}$). This is due to the contribution from the $A_{1} \rho \pi$-diagram and shows the real importance of taking into account the A_{1}-meson exchange. The last term in C_{1}^{\prime}, the coefficient in front of which is $4 / 9 \mathrm{f}_{\pi \mathrm{NN}}^{2} \mathrm{f}_{\pi}^{2} / \mathrm{M}\left(\mathrm{M}+\mathrm{M}^{*}\right)$, represents the contribution coming from the Δ-isobar excited nucleon state and is generally omitted because of its small magnitude. A correct treatment of the muon-capture rates, however, requires the employment of the complete expression (2.1).

3. The MESON EXCHANGE CORRECTIONS TO THE TRANSITION RATES

The partial transition rates of the muon-capture reaction

$$
\mu^{-}+{ }^{16} \mathrm{O}\left(0^{+} ; \mathrm{gst}\right) \rightarrow{ }^{16} \mathrm{~N}\left(0^{-} ; 120 \mathrm{keV}\right)+\nu_{\mu}
$$

and the inverse beta-decay process

$$
{ }^{16} \mathrm{~N}\left(\sigma^{-} ; 120 \mathrm{keV}\right) \rightarrow{ }^{16} \mathrm{O}\left(0^{+} ; \mathrm{gst}\right)+\mathrm{e}^{-}+\bar{\nu}_{e}
$$

are usually calculated starting with the non-relativistic Hamiltonian ${ }^{15 /}$ and are determined as

$$
\begin{align*}
& \Lambda_{\mu}\left(0^{+} \rightarrow 0^{-}\right)=16.75 \mathrm{~g}_{\mathrm{A}}^{2}\left(\mathrm{q}^{2}\right) 10^{3}|<\sigma| J_{\mathrm{IA}}^{(\mu)}\left|0^{+}>\right|^{2} \\
& \Lambda_{\beta}\left(0^{-} \rightarrow 0^{+}\right)=21.3 \mathrm{~g}_{\mathrm{A}}^{2}(0)\left|<0^{-}\right| \mathrm{J}_{\mathrm{A}}^{(\beta)}\left|0^{+}>\right|^{2} \tag{3.1}\\
& J_{\mathrm{IA}}^{(\mu)}=\frac{1}{M}(000 ; \mathrm{p})+\frac{1}{\sqrt{3}} \frac{\mathrm{G}_{\mathrm{A}}-\mathrm{G}_{\mathrm{p}}}{\mathrm{~g}_{\mathrm{A}}\left(\mathrm{q}^{2}\right)}(110) \\
& \mathrm{J}_{\mathrm{IA}}^{(\beta)}=\frac{1}{M}(000 ; \mathrm{p})-\frac{1}{\sqrt{3}} \mathrm{~g}_{\beta}(110) .
\end{align*}
$$

The conventional values of the weak coupling constants are used

$$
\begin{aligned}
& g_{V}=\left.0.97 \quad g_{A}\left(q^{2}\right)\right|_{q} ^{2}=0.8 m_{\pi}^{2}=1.24 \quad g_{p}=7.5 g_{A} \\
& g_{M}=3.7 g_{V} \quad G_{A}-G_{p}=g_{A}\left(1-\left(g_{p} / g_{A}-1\right) \frac{E_{\nu}}{2 M}\right) \quad g_{A}(0)=1.26 \\
& g_{\beta}=0.932\left(1+\frac{3 a Z}{2 R E_{\nu}^{\circ}}\right)^{/ 8 /} .
\end{aligned}
$$

The energy of the outgoing neutrino in the muon-capture is $\mathrm{E}_{\nu}=$ $=95.1 \mathrm{MeV}$ and the maximal electron energy in the beta-decay is $E_{\nu}^{\circ}=11.05 \mathrm{MeV}$. The operators (110) and (000;p) are defined as

$$
\begin{align*}
& (110)=-\sqrt{3} j_{1}\left(E_{\nu} r\right) \vec{\sigma} \cdot \hat{r} \tau_{\ldots}, \tag{3.2}\\
& (000 ; p)=j_{0}\left(E_{\nu} r\right) \vec{\sigma} \cdot \vec{\nabla} \quad \tau_{-} .
\end{align*}
$$

The meson-exchange corrections to the partial transition rates are included via

$$
\begin{aligned}
& \Lambda_{\mu}\left(0^{+} \rightarrow 0^{-}\right)=16.75 \mathrm{~g}_{\mathrm{A}}^{2}\left(\mathrm{q}^{2}\right) 10^{3}|<\sigma| \mathrm{J}_{1 \mathrm{~A}}^{(\mu)}+\frac{1}{\sqrt{2} \mathrm{~g}_{\mathrm{A}}^{\left(\mathrm{q}^{2}\right)}} \mathrm{J}_{\text {exch }}^{4(\mu)}\left|0^{+}>\right|^{2} \\
& \Lambda_{\beta}\left|\left(0^{-}-0^{+}\right)=21.3 \mathrm{~g}_{\mathrm{A}}^{2}(0)\right|<0^{-}\left|\mathrm{J}_{\mathrm{IA}}^{(\beta)}+\frac{1}{\sqrt{2} \mathrm{~g}_{\mathrm{A}}(0)} \mathrm{J}_{\text {exch }}^{4(\beta)}\right| 0^{+}>\left.\right|^{2} \\
& \mathrm{~J}^{\mathrm{h}}=\mathrm{F}_{\mathrm{A}}+\frac{1}{\sqrt{2} \mathrm{~g}_{\mathrm{A}}} \mathrm{~J}_{\text {exch }}^{4} .
\end{aligned}
$$

In the simple picture of a closed core hypothesis for the 0^{+} state and particle-hole configuration for the 0^{-}-excited state

$$
10^{-} ; 120 \mathrm{keV}>=\left(\left(2 \mathrm{~s}_{1 / 2} 1 \mathrm{p}_{\mathrm{i} / 2}^{-1}\right)_{\mathrm{T}=1 \mathrm{~T}_{3}-1}^{\mathrm{J}=\mathrm{M}=0}\right.
$$

the nuclear matrix element in the impulse approximation is determined as

$$
\begin{equation*}
\left.<0^{-}\left|\mathrm{J}_{1 \mathrm{~A}}\right| 0^{+}\right\rangle=\frac{1}{\sqrt{3}}\left(2 \mathrm{~s}_{1 / 2}\left\|\mathrm{~J}_{\mathrm{IA}}\right\| 1 \mathrm{p}_{1 / 2}\right) \tag{3.4}
\end{equation*}
$$

We fónd easily the MEC-part in this simplified situation to give

$$
\begin{aligned}
& \left.<0^{-}\left|\mathrm{J}_{\text {exch }}^{4}\right| 0^{+}\right\rangle=
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{J}=0,1,2 \\
& T, T^{\prime} \\
& \text { We defined the renormalization coefficient } \delta \text { as }
\end{aligned}
$$

$$
\begin{equation*}
\delta=\frac{\left\langle 0^{-}\right| \mathrm{J}^{\mathrm{h}}\left|0^{+}\right\rangle}{\left\langle 0^{-}\right| \mathrm{J}_{\mathrm{IA}}\left|0^{+}\right\rangle} \tag{3.6}
\end{equation*}
$$

and included also the parameter

$$
\begin{equation*}
z=\frac{\delta_{\mu}^{2}}{\delta_{\beta}^{2}} \tag{3.7}
\end{equation*}
$$

Its value determines the reduction of the ratio $\Lambda_{\mu}\left(0^{+}-0^{-}\right) / \Lambda_{\beta}\left(0^{-}-0^{+}\right)$ after taking into account MEC-effects. In order to check our formulae we calculated the renormalization of the ($2 \mathrm{~s}_{1 / 2}-1 p_{1 / 2}$) single-particle matrix element for the muon capture (δ_{μ}) and the beta decay $\left(\delta_{\beta}\right)$ using both $\operatorname{MEC}_{4}^{\mathrm{rst}}$ and the representations (2.1) and (2.7). For each operator the parameter z is also presented (see the Table).

4. DISCUSSION

The expressions (2.7) show that the correct treatment of the heavy-meson graphs leads to an additional term (C_{2}^{\prime}), which works in the opposite direction of the dominating one-pion exchange contributions. As an effect the partial rates derived from the hard-pion operator are significantly smaller as compared to the MECA ${ }^{\text {st }}$-results (the table). In the muon capture, however, the contributions coming from the usually omitted $\left(\vec{\sigma}_{1} \overrightarrow{-r}_{2}\right) \hat{r}_{i j}$ part, which contains spherical Bessel-functions of odd power and arises when the operator (2.1) is transformed from the absolute to relative and centre-of-mass coordinates, compensate to some extent the heavy-meson exchange corrections. In the betadecay process the term $\left(\vec{\sigma}_{1}-\vec{\sigma}_{2}\right) \cdot r_{i j}$ is suppressed because of the small transferred momentum. So the influence of the $\rho-$ and $A_{1}-$ diagrams in this case is not strongly attenuated and the enhancement of the single-particle matrix element is essentially smaller (by 28\%) as the result obtained after the standard version $\operatorname{MEC} \mathrm{C}_{4}^{\mathrm{rt}}$, was used. The parameter z , however, increases only by about 10% and this is in our opinion not so crucial for the ratio g_{p} / g_{A} as it has been feared/7/ because of the experimental uncertainties. So we conclude that in the simplified nuc-

Table

The reduced matrix elements of the two-body exchange operator is labelled by (nr1 , nr2; ; JT $\left\|\mathrm{J}_{\text {exch }}^{4}\right\|$ nr3, nr4; JT'). The notation $1 \equiv 1 s_{1 / 2}, 2 \equiv 1 p_{3} / 2,3 \equiv 1 p_{1 / 2}$ and $5 \equiv 2 s_{1 / 2}$ is used. For other symbols see the text

lear-structure picture still much room remains for mesonic exchange corrections even if heavy-meson exchanges are taken into account.

The reason why MEC are expected to play an essential role in the $0^{+}-0$-transition is of a principal nature and reflects the approximate global chiral symmetry properties of the strongly interacting nucleon system. The chiral invariance of a system consisting of non-zero mass particles can be realized only via the mechanism of spontaneous symmetry breaking, which leads, as is well known, to the appearance of massless Goldstone particles which could be, with a good accuracy,
identified with pions. If the philosophy of the chiral invariance of strong interaction is true and the mechanism of spontaneous breaking takes place, one should not expect, that the generator of axial chiral rotation (the axial charge) can be obtained as a simple sum of the purely nucleonic contributions with the pionic mode completely neglected, as impulse approximation suggests. In order to expose the interplay between the heavy-meson exchanges and the nuclear-structure correlation effects explicit use must be made of the correct 0^{+}and 0^{-}-wave functions. The latter arise from the diagonalization of the nuclear residual interaction within the complete subspace of all non-spurious $0 \hbar_{\omega-2 \hbar}$ ($1 \hbar \omega-3 \hbar \omega$) configurations (see for example ref. $/ 16 /$). For this aim a self-contained package of computer programs CURRME for calculating the reduced matrix elements (r.m.e.) of the one- and two-body parts of the operator of the nuclear weak axial charge density has been written in FORTRAN IV.We apply the standard shell-model technique to transform the antisymmetrized two-particle wave-function from the absolute to the relative and centre-of-mass coordinates and use the Brody-Moshinsky coefficients (see the Appendix). We generated numerically the r.m.e. both for the muon-capture and the beta-decay processes. In the model subspace spanned over the $1 s_{1 / 2}$ up to the $2 p_{1 / 2}$ oscillator shells the $\mathrm{J}_{\text {exch }}^{4}$-operator is determined by 946 various non-vanishing (coupled) reduced matrix elements of the type

$$
\begin{aligned}
& \left(n_{1} \ell_{1} j_{1} ; n_{2} \ell_{2} j_{2} ; J T| | J_{\text {exch }}^{4} T \mid n_{3} \ell_{3} j_{3} ; n_{4} \ell_{4} j_{4} ; J^{\prime} T^{\prime}\right) \delta_{J J} \\
& n_{1} \ell_{1} j_{1} \leq n_{2} \ell_{2} j_{2} \quad n_{3} \ell_{3} j_{4}<n_{4} \ell_{4} j_{4} \\
& \ell_{1}+\ell_{2}-\ell_{3}-\ell_{4}=\text { odd } \\
& \rho_{1}=2 n_{1}+\ell_{1}+2 n_{2}+\ell_{2} \quad \rho_{2}=2 n_{3}+\ell_{3}+2 n_{4}+\ell_{4} \\
& \left|\rho_{1}-\rho_{2}\right|=1 \text { or } 3 \quad \rho_{1}, \rho_{2}<6
\end{aligned}
$$

and the 1 s -shell being completely occupied.
The result of the extended calculation of the nuclear matrix element will be presented in a forthcoming publication.

The authors are indebted to Drs. E.A.Ivanov and R.A.Eramzhyan for numerous and stimulating discussions and to Dr. L.A.Tosunjan for valuable suggestions. We are grateful to Profs. V.K.Lukyanov and L.Münchow for their active interest in the present work.

APPENDIX

The Reduced Matrix Elements of the Weak Axial Charge Density

 MEC-OperatorUsing the standard general method of second quantization for an arbitrary spherical tensorial operator $\mathrm{F}_{\mathrm{tr}}^{\mathrm{k}}$ of rank r , projection κ in the coordinate-spin space and rank t projection r in the isospin space the following representation (in obvious notations) in the jj -coupling scheme can be written

$$
\begin{equation*}
\times\left(\mathrm{n}_{1}, \ell_{1}, \mathrm{j}_{1} ; \mathrm{n}_{2}{ }^{\prime} \mathrm{l}_{2}, \mathrm{j}_{2}, ; J^{\prime} \theta^{\prime}\left\|\mathrm{F}_{\mathrm{t}}^{\mathrm{k}}\right\| \mathrm{n}_{1}{ }_{1} \mathrm{j}_{1} ; \mathrm{n}_{2} \ell_{2} \mathrm{j}_{2} ; J \theta\right) \times \mathrm{a}_{1}^{+} \mathrm{a}_{2}^{+} \cdot \mathrm{a}_{2} \mathrm{a}_{1} \tag{A.1}
\end{equation*}
$$

$$
\begin{equation*}
-n_{12}=\left(1-\delta_{\left.n_{1} l_{1} j_{1} ; n_{2} \ell_{2} j_{2}(-1)^{j+T}\right)^{-1 / 2} .}\right. \tag{A.2}
\end{equation*}
$$

The antisymmetrized two-particle states are kept in mind as

The single particle state $\left|n \ell_{p} m_{s} ; 1 / 2 \tau\right\rangle$ refers to the harmonic oscillator potential and is defined by

$$
\begin{equation*}
\psi_{\mathrm{n}_{\ell}, \mathrm{m}_{\ell} \mathrm{m}_{\mathrm{s}} \tau}=\mathrm{R}_{\mathrm{n} \ell}(\mathrm{r}) Y_{\rho_{\mathrm{m} \ell}}(\theta, \phi) \chi_{\mathrm{m}_{\mathrm{s}}} \chi_{\tau}, \tag{A.4}
\end{equation*}
$$

where $\mathrm{Y}_{\mathrm{Pm}_{\ell}}(\theta, \phi)$ are the spherical harmonics normalized over the unit sphere,

$$
\begin{equation*}
R_{a l}(r)=V \frac{\frac{2 n!}{\Gamma(n+l+3 / 2)}}{r^{p} p^{-\frac{r^{2}}{2}} L_{n}^{p+1 / 2}\left(r^{2}\right), ~ s p h e r e, ~} \tag{A.5}
\end{equation*}
$$

$L_{n}^{\ell+1 / 2}\left(\mathrm{r}^{2}\right)$ are the Laguerre polynomial as defined in ${ }^{17 /}$, the radial distance is expressed in units $b=\sqrt{\hbar / M \omega}$ and the phase

$$
\begin{aligned}
& \left|\mathrm{n}_{1} \ell_{1} \mathrm{j}_{1} ; \mathrm{n}_{2}{ }_{2}{ }_{2} \mathrm{j}_{2} ; \mathrm{JM} ; \mathrm{TT}_{3}\right\rangle=\mathrm{n}_{12} \mathrm{\Sigma} \quad\left(\mathrm{j}_{1} \mathrm{~m}_{1} \mathrm{j}_{2} \mathrm{~m}_{2} \mid \mathrm{JM}\right)\left(1 / 2 \tau_{1}{ }^{1 / 2 \tau_{2}} / \mathrm{TT}_{3}\right) \\
& { }^{m}{ }^{m}{ }^{m}{ }^{m} \ell_{1}{ }^{m} \rho_{2} \quad \text { (A.3) } \\
& \mathrm{m}_{\mathrm{s}} \mathrm{~m}^{\mathrm{m}} \mathrm{~s}^{\mathrm{T}} 1^{\mathrm{T}} 2 \\
& \left.\times\left(\ell_{1} m_{\ell_{1}}^{1 / 2 m_{s}} \mid j_{1} m_{1}\right)\left(\ell_{2} m_{P_{2}}^{1 / 2} m_{s_{2}} / j_{2} m_{2}\right) \frac{1}{\sqrt{2}} \Gamma \psi_{1}(1) \psi_{2}(2)-\psi_{1}(2) \psi_{2}(1)\right] .
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
1^{\prime} 2^{\prime}, 1,2 \\
\mathrm{~J}, \mathrm{M}, \mathrm{O}^{2}, \theta_{3} \\
\mathrm{~J}^{\prime}, \mathrm{M}^{\prime}, \theta^{\prime}, \theta_{3}^{\prime}
\end{array} \\
& \times\left(\begin{array}{ccc}
\theta & 1 / 2 & 1 / 2 \\
-\theta_{3} & \tau_{2} & \tau_{1}
\end{array}\right)\left(\begin{array}{ccc}
\theta^{\prime} & 1 / 2 & 1 / 2 \\
-\theta_{3}^{\prime} & \tau_{2}^{\prime} & \tau_{1}^{\prime}
\end{array}\right)\left(\begin{array}{ccc}
\theta^{\prime} & \mathrm{t} & \theta \\
-\theta_{3}^{\prime} & \tau & \theta_{3}
\end{array}\right)
\end{aligned}
$$

of the radial functions is chosen so that they are positive at the coordinate origin.

Using the standard technique of spherical tensor decomposition and the Racah-algebra technique, the following expression for the reduced matrix elements of the operator (2.1) is obtained in the framework of the classical shell-model

$$
\begin{aligned}
& \left(\mathrm{n} \ell \cdot \mathrm{~s}(\mathrm{j}) ; \mathrm{NL} ; \mathrm{JT}\left\|\mathrm{~J}_{\mathrm{t}=1}^{\mathrm{k}=0} 1\right\| \mathrm{n}^{\prime} \rho^{\prime} \mathrm{s}^{\prime}\left(\mathrm{j}^{\prime}\right) ; \mathrm{N}^{\prime} \mathrm{L}^{\prime} ; \mathrm{J}^{\prime}\right)= \\
& =\sqrt{6} \sqrt{3}(\sqrt{6})^{2} \sum_{\substack{\mathrm{i}=1,2 \\
g=1,2}}(-1)^{c_{i}}\left(\begin{array}{ccc}
c_{i} & 1 & A_{i} \\
0 & 0 & 0
\end{array}\right)(-1)^{\mathrm{J}+\mathrm{j}^{\prime}+\ell+\mathrm{s}^{\prime}} \xi_{i}\left[1+\xi_{i}(-1)^{s+\mathrm{s}^{\prime}}\right] \hat{\mathrm{J}}
\end{aligned}
$$

$$
\hat{A}_{i} \hat{A}_{i} \hat{c}_{i} \hat{c}_{i} \hat{\mathrm{~s}}^{\prime} \hat{S}^{\prime} \hat{T} \hat{T} \hat{\mathrm{~T}}^{\prime} \hat{j} \hat{j} \hat{\mathrm{j}} \hat{l} \hat{l}^{\prime} \hat{L} \hat{L} \cdot\left(\begin{array}{cc}
\ell & A_{i} \ell^{\prime} \\
0 & 0
\end{array}\right)\left(\begin{array}{ccc}
L & c_{i} & L^{\prime} \\
0 & 0 & 0
\end{array}\right)\left\{\begin{array}{c}
j \\
L^{\prime} \\
j^{\prime} \\
c_{i} \\
J
\end{array}\right\}
$$

$$
\left.\left\{\begin{array}{ccc}
1 & s & s^{\prime} \\
1 / 2 & 1 / 2 & 1 / 2
\end{array}\right\} \begin{array}{rrr}
T & T^{\prime} & 1 \\
1 / 2 & 1 / 2 & 1 \\
1 / 2 & 1 / 2 & 1
\end{array}\right\}\left\{\begin{array}{ccc}
: A_{i} & 1 & c_{i} \\
\ell & s & j \\
\ell^{\prime} & s^{\prime} & j^{\prime}
\end{array}\right\} c_{g} \int_{0}^{\infty} R_{n \ell}(r) j_{c_{i}}(\theta r) \Phi_{g}(r) R_{n^{\prime}, \ell^{\prime}}(r) r^{2} d r
$$

$$
\int_{0}^{\infty} R_{N L}(R) j_{c_{i}}(Q R) R_{N^{\prime} L^{\prime}}(R) R^{2} d R
$$

$$
Q=\frac{\mathrm{kb}}{\sqrt{2}} \quad \begin{array}{llll}
\mathrm{i}=1 & \mathrm{~A}_{\mathrm{i}}=1 & \mathrm{c}_{\mathrm{i}}=0 & \xi_{\mathrm{i}}=1 \\
\mathrm{i}=2 & \mathrm{~A}_{\mathrm{i}}=0 & \mathrm{c}_{\mathrm{i}}=1 & \xi_{\mathrm{i}}=-1
\end{array} \quad \Phi_{\mathrm{g}}(\mathrm{r})=\left\{\begin{array}{lll}
\mathrm{g}=1 & \mathrm{Y}_{1}\left(\mathrm{Am}_{\pi} \mathrm{r}\right) \\
\mathrm{g}=2 & \mathrm{~F}_{0}(\mathrm{r})
\end{array}\right.
$$

The transformation to the jj -coupling scheme can then be performed according to the relation

U(L\&JS: $\lambda j) U\left(L^{\prime} \ell^{\prime} J^{\prime} S^{\prime} ; \lambda^{\prime} j^{\prime}\right)<n!N L \lambda \mid n_{1} \ell_{1} n_{2} \ell_{2}>$
$<n^{\prime} \ell^{\prime} N^{\prime} L^{\prime} \lambda^{\prime}\left|n_{3} \ell_{3} n_{4} \ell_{4}\right\rangle(-1)^{\lambda+\lambda^{\prime}+\ell+\ell^{\prime}+j+j^{\prime}+J+J^{\prime}\left[1+(-1)^{\ell_{3}+\ell_{4}+L+S+T}\right]}$ $\times\left(n \ell S(j) ; N L ; J T\left\|F_{t}^{k}\right\| n^{\prime} \ell^{\prime} S^{\prime}\left(j^{\prime}\right) ; N^{\prime} L^{\prime} ; J^{\prime} T^{\prime}\right)$.

$$
\begin{equation*}
\tilde{n}_{12}=\left(1-\delta_{\left(n+r_{1}\right)\left(n_{L} \psi_{2}\right)}(-)^{(+s+r) n_{2}}\right. \tag{11}
\end{equation*}
$$

$$
\begin{aligned}
& \left(n_{1} \ell_{1} j_{1} ; n_{2} \ell_{2} j_{2} ; J T\left\|F_{\mathfrak{l}}^{k}\right\| n_{3} \ell_{3} j_{3} ; n_{4} \ell_{4} j_{4} ; J^{\prime} \cdot T^{\prime}\right)=n_{12} n_{34} \times
\end{aligned}
$$

REFERENCES

1. Kubodera K., Delorme J., Rho M. Phys.Rev.Lett., 1978, 40, p. 755.
2. Shapiro I.S., Blokhintsev L.D. ZETF, 1960, 39, p. 1112.
3. Guichon P., Giffon M., Samour C. Phys.Lett., 1978, 74B, p. 15.
4. Guichon P., Samour C. Phys.Lett., 1979, 82B, p. 28
5. Holstein B.R., Kim C.W. Phys.Rev., 1979, C19, p. 1433.
6. Koshigiri K., Ohtsubo H., Morita M. Progr.Theor. Phys., 1979, 62, p. 706.
7. Cheng W.K., Lorazo B., Goulard B. Phys.Rev., 1980, C21, p. 374.
8. Towner I.S., Khanna F.C. Nuc1.Phys., 1981, A372, p. 331.
9. Volkov M.K., Pervushin V.N. JINR, P2-9390, Dubna, 1976.
10. Ivanov E.A., Truhlik E. Nucl.Phys., 1979, A316, p.437,456.
11. Ogievetsky V.I., Zupnik B.M. Nuc1.Phys., 1970, B24, p.612.
12. Schnitzer H.J., Weinberg S. Phys.Rev., 1967, 164 , p. 1828.
13. Schwinger J. Phys.Lett., 1967, 24B, p. 473.
14. Maksymowicz A. Nuovo Cimento, 1967, 48, p. 320.
15. Balashov V.V., Eramzhyan R.A. Atom.Energ.Rev., 1967, 5, No. 3 .
16. Eramzhyan R.A. et a1. Nuc1.Phys., 1977, A290; p. 294.
17. Morse P.M., Feshbach H. Methods of Theoretical Physics. McGraw-Hil1, New York, 1953.

Кирхбах M., Труглик 3
E4-82-586 Ооменные поправки к олератору плотности ядерного слабого аксиального заряда в модели жестких пионов

Рассматривактся обменные поправки к временной компоненте оператора слабого аксиального тока. Выясняется влияние обмена тяжелыми мезонами на отнопение парциальных скоростей перехода в реакциях захвата моонов в ос новное состояние ${ }^{16} 0\left(0^{+}\right)$с переходом в возбужденное состояние
${ }^{16} \mathrm{~N}\left(0^{-} ; 120\right.$ кэВ) и обратной реакции бета-распада. Графики с обменом тяже лых ρ И А I $_{1}$ мезонов рассматриваются в сформулированной на языке феноменодогических лагранжианов модели жестких пионов, в простом представлении о структуре состояния 0^{+}как замкнутой $1 p_{1 / 2}$-оболочки и о состоянии 0 как частично-дырочной конфигурации $\left(2 \mathrm{~s}_{1 / 2} \mathrm{lp}_{1}^{-1 / 2}\right) \mathrm{T}=0$ = $=1$ вычисляется ренормаぃчисляется ренорма лизация одночастичного приведенного матричного элемента ($2 \mathrm{~s}_{1 / 2}-1 \mathrm{p}_{1} / 2$) за
счет обменных зффектов. Она несколько меньше по сравнениио с получаемой счет обменных зффектов. Она несколько меныше по сравненио с получаемой
в отсутствие этих графиков. Oтношение скоростей перехода изменяется в сто а отсутствие этих графиков. Отношение скоростей перехода изменяется в сто
рону эксперимента. Учет обмена тяжелыми мезонами не приводит к уменьшению рону эксперимента. Учет обмена тяжелыми мезон

Работа выполнена в Лаборатории теоретической физики оияи.

Сообщение 0бъединенного института ядерных исследований. Дубна 1982

Kirchbach M., Truhlik E.

E4-82-586
Meson-Exchange Corrections to the Nuclear Weak Axial Charge Density in the Hard Pion Model

The heavy-meson exchange contributions to the time component of the weak axial-vector current are treated using the phenomenological Lagrangian version of the hard-pion model. The meson exchanges, which are taken into account, are those due to plons, rho- and A_{1}-mesons. This operator is applied to describe the purely axial weak transition $0^{+}+\frac{\text { caplure muon }}{} 0^{-}$- in the nuclear $\mathrm{A}=16$ system. In the simple plicture of a closed-core hypothes is for the $0^{+-5 t a t e}$ and particle-hole configuration $\left(2 s_{1 / 2}{ }^{1 p_{1}} / 2,\right)_{i=0}^{J=0}$ for the 0^{-}-state the renormalization of the single-particle matrix element
$\left(2 s_{1 / 2}-1 p_{1 / 2}\right)$ for both processes is calculated. It is shown, that in this case still much room remains for mesonic exchange corrections even if heavy meson exchanges are taken into account.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR

[^0]: - Institute of Nuclear Physics, Řeź near Prague, Czechoslovakia.

