

сообщвиия объединенного ииститута яаерных исследованй
 аубиа

$4646 / 82$ $27 / 9-82$
E4-82-561

A.Gè̀̀dz̀

Sp(4,R) BASIS

FOR THE NUCLEAR COLLECTIVE PAIRING

1. GENERAL STRUCTURE OF THE BASIS

The pairing Hamiltonian with constant matrix elements can be written as a product of Cooper pair creation P^{+}and anninilation, P , operators

$$
\begin{equation*}
\mathrm{H}_{\mathrm{P}}=-\mathrm{GP}^{+} \mathrm{P}, \quad \mathrm{G}=\text { const. } \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{P}^{+}=\sum_{i>0} \mathrm{c}_{1}^{+} \mathrm{c}_{\underset{1}{+}}^{\dot{r}}, \quad \mathrm{P}=\left(\mathrm{P}^{+}\right)^{+} \tag{2}
\end{equation*}
$$

and c_{-}^{+}creates the single-particle time-reversed nucleon state of c_{j}^{+}. Following ${ }^{1 /}$ we define a gauge transformation

$$
\begin{equation*}
\mathscr{G}(\phi)=e^{-i \phi \hat{A}} \tag{3}
\end{equation*}
$$

where $\hat{A} \cdot \hat{\pi} \cdot n_{0}, \hat{\pi}$ is the particle number operator and $\pi_{0}=$ const. is the number of nucleons in an arbitrary nuclear core. The transformations (3) stand for the elements of the group $\operatorname{SO}(2)$ which is the symmtery group for the Hamiltonian H_{p}. In the work ${ }^{\prime \prime}$ it has been shown that the collective treatment of the pairing phenomena requires two colrective variables. Instead oi this in the present paper two kinas of boson creation (and antihilation) operators are used

$$
\begin{align*}
& \mathrm{s}_{\mu}=\frac{1}{2} \mathrm{e}^{i \mu \phi}\left|\alpha(\Lambda)-\beta(\Lambda) \frac{\partial}{\partial \Lambda}+\frac{1}{\mu a(\Lambda)} \hat{A}-F(\Lambda)\right| \\
& \mathrm{s}_{\mu}=\frac{1}{2} \mathrm{e}^{-\mathrm{i} \mu \delta}\left|\alpha(\Lambda)-\beta(\Lambda) \frac{\partial}{\partial \Lambda}+\frac{1}{\mu a(\Lambda)} \hat{A}-F(\Lambda)\right| \\
& \mu= \pm 2 \tag{4}
\end{align*}
$$

where $\backslash=\{0$, $)$ is a real variable which can be interpreted as the pairing gap parameter, $\alpha(A)$ is an arbitrary real function,

$$
F(\Lambda)=\frac{1}{2}\left|\frac{\beta(\Lambda)}{\rho(\Lambda)} \frac{\partial \rho}{\partial \Lambda}+\frac{\partial \beta}{\partial \Lambda}-\frac{1}{a}\right|, \quad \beta(\Lambda) \frac{\partial a}{\partial \Lambda}=1
$$

and $\rho(\Lambda)$ is a weight function in the scalar product defined by the integral

$$
\begin{equation*}
(\Psi ; \dot{X}) \equiv \int_{0}^{2 \pi} \mathrm{~d} \phi \int_{0}^{x} \mathrm{~d} \Delta \rho(\Delta) \Psi^{*}(\phi, \Delta) x(\phi, \Delta) \tag{5}
\end{equation*}
$$

In the gauge space the operators (4) transform according to the same $I R$ of the symmtery group, $S O(2)$, as the pairing operators P^{+}and P (note that in (ϕ, Δ)-space the operator \hat{A} defined by the equation (3) can be treated as the canonical conjugate variable to ϕ i.e., $\hat{A}=-i \frac{\partial}{\partial \phi} ; h=1$) namely,

$$
\begin{array}{ll}
\tilde{\mathrm{s}}_{2}^{+}=\mathrm{e}^{\mathrm{i} 2 \phi} \mathrm{~s}_{2}^{+} & \ddot{\mathrm{P}}^{+}=\mathrm{e}^{i 2 \phi} \mathrm{P}^{+} \\
\tilde{\mathrm{s}}_{-2}=\mathrm{e}^{\mathrm{i} 2 \phi} \mathrm{~s}_{-2} & \\
\tilde{\mathrm{~s}}_{-2}^{+}=\mathrm{e}^{-\mathrm{i} 2 \phi} \mathrm{~s}_{-2}^{+} & \tilde{\mathrm{P}}=\mathrm{e}^{-i 2 \phi} \mathrm{P}, \tag{6}\\
\tilde{\mathrm{~s}}_{2}=\mathrm{e}^{-i 2 \phi} \mathrm{~s}_{2} &
\end{array}
$$

that is, these boson operators are raising and lowering number of nucleon pairs coupled to the total angular momentum $J=0$ operators.

The bilinear forms of (4)

$$
\begin{equation*}
\mathbf{s}_{\mu}^{+} \mathbf{s}_{\mu}^{+}, \quad \mathbf{s}_{\mu} \mathbf{s}_{\mu} \quad \mathbf{s}_{\mu}^{+} \mathbf{s}_{\mu}, \quad \mu, \mu^{\prime}= \pm 2 \tag{7}
\end{equation*}
$$

are the generators of the noncompact four-dimensional symplectic group $\operatorname{Sp}(4, R)^{/ 2 /}$. In the collective space the symmetry group SO(2) of the Hamiltonian (1) is generated by the nucleon excess-deficit operator \hat{A} expressed in terms of the generators (7)

$$
\begin{equation*}
\hat{A}=2\left(s_{2}^{+} s_{2}-s_{-2}^{+} s_{-2}\right) . \tag{8}
\end{equation*}
$$

It can be also easily found that the largest subgroup of $\operatorname{Sp}(4, R)$, whose generators commute with \hat{A}, is a group $S U(1,1)$ generated by the operators

$$
\begin{aligned}
& \hat{\mathrm{n}}_{+}=\mathrm{s}_{2}^{+} \mathrm{s}_{-2}^{+} \\
& =\frac{1}{4}\left\{\beta \frac{\partial}{\partial \Delta} \beta \frac{\partial}{\partial \Delta}+\left(\frac{1}{a}-2 a+2 \mathrm{~F}\right) \beta \frac{\partial}{\partial \Delta}-\frac{1}{4 \alpha^{2}} \hat{\mathrm{~A}}^{2}+\alpha^{2}-2 \alpha \mathrm{~F}\right. \\
& \\
& \left.\quad+\mathrm{F}^{2}+\frac{\mathrm{F}}{a}+\beta \frac{\partial \mathrm{F}}{\partial \Delta}-2\right\}
\end{aligned}
$$

$\hat{n}_{-}=s_{2} s_{-2}$

$$
=\frac{1}{4}\left\{\beta \frac{\partial}{\partial \Delta} \beta \frac{\partial}{\partial \Delta}+\left(\frac{1}{a}+2 a+2 F\right) \beta \frac{\partial}{\partial \Delta}-\frac{1}{4 a^{2}} \hat{A}^{2}+a^{2}+2 \alpha F\right.
$$

$$
\left.+\mathrm{F}^{2}+\frac{\mathrm{F}}{a}+\beta \frac{\partial \mathrm{F}}{\partial \Delta}+2\right\}
$$

$$
\hat{n}_{0}=\frac{1}{2}\left(s_{2}^{+} s_{2}+s_{-2}^{+} s_{-2}+1\right)=\frac{1}{2}(\hat{N}+1)
$$

$$
=\frac{1}{4}\left\{-\beta \frac{\partial}{\partial \Delta} \beta \frac{\partial}{\partial \Delta}+\frac{1}{4 a^{2}}-\hat{A}^{2}-\left(2 F+\frac{1}{a}\right) \beta \frac{\partial}{\partial \Delta}+\alpha^{2}-\beta \frac{\partial F}{\partial \Delta}-F^{2}-F_{-}\right\}
$$

with the commutation relations

$$
\begin{equation*}
\left[\hat{n}_{+}, \hat{n}_{-}\right]=-2 \hat{\mathrm{n}}_{0}\left[\hat{\mathrm{n}}_{0}, \hat{\mathrm{n}}_{+}\right]=\hat{\mathrm{n}}_{+} \quad\left[\hat{\mathrm{n}}_{0}, \hat{\mathrm{n}}_{-}\right]=-\hat{\mathrm{n}}_{-} \tag{10}
\end{equation*}
$$

and

$$
\left[\hat{\mathrm{n}}_{0}, \hat{A}\right]=\left[\hat{\mathrm{n}}_{+}, \hat{\mathrm{A}}\right]=\left[\hat{\mathrm{n}}_{-}, \hat{A}\right]=0,
$$

In this way we obtained the following group chain for classification of the collective pairing states

$$
\begin{equation*}
\mathrm{Sp}(4, \mathrm{R}) \supset \mathrm{SO}(2) \times \mathrm{SU}(1,1) \tag{11}
\end{equation*}
$$

By calculation of the quadratic Casimir operator C^{2} of the group $S U(1,1)$ two-one complementarity of the IR of $S O$ (2) and $\operatorname{SU}(1,1)$ can be established

$$
\begin{equation*}
C^{2}=\hat{n}_{0}^{2}-\hat{n}_{0}-\hat{n}_{+} \hat{n}_{-}=\frac{1}{4}\left\lceil\frac{1}{4} A^{2}-1\right\rceil, \tag{12}
\end{equation*}
$$

i.e., one IR of $S U(1.1)$ group corresponds to two IR of $S O$ (2) labelled by the nucleon excess - deficit numbers \pm A. This implies that only two labels are needed to fully \bar{c} lassify the basis for IR of $\mathrm{SO}(2) \times \mathrm{SU}(1,1)$ group. As the quantum numbers we assume the number A and the total number of boson N, and read

$$
\begin{equation*}
A N\rangle=\left\{\frac{\left(\frac{1}{2}, A_{i}\right)!}{\left\{\frac{1}{2}\left(N+\frac{1}{2} A\right)\right]!\left\lceil\frac{1}{2}\left(N-\frac{1}{2} A\right)\right]!}\right\}^{-\frac{1}{2}}\left(\hat{n}_{+}\right)^{\frac{1}{2}\left(N-\frac{1}{2}!A\right)} \tag{13}
\end{equation*}
$$

and

$$
N=\frac{1}{2} A, \frac{1}{2} A+2, \quad \frac{1}{2} A+4, \ldots,
$$

where

$$
\begin{equation*}
\left.\left.A=\left\|\frac{1}{2}, A\right\|!\right\}^{-\frac{1}{2}}\left(s_{\mu}^{+}\right)^{-\frac{1}{2} \cdot A} \quad 0\right\rangle \tag{14}
\end{equation*}
$$

with $\mu=2$ for $A=0$ and $\mu=-2$ for $A=0$, are the states of the lowest weight for the IR $|A \cdot|$ of the group $\operatorname{SU}(1,1)$ defined by the conditions ${ }^{3 /}$
and

$$
\begin{equation*}
\hat{n}_{0} A>=\frac{1}{2}\left(\frac{1}{2} A+1\right) \cdot A>. \tag{15}
\end{equation*}
$$

To find a representation of the states (13) in the (ϕ, Δ) -
space, we introduce the vacuum state by the system of two equations

$$
\begin{equation*}
\mathrm{s}_{\mu} \Omega=0, \quad \mu= \pm 2 \tag{16}
\end{equation*}
$$ we make the substitution $\Omega(\Delta)=q(\Delta) \exp \left(-\frac{1}{2} a^{2}\right) \quad$ and get

$$
A=0, \pm 2, \pm 4, \ldots
$$

$$
\hat{n}_{-} A>=0
$$

A general solution of eqs. (16) can be easily recognized if

$$
\begin{equation*}
\Omega(\Delta)=a_{0} \exp \left\{-\frac{1}{2} a^{2}-\left\{F(\Delta) \frac{d_{a}}{d \Delta} d \Delta\right\}\right. \tag{17}
\end{equation*}
$$

where a_{0} is the normalization factor. Making use of equations (14) and (15) a general form of the states with the lowest weight can be written in the form

$$
\begin{gather*}
u_{A}(\phi, \Delta)=\langle\phi, \Delta \mid \mathrm{A}\rangle=2^{-|\mathrm{A}|}\left\{\left(\frac{1}{2}|\mathrm{~A}|\right)!\right\}^{-\frac{1}{2} \mathrm{e}} \mathrm{iA} \mathrm{\phi} \tag{18}\\
\times\left(2 \hat{\mathrm{~K}}+\frac{|\mathrm{A}|-2}{a}\right)\left(2 \hat{\mathrm{~K}}+\frac{|\mathrm{A}|-4}{a}\right) \ldots\left(2 \hat{\mathrm{~K}}+\frac{2}{a}\right) \hat{\mathrm{K}} \Omega
\end{gather*}
$$

where

$$
\hat{\mathrm{K}} \equiv a(\Delta)-\mathrm{F}(\Delta)-\beta(\Delta) \frac{\partial}{\partial \Delta} .
$$

In practice only $A=0, \pm 2$ states are used. In these cases we obtain

$$
\mathrm{u}_{0}=\Omega(\Delta)
$$

and

$$
u_{ \pm 2}=\frac{1}{2} \mathrm{e}^{ \pm \mathrm{i} 2 \phi} a(\Delta) \Omega(\Delta)
$$

It is not useful to put down the explicit form of the basis (13) in (ϕ, Δ)-space in the most general form. If we have from the microscopic calculations a shape of the functions $a(\Delta)$ and $\rho(\Delta)$, it is possible to find a concrete realization of the basis by the procedure given above or by, solving an appropriate differential equation (see below).

2. a-VIBRATION LIMIT, $\mathrm{F}=0$

Let us start from the boson form of the asymmetric twodimensional harmonic oscillator Hamiltonian

$$
\begin{equation*}
H=h_{0}+\epsilon_{2} s_{2}^{+} s_{2}+\epsilon_{-2} s_{-2}^{+} s_{-2} \tag{20}
\end{equation*}
$$

where h_{0}, ϵ_{2} and ϵ_{-2} are constants. From the straightforward calculations in (ϕ, Δ)-space we get

$$
\begin{aligned}
\mathrm{H} & =\mathrm{h}_{0}+\epsilon \hat{\mathrm{N}}+\frac{1}{2} \eta \hat{\mathrm{~A}} \\
& =-\frac{1}{2} \epsilon \beta^{2} \frac{\partial^{2}}{\partial \Delta^{2}}+\frac{\epsilon}{8 \alpha^{2}}\left(\hat{\mathrm{~A}}+\frac{2 \eta}{\epsilon} \alpha^{2}\right)^{2}-\frac{1}{2} \epsilon \beta\left(2 \mathrm{~F}+\frac{1}{a}+\frac{\partial \beta}{\partial \Delta}\right) \frac{\partial}{\partial \Delta} \\
& +\left(\frac{1}{2} \epsilon-\frac{\eta 2}{2 \epsilon}-\right) a^{2}-\epsilon+\mathrm{h}_{0}-\frac{1}{2} \epsilon \beta \frac{\partial \mathrm{~F}}{\partial \Delta}-\frac{1}{2} \epsilon \mathrm{~F}^{2}-\frac{\epsilon}{2 a} \mathrm{~F},
\end{aligned}
$$

where $\epsilon=\frac{1}{2}\left(\epsilon_{2}+\epsilon-2\right) \quad$ is the average single-boson energy and $\eta=\frac{1}{2}\left(\epsilon_{2^{-}} \epsilon_{-2}\right) \quad$ is the asymmetry parameter.

By comparison of the Hamiltonian (21) with the quantum prescription of the kinetic energy operator $/ 4 /$ we obtain the mass parameter in Δ direction B_{Δ} and the inertia parameter J as the functions of the collective variable Δ (because of the SO (2) symmetry of the Hamiltonian they are independent of the variable ϕ)

$$
\begin{align*}
\mathrm{B}_{\Delta} & =\frac{1}{\epsilon}\left(\frac{\mathrm{~d} \alpha}{\mathrm{~d} \Delta}\right)^{2} \\
\mathrm{~J} & =\frac{4}{\epsilon}[a(\Delta)]^{2} \tag{22}
\end{align*}
$$

and

As usual the weight function p can be taken in the form

$$
\rho(\Delta)=v \overline{B_{\Delta} \cdot \mathrm{J}}
$$

Now we are in a position to explain the title of the present paragraph. For $F=0$, with the conditions (22) the Hamiltonian (21) describes vibrations of the system around the point $a=0$. It can be easily seen from the shape of the potential extracted from (21)

$$
\begin{equation*}
\mathrm{V}=\mathrm{h}_{0^{-\epsilon}+\left(\frac{\epsilon}{2}-\frac{\eta^{2}}{2 \epsilon}\right) a^{2}} \tag{23}
\end{equation*}
$$

Note also another characteristic of the model Hamiltonian (21). It takes into account an experimentally observed evidence as asymmetry ($\eta \neq 0$) in the rotational spectra of the collective pairing. In the work by Bès, Broglia, Perazzo and Kumar ${ }^{1 / 1}$

For the case of $F=0$ the basis for IR of the group SO (2) x $\mathrm{x} \operatorname{SU}(1,1)$ can be constructed by solving the eigenequation for the weight operator $\hat{\mathbf{n}}_{0}$ (or $\hat{\mathrm{N}}$)

$$
\begin{equation*}
\hat{\mathrm{n}}_{0} \Psi_{\mathrm{AN}}(\phi, \Delta)=\frac{1}{2}(\mathrm{~N}+1) \Psi_{\mathrm{AN}}(\phi, \Delta) \tag{24}
\end{equation*}
$$

where because of the equations (13)-(18) the eigenfunctions $\Psi_{\text {AN }}$ can be factorized

$$
\begin{equation*}
\Psi_{A N}(\phi, \Delta)=\text { norm. } e^{i A \phi} W_{N A}(\Delta) \Omega(\Delta) \tag{25}
\end{equation*}
$$

Then we get the following equation for unknown function $W_{N A}(\Delta)$

$$
\begin{equation*}
\left(-\beta \frac{\partial}{\partial \Delta} \beta \frac{\partial}{\partial \Delta}-\left(2 \alpha-\frac{1}{a}\right) \beta \frac{\partial}{\partial \Delta}+\left(2 \mathrm{~N}-\frac{\mathrm{A}^{2}}{4 a^{2}}\right)\right\} W_{\mathrm{NA}}(\Delta)=0 . \tag{26}
\end{equation*}
$$

Noting that $\beta \frac{\partial}{\partial \Delta}=\frac{\partial}{\partial a}$ this equation can be rewritten into a more useful for calculations from

$$
\begin{equation*}
W_{\mathrm{NA}^{\prime}}(a)-\left(2 \alpha-\frac{1}{a}\right) \mathrm{W}_{\mathrm{NA}}^{\prime}(a)+\left(2 \mathrm{~N}-\frac{\mathrm{A}^{2}}{4 a^{2}}\right) \mathrm{W}_{\mathrm{NA}}(a)=0 . \tag{27}
\end{equation*}
$$

Using the standard series method the solution of the equation can be found as the following polynomial:

$$
\begin{equation*}
W_{N A}(\Delta)=\sum_{k=\frac{1}{2}|A|}^{N} c_{k}[a(\Delta)]^{k}, \tag{28}
\end{equation*}
$$

where the coefficients c_{k} satisfy the simple recurrence relation

$$
\begin{equation*}
c_{k+2}=\frac{2(k-N)}{(k+2)^{2}-\frac{1}{4} A^{2}} c_{k} \tag{29}
\end{equation*}
$$

with

$$
\mathrm{k}=\frac{1}{2}|\mathrm{~A}|, \quad \frac{1}{2}|\mathrm{~A}|+2, \ldots, \mathrm{~N}
$$

and

$$
\mathrm{c}_{\frac{1}{2}|\mathrm{~A}|+1}=\mathrm{c}_{\frac{1}{2}|\mathrm{~A}|+3}=\ldots=\mathrm{c}_{\frac{1}{2}|\mathrm{~A}|+\mathrm{N}-1}=0
$$

or in more compact form

$$
\begin{equation*}
\mathbf{c}_{\mathbf{k}}=\prod_{\mathrm{m}=\frac{1}{2}|\mathbf{A}|+2}^{\mathbf{k}} \left\lvert\, \frac{2 m-2-N}{m^{2}-\left(\frac{1}{2} \mathbf{A}\right)^{2}}+\delta_{\mathbf{k},-\frac{1}{2}|\mathbf{A}|}\right. \tag{30}
\end{equation*}
$$

The coefficient $\quad{ }^{C} \frac{1}{2}|A|=1$ is choosen to recognize in (28) the standard Laguerre polynomials $L_{\frac{1}{2}} N\left(a^{2}\right)$, for the special case of the nucleon excess-deficit number equals zero, $A=0$.

In this way we have completed the physical and orthogonal basis for the collective pairing Hamiltonian (without isospin) for even-even nuclei.

REFERENCES

1. Bes D.R. et al. Nuci.Phys., 1970, A14j, p. 1-33.
2. Quesne C. J. Math. Phys., 1973, 14, p. 366.
3. Haruo Ui. Ann. Phys., N.Y., 1968, 49, p. 69.
4.Hofmann H. Z.Phys., 1972, 250, p. 14.

WILL YOU FILL BLANK SPaCES IN YOUR LIBRARY?

You can receive by post the books listed below. Prices - in US \%,

 including the packing and registered postageD1 3-11807
Proceedings of the III International Meeting on Proportional and Drift Chambers. Dubna, 1978. 14.00 Proceedings of the VI All-Union Conference on Charged Particle Accelerators. Dubna, 1978. 2 volumes.

D1,2-12450 Proceedings of the XII International School on High Energy Physics for Young Scientists. Bulgaria, Primorsko, 1978.
D-1 2965 The Proceedings of the International School on the Problems of Charged Particle Accelerators for Young Scientists. Minsk, 1979.
D11-80-13 The Proceedings of the International Conference on Systems and Techniques of Analytical Computing and Their Applications in Theoretical Physics. Dubna, 1979.
D4-80-271 The Proceedings of the International Symposium on Few Particle Problems in Nuclear Physics. Dubna, 1979.
D4-80-385 The Proceedings of the International School on Nuclear Structure. Alushta, 1980.
10.00

Proceedings of the VII All-Union Conference on Charged Particle Accelerators. Dubna, 1980. 2 volumes.

D4-80-572 N.N.Kolesnikov et al. "The Enerqies and Half-Lives for the $a-$ and β-Decays of Transfermium Elements"
D2-81-543 Proceedings of the VI International Conference on the Problems of Quantum Field Theory. Alushta, 1981

D10,1i-81-622 Proceedings of the International Meeting on Problems of Mathematical Simulation in Nuclear Physics Researches. Dubna, 1980

D1,2-81-728 Proceedings of the VI International Seminar on High Energy Physics Problems. Dubna, 1981. on Selected Problems in Statistical Mechanics.

D1,2-82-27 Proceedings of the International Symposium on Polarization Phenomena in High Energy Physics. Dubna, 1981.

Received by Publishing Department on July 161982.

Orders for the above-mentioned books can be sent at the address: Publishing Department, JINR
Head Post office, P.O.Box 79101000 Moscow, USSR

SUBJECT CATEGORIES

 OF THE JINR PUBLICATIONS| Index \quad Subject |
| :--- |
| 1. High energy experimental physics |
| 2. High energy theoretical physics |
| 3. Low energy experimental physics |
| 4. Low energy theoretical physics |
| 5. Mathematics |
| 6. Nuclear spectroscopy and radiochemistry |
| 7. Heavy ion physics |
| 8. Cryogenics |
| 9. Accelerators |
| 10. Automatization of data processing |
| 11. Computing mathematics and technique |
| 12. Chemistry |
| 13. Experimental techniques and methods |
| 14. Solid state physics. Liquids |
| 15. Experimental physics of nuclear reactions |
| at low energies |
| 16. Health physics. Shieldings |
| 17. Theory of condenced matter |
| 18. Applied researches |
| 19. Biophysics |

Гузьдзь А. Sp $(4, \mathrm{Z})$ базис для коллективного ядерного
 E4-82-561

Изучена коллективная трактовка парных явлений. Введены два сорта операторов рождения и уничтожения бозонов с целью получения классификачии коллективных парных состояний в четно-четных ядрах /без ияоспина/. Для построени физического и ортонормального базиса в бозонном пространстве меполь зовалась следушиая групповая чепочка

$$
S p(4, R) \supset S O(2) \times S U(1,1)
$$

С помощьо простого представления бозонних олераторов в коллектияном пространстве получен вид базиса в зтих коллектияных переменных.

Работа выполнена в Лаборатории теоретической физики ОияИ.

Сообмение Обиединенного института ядерных псследований. Дубна 1982
Gbzdz A. $\mathrm{Sp}_{\mathrm{p}}(4, \mathrm{R})$ Basis for the Nuclear Collective Palring E4-82-561
A coliective treatment of the pairing phenamena has been investigated. Two kinds of boson creation (and annihitation) operators have been introduced to find a classification of the collective pairing states in even-even nuclei (without isospin). The following group chain
$\mathrm{Sp}(4, \mathrm{R}) \supset \mathrm{SO}(2) \times \mathrm{SU}(1,1)$
has been used to construct the physical and orthogonal basis in the boson a collective use of the simple representation of the boson operators in a collective space a form of the basis in the collective variables has been obtalined.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

