


1. GENERAL STRUCTURE OF THE BASIS

The pairing Hamiltonian with constant matrix elements can be
. . . + . . .
written as a product of Cooper pair creation P and annihilation,

P , operators
HP=—0P+P, G-const., )
where
P’ -3 clcl P-P") (2)
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and ¢~ creates the single-particle time-reversed nucleon state
ofc*v.Following’l/we define a gauge transformation

(;)(d)) ~ighA ) (3)
where A . N~ WO,N is the particle number operator and Jy=const.
is the number of nucleons in an arbitrary nuclear core. The
transformations (3) stand for the elements of the group SO(2)
which is the symmtery group for the HamiltonianHp. In the
work’Y it has been shown that the collective treatment of the
pairing phenomena requires two colltective variables. Instead

o1 this in the present paper two kinds ot boson creation (and
annihilation) operators are used
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where A ={0, ~) is a real variable which can be interpreted

as the pairing gap parameter, a(A) is an arbitrary real function,
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and p(A) is a weight function in the scalar product defined by
the integral
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In the gauge space the operators (4) transform according to
the same IR of the symmtery group, 80(2), as the pairing .
operators P* and P (note that in (¢,A) -space the operator A
defined by the equation (3) can be treated as the canonical

conjugate variable to ¢ i.e., A- —la ih=1) namely,
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that is, these boson operators are raising and lowering number
of nucleon pairs coupled to the total angular momentum J =0
operators.

The bilinear forms of (4)
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are the generators of the noncompact four-dimensional symplec-—
tic group Sp(4,R)‘/2/ . 1In the collective space the symmetry
group SO@) of the Hamiltonian (1) is generated by the nucleon
excess—deficit operator A expressed in terms of the generators
(7
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A=2(sy8y, =S_p8_5 ) g (8)

It can be also easily found that the largest subgroup of Sp(4,R),

whose generators commute with A,is a group SU (1,1) generated
by the operators
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with the commutation relations
[n,,n_l==2n, [ngn,l=n, f[ngn l=-n_ (10)
and
[n,Al=[n,Al=[n_,A}=0

In this way we obtained the following group chain for classi-
fication of the collective pairing states

Sp(4,R) D 80(2) x SU(1,1). (1

By calculation of the quadratic Casimir operator c®of the
group SU (1,1) two-one complementarity of the IR of SO (2)
and SU (1,1) can be established

C2=ng-ny-n,n_= LiLa%-1), (12)

i.e., one IR of SU(1.1) group corresponds to two IR of SO (2)
labelled by the nucleon excess — deficit numbers + A. This
implies that only two labels are needed to fully classify the
basis for IR of SO(2)x SU(1,1) group. As the quantum numbers
we assume the number A and the total number of boson N, and
read
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with u =2 for A>0 and n =-2 for A<0, are the states of the
lowest weight for the IR|[ A | of the group SU (1,1) defi-
ned by the conditions’3/

n_A>=0
and (15)
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To find a representation of the states (13) in the (¢,A) -
space, we introduce the vacuum state by the system of two equa-
tions

SQ:O, u=%2 . (16)

A general solution of eqs. (16) can be easﬂy recognized if
we make the substitution Q(A)= q(A)exp(-%—a )] and get
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where a, is the normallzatlon factor. Making use of equations
(14) and (15) a general form of the states with the lowest
weight can be written in the form

1 .
u, (6,8)=<g, AlA> A{{(-I—{Ai)u T, 1Ad
2 (18)
(2K+|A*2)(2K A4, 2K+ 2)Ka,
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where 5
K=a(A)~F(A)-B(A) 5-&-

In practice only A=0, #2 states are used. In these cases we
obtain

u, =Q(A)

and _— (19)
' =-%-e_12 2(A)Q(A).

It is not useful to put down the explicit form of the basis
(13) in (¢.A)-space in the most general form. If we have
from the microscopic calculations a shape of the functions
a(A) and p(A), it is possible to find a concrete realization
of the basis by the procedure given above or by.solving an
appropriate differential equation (see below).

2. a~VIBRATION LIMIT, F=0

Let us start from the boson form of the asymmetric two-
dimensional harmonic oscillator Hamiltomian
+ +
H=h0+ (252S2+ (_28__28_2 N (20)
whereh;, ¢ and ¢, are constants. From the straightforward
calculations in (¢,A) —space we get

~ 1 ~
H=h0+(N+—2-7]A

5 . .
1 294 271 22 L9839 (21)
= S (A - i 2F ) e
7P 0A2+8a2( r et Fo st IR
1 Mo, 1 o2«
L g2 eeen - L g L g2 < p
+(2s 3 )a e+hy 2EB¢3A 5 ¢ 52
where (= -g..((z te g ) is the average single-boson energy and
n= .é_(fz- 5:2 ) is the asymmetry parameter.

By comparison of the Hamiltonian (21) with the quantum
prescription of the kinetic energy operator /% we obtain the
mass parameter in A direction Bpand the inertia parameter J
as the functions of the collective variable A (because of the
SO (2) symmetry of the Hamiltonian they are independent of the
variable ¢)

B L ( da
A= (( dA)
and
J=-f-[a(A)12. (22)

As usual the weight function p can be taken in the form
p(A) =v BA' J

Now we are in a position to explain the title of the present
paragraph. For F=0, with the conditions (22) the Hamiltonian
(21) describes vibrations of the system around the point a =0.
It can be easily seen from the shape of the potential extrac-
ted from (21)
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Note also another characteristic of the model Hamiltonian (21).
It takes into account an experimentally observed evidence
as asymmetry (n #0) in the rotational spectra of the collective
pairing. In the work by Bés, Broglia, Perazzo and Kumar 1/
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For the case of F=0 the basis for IR of the group S0 (2)x
x 8U(1,1) can be constructed by solving the eigenequation for
the welght operator n (ox N)

where because of the equations (13)-(18) the eigenfunctions
¥,y can be factorized

¥,y (6.8)= norm.eiA¢ W a(D)2(A). (25)

Then we get the f0110w1ng equation for unknown function WNA(A)
(-B—-—-B—-—~ ~(2a —lmé +(2N - -)i A(8) =0. (26)

Noting that 8 w— this equation can be rewritten into a more

aA 0
useful for calculations from
2

W)= (Za= 3-Wg, (@) + (N = 20y (a)=0. (27)

Using the standard series method the solution of the equation
can be found as the following polynomial:
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where the coefficients ¢, satisfy the simple recurrence rela-
tion

2 (k-N)
Cure = 5k (29)
(k+2) = z-A
with
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or in more compact form

an-z -N__
)2 +5k.-—%~iA} (30)

nr-J—;A|+2

The coefficient —LlA‘=1 is choosen to recognize in (28) the

standard Laguerre polynomlalslth @ ) ,for the special case

of the nucleon excess-deficit number equals zero, A=0.

In this way we have completed the physical and orthogonal
basis for the collective palrlng Hamiltonian (without isospin)
for even—even nuclei.
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