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I . INTRODUCTION 

Deep inelastic heavy ion collisions with nuclei are accom
panied by the excitation of many states of a complicated struc
ture. Among them the nuclear density vibrations (giant resonan
~es) in colliding nuclei or in a double nuclear syste~ many be 
the most important for understanding the dissipative phenome
na /l-a/ and the mechanism of preequilibrium emission of 1 i ght 
particles 12•4-61 . 

In ref. 171 we began to analyse collective excitations of 
the double nuclear system. A hydrodynamic approach has been 
used to derive equations for vibrational excitations of a nuc
leus with the equilibrium density p0 (~) which, in principle, 
can considerably differ from the spherical one. We have analysed 
the transition to the known case of the density oscillations 
inside the hard sphere 181 and demonstrated an approximate way 
of taking into account the nuclear surface diffuseness. 

In this report we have derived the simplest analytic solution 
for vibrations of the two-centre density, modelling a double 
nuclear system. 

2. EQUATIONS FOR DESCRIPTION OF NUCLEAR DENSITY OSCILLATIONS 

It is convenient to describe the density+oscillations in 
terms of operators of the density p 0(;) = 'l'(;) · 'l'(;) and the 

.......... h+ ..... -+ ..... ~+ -+ 
flux density J(x) = -==~('l' (x) . V 'l' (x) - V 'l' (x). 'l' (x)) , where 

<;ffil 

tV(;_), 'l'(x) are operators of the nucleon field, and with the 
use of the hydrodynamical representation for the Hamiltonian 
of a Fermi system with the effective two-body interaction 
V(x) /7,9,10/ 

H c ~fd3xJ&)p- 1 (;)j(;) +U[p], 
2 

h2 ~ ~ 2 
U[p] = -- fdax IVp(x)l 

Sm -+ 
P (x) 

+ {i; [p] ' 

{i;(pJ = fd 3xd3y p(x)V(x- y)p(YJ, 

r...,..rrz-
' r ~ •• ) ,#. 

r' 

( 1) 
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which is equivalent inview of the equation of motion for·the 
operators p (i) and t<.X") to the usual nuclear Hamiltonian /4· 71 . 

If we restrict our analysis to· the only vibrational motion 
(supposing the nuclear motion to be irrotational), it is sui-

. . ...... 1 -+-+-+ 
table to use the veloc1ty potent1al operator j(x) "'2"{p(x),V¢(x)l-l' 1 

The operators p and ¢ are connected with canonical commuta
tion relations: 

-+ _. ... ..... 

[¢ (x), ¢ (y)] = [p (x), p (y)] "' 0 , 
... -+ h .. ... (2) 

[p(x), ¢(y)]= i-o(x-y), 
1 m 

following from the definition of these operators and the_commu
tation relations for the operators of the nuclear field: 

-+ +-+ -+-+ 
I'P(x), 'P(y)l+==o(x-y). 

Extracting the mean density p 0 (~) and the operator of its 
deviation op(;) from the density operator: p(~) =Po Ci') + 8p(;) 
and demanding p 0 (i) to be the equilib_rium one we get the equa
tion of the Thomas-Fermi type for Po (x): 

au[p] a&;[p] 

8p 0 (x) 8p
0 

(x) 
3 ... 

fd xp0 (x) =A. 

' ... 
h 2 ~Po(x) 

--( ... 
4m p

0
(x) 

... -+ 2 
I V Po (x) I_) = 0 , 
2pg(X) 

A is the number of nucleons of a nuclear systems. 

(3) 

The equations of motion for op and ¢ operators in the har
monic ap-proximation are the following: 

a ... .. ... ... .. 
-8p(x, t) + V (p 0 (x). V cp(x, t)) = 0 , at 
a ... 
~<P(x, t) 
at 

(
82&(p] 

+ 2 ;!.. mo Po (XJ 

h 2 ... -1 .. .. ... 
-V (p 0 (x) • V8p(x, 
4m2 

t)) + 

h2 llp 0 (i) 
+-2-(27 

IV Po (X") \ 2 

4m Po (x) :3 
Po (x) 

))8p(x: t) ,;, o. 

This sytem of equations has the first integral of motion 
(an energy H [

2
] ): 

m a' _,. ... ... 2 1 3 2 ] .. 2 

2 

H (2] = 2 I d X p 0 (x) I v <P (x, t)l + 2 r d X 8 & ~ . 8p (x r t) + 
op ~ (x) 

... ... -+ 2 
h2 a ~Po(x) IVPo(x)l ... 2 

+-fd x( .. - ... )8p(x, t) + 
8m p2(x) p3(x) 

0 0 

+ ~ r da x I ~ op <;. t)l 2 

Bm Po(~) 

(4) 

(5) 

Equations (4) can be derive from (5) by the usual rules 
( m¢ and op are canonically conjugated quantities). H[2] 1s 
a part of the Hamiltonian of the second order in powers of 
operators op and <P (the harmonic approximation means neglec
ting all the terms of a higher order). 
~n order to analyse·the stationary oscillations operators 

op and ¢ can be expanded, as usual, in terms of creation and 
annihilation operators (b~andb 8 ) of the boson ([b 8 ,b~-]=8 58 ', 
),s" is its quantum number): 

.. -h .. + op (x) = - }; g (x) (b + b ) • m 8 s s s 

.. h -+ + 
cp(x) = i- }; f

8 
(x) (b 

8 
- b

8 
). 

m s 

The amplitudes f 8 (;) , g s (~) 
of .orthonormalization: 

2h 3 -+ -+ 
0 , = - - ( d X f (x) g , (x) , 

BB m B B 

.. .. 2h ::\ -+ 
8 (x - y) = - - }; f (XJ g (y) 

m s s 
B 

(6) 

satisfy the following relation 

(7) 

resulting from the definition (6) and commutation relations bet
ween op, ¢; b~, b!;.operators. 

With the relations (6), (7) the equations of motion C4) can 
be rewritten in terms of amplitudes f 8 (x), g 8 (x) and frequencies 

+ 
w

8 
(H [ 2] = }; hw. b b + const): 

B B B B 

.... ........ ..... -+ 
V (p 0 (x) V f 

8 
(x)) = w

8 
g

8
(x), 

h 2 -+ 1 -+ .. !:J.po (;) 
-(V(--- Vg

8
(x))- (--.. 

4m p cit> p2 Cx) 
0 0 

1 8 2 &[pJ .. .. 
- - g (x) = w f Cx). 

m [)p 2 (XJ B B B 
0 

.. 2 

IV P o (x)l ) g s (;)) -

pg(x) 

(8) 

To solve these equations together with equation (3) for the 
equilibrium density and the relation of orthonormalization (7) 
is a very difficult task. In paper 171 we suggested an approxima
te variant for the equations (8). One equation of the Schro
dinger type for f 8 (~) and w

8 
(with an approximate functional 

connection between f 
8

Ci) and g 
8 

(XJ) ) instead of the system 
of two coupled equations (8) has been written, that way has 
been a success in qualitative investigating the influence of the 
nuclear surface diffuseness on the properties of oscillations 
of spherical nuclei. In the next section an analytic solution 

3 



of equations (7), (8), suitable for the description of density 
vitirations in the double nuclear system will be derived. 

3. TWO-CENTRE NUCLEAR DENSITY VIBRATIONS 

A successive scheme of solving the equations (3), (7), (8) 
seems to be as follows: One chooses a two-body interaction V(x) 
(or a functional &; [p] ) and derives a cant inuous normalized 
solution for the equilibrium density p 0 (~.Substituting it into 
(8) one solves this problem for eigenvalues w 

8 
and functions 

f 8 , g 8 with the orthonormalization conditions (7). But in 
practice this way meets with considerable difficulties .. 

It is extremely difficult to get a continuous, normalized 
in the whole space solution of the Thomas-Fermi type for equa
tions (3) while choosing realistic interactions (for instance, 
those used in Nuclear Matter Theory 1111 ), especially with the 
dependence of the interaction on the density and exchange effects 
(see ref. 1 12/ ). If even we were a success in obtaining such 
a solution, we would get a very complicated system of integra
differential equations (8). That is why we shall act as follows: 
We won't select an interaction, we.'ll take the fo.rm of the den
sity in its ground state, and calculate the second variation 
o2&jop2 in equations (8) with the help of equations (3). By 
this we'll effectively coordinate all the quantities in equa
tions (8) for w 8 , f 8 (x), , g 8 (X). This is the simpliest task 
for a spherical or one-dimensional case. It is more difficult 
for a nonspherical case. Further we'll consider the simplest 
analytically solvable variant, modelling the double nuclear 
system. 

Let us select the equilibrium density of the form: 

p 0 (r, z, <I>) "" p exp (-rr(r, z)), (9a) 

where (r, z, <I>) are cylindrical coordinates of a point. p can 'be 
found from the normal{zation density conditions (3). 

The equation rr (r, z) =0 is an equation of the boundary of the 
nucleus (we suppose an axial symmetry), i.e., the surface, 
where the density has the maximum value. Let us select the 
simplest form for rr, having two distinguished centers at points 
Z _ +z ,/13,14/ . 

- - 0 • 

2 2 - 2 rr(r, z) =A(r + (lzl - z0 ) ) - R . (9b) 

where parameters ..\, R are connected with the geometric sizes of 
the nuclear system. 
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For, this case: 

4m a&; [.p] 
·h2 op

0
(x) 

.... 
.1po (x) 
--... -
Po (x) 

1 
-2 

... .... 2 

IV P o<x)l = 4.\(rr(r, z) + R2)- 6..\ • 
p~(; 

!'' 
t 

! 
\ ~ 

jl 
., 

}I • 
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1 
i ,. 

~· . 

..,J;, 
\o 

'· ,, 

j 

' 

v,l 

.. 
'I 
~· I 

) 
!~ 

I• 

li 

( 
/ 

4m .... o 2 & [p] 
-p (x) -- = -2..\. 
h 2 0 

op ~ (i{) 
(9c) 

It is necessary to mention that one has been a success in 
deriving these expressions due to a special form of the density 
(9). Substituting (9) into (7) and (8) we get: 

- ...... ..... ...... - -+ 

.1 f 8 (x) - ..\2 (r 2 + (I zl - z0 ) 
2 - 3/A) f 

8 
(x) = w 

8 
g 

8 
(x), 

.1g (X)-A 2 (r 2 +(1z[-z 0)
2 -5/A)g (X')= 4m

2
w f (X'), (10) 

S 8 h2 8 B 

- ... .... 1/2 ... - ... .... -112 .... 
f 8 (x)=:p 0 (x) f 8 (x); g

8
(x)ep 0 (x) g

8
(x). 

- ...... - .... 
The functions f 8 (x), g f (x) are diagonal in the bas is of the two-
centre oscillator /13, 4/: 

- ...... - -+ -+ 

f s (X) = f n Av (x) = .F n Av · 'I' n Av (x) ' 
r r r - ...... - -. .... 

gs(x) "'gn Av (x) = 0 n Av" 'l'n Av (x) • (II) 
r r r 

.... 112 A -Ar 2/2 A 2. iA<I> -. -· 
ll'n Av (x)- (..\ r) e fn (..\r Je Dv h/2..\ (lzl- z 0 )), 

r r 

where !f./:- are Laguerre polynimials, Dv are Weber parab0lic-cy
linder fuhctions /15/. The frequencies w n Av and constants 
.F n Av , 0 n Av can be found from the r equations ( 7), ( 10), 
( I lr) : r 

w nr Av 

GnrAv 

Fn Av 
r 

_!1!.. vNcN - l), 
m 

m 

2h Fn Av 
r 

N-1 114 
= 0.5(-~_-) 

N 

Ne2n +A+v, 

( 12) 

.. 
The eigenfunctions 'I' n Av (x) and eigenvalues N depend on the • r 
d1stance between centers 2z 0 . and can be found analogously to 
the Two-Centre Shell Models 1 13 ,1 41 with the inclusion of 

I ' 
the conditions of continuity of the wave functions and their 
first derivatives at the origin of the coordinate system. 

Substituting (9), (II), ( 12) into (6) we get explicit ex
pressions for the operators op and ¢, i.e., a complete hydrody
namic description of the symmetric two-centre nuclear density 
vibrations. 
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Selecting other' forms for Po(;;) (analogously to the nuclear 
fission /1S/ ) one may try to generalize this method to more 
realistic cases of asymmetric double ,nuclear systems-. · 

~t is necessary to note that the formulas above can be ap
plied only for the analysis of the isoscalar density vibrations. 

In conclusion we should mark that it is very important to 
have a consistent solution to equations (3) for the density in 
the ground state and to equations (4), (S) for ap aqd ¢ 
operators. Moreover, the presence of surface terms~ gives-us 
a possibility to obtain a solution correct in the whole space. 

Let us illustrate this statement by the followin~ examples. 
We will select the simplest parametrization of the effective 
interaction in the Finite Fermi System Theory 1 17•181 : 

-+ 772 h 3 -+ -+ 
V (x) = -- · f0 [p 0 (x)] a (x) , ( I 3) 

2m*p F 

where m* is an effective nucleon mass, pF a Fermi momentum, 
f 0 the scalar scattering amplitude. 

Having neglected the surface terms of the pressure operator 
in equations (S) and taking into acccount that a 2th! ap ~ :::: 
:: rr2h3f /m*p F we'll obtain a more habitual form of these 

. 0 
equat1ons: 

... Po ci) ... ... 
V (--- V f (x)) 

Po (O) s 

w:; -+ 

+ - f (x) = 0 
u2 s ' 

(Sa) 
_,. cus ~ 

g (x) :: - - p 0 (0) f (x) , 
s u2 s 

where for convenience the "sound" velocity u in the nucleus 
is introduced as usual a 2 th/ap~:: m*u 2/p

0
(0). 

If we' 11 also omit the surface terms in the equation of con
tinuity (the first eq. (S1)),we'll obtain the usual Helmholtz 
equation for w 8 and f 8 (x) 

1
• It is necessary to keep in mind 

that in that case the Helmholtz equation will be correct only 
inside the nucleus (where p 0 ("i)-p 0 (0) = =0.17 fm-3 , r0 = f 10 = 
=0.2 70.5)• and needs corresponding conditions at the boundary 
of the nucleus. In order to get the soluti~n in the whole spa
ce, all the surface terms should be taken into account. Parti
cularly, B.Rumjantzev in his papers'121 pointed out that solving 
equations of the type (Sa) with natural boundary conditions 
(f

8 
(\"i\ -+ oo)-+ 0) leads to a physically unsatisfactory 

result (to a continuous spectrum w 8 ) if one takes the interac
tion (13) and the density in the ground state in the Wood-Saxon 

~Such terms are indispensable for the right description of 
commutation properties of the kinetic energy tensor in terms 
of density and flux operators. 
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1 • , ... 
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'~ 

~ L . 
. if i 

'~ • 
I ~ ' :? ~ 
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'II 
' 

r~--

ws -+ .... -1 . 
form: p 0 (x) - · (1 + exp((\x\ - R)/a)) • To our m1nd, 
the reasons are the following. First, the density p~3 (x) is 
not consistent with the choice of the interaction (13) in the 
whole space (but only near the centre of a nucleus) and, se
cond, the surface terms of the pressure operator were not 
taken into account (they were omitted while the transition from 
the equations. (S) to (Sa)). The solution of equations (7), 
(S) for the density ~ ~) of the Gauss type, derived in this 
section, is free from these drawbacks. However, if we solved 
the approximate system (Sa) we would meet the difficulties 
above. To our regret we cannot vividly illustrate these asser
tions now, because we have failed to obtain an analytical solu
tion of the equations (3), (7), (S) to describe the Wood-Saxon 
type density vibrations. And the first attempts to solve, this 
task numerically have shown that further hard efforts are need
ed. We are going to investigate this problem in a subsequent 
paper. 

The author expresses his heartiest thanks to R.V.Jolos for 
his kind encouragement and helpful discussions and J.Delchev. 
V.P.Permyakoff, H.Hristov for their useful critical remarks. 
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KapTaBeHKO B. r. Korre6amm ,IJ;Byxu;eHTPOBOH H,IJ;epHOil 
llJIOTHOCTH 

E4-82-554 

B rup;pop;uHaMu~ecKoM rrpu6rru~eHHH uccrrep;yiDTCH Korre6aHHH 
H,IJ;epHOH IIJIOTHOC TH > HMeiOm;efi ,IJ;Ba Bbi,IJ;eJieHHbiX u;eHTpa. IIoKa3aHO, 
qTO eCJIH paBHOBeCHaH IIJIOTHOCTb MO~eT 6b!Tb rrpep;cTaBJieHa B BH,D;e 
,IJ;BYXfleHTpoBoro rayccoup;a Po (x) - exp (->.. (r 2 +(I z I - z 0 ) 2 )) , 
TO CIIeKTp KOJIJieKTHBHbiX B036~eHHH, OTKJIOHeHHe ITJIOTHOCTH OT 
paBHOBeCHOII H IIOTeHu;HaJI ITOJIH CKOpOCTeH ITpOCTbiM o6pa30M CBHSa
Hbl CO CIIeKTpOM H BOJIHOBbiMH !];JyHKI.J;HHMH ,!l;BYXI.I;eHTpOBOrO OCI.J;HJIJifl
TOpa. 

Pa6oTa BhmorrHeHa B J1a6opaTopuu TeopeTuqecKofi !j;JusHKH OH5IH. 

npenpHHT 06beAHHeHHOro HHCTHTyTa RAePH~X HCCneAOBaHHH. Ay6Ha 1982 

Kartavenko V.G. The Oscillations of Double-Centre 
Nuclear Density 

E4-82-554 

The density oscillations in a composite nuclear system are 
analysed. A hydrodynamical approach is used to investigate 
the vibrations of the two-centre nuclear density. It is shown 
that for an equilibrium density of the form p 0 (~)- exp(-..\(r2+ 
+ (lz! - z o) 2 )) the spectrum of excitations, the deviation·· 
of the density from the equilibrium one and the velocity po
tential are connected in a simple way with the spectrum and 
wave functions of the two-centre oscillator. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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