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i. INTRODUCTION

Deep inelastic heavy ion collisions with nuclei are accom-
panied by the excitation of many states of a complicated struc—
ture. Among them the nuclear density vibrations (giant resonan-
ces) in colliding nuclei or in a double nuclear system many be
the most important for understanding the dissipative phenome-

a’1"3 and the mechanism of preequilibrium emission of light
particles/&44/.

In ref.’?”/ we began to analyse collective excitations of
the double nuclear system. A hydrodynamic approach has been
used to derive equations for v1brat10na1 excitations of a nuc-
leus with the equilibrium density po(x) which, in principle,
can considerably differ from the spherical one. We have analysed
the transition to the known case of the density oscillations
inside the hard spherp/g/ and demonstrated an approximate way
of taking into account the nuclear surface diffuseness.

In this report we have derived the simplest analytic solution
for vibrations of the two-centre density, modelling a double
nuclear system.

2. EQUATIONS FOR DESCRIPTION OF NUCLEAR DENSITY OSCILLATIONS

It is convenient to describe the den51tykosc1llat10ns in

terms of operators of the den31ty po(x) ¥(x) . ¥(x) and the
flux density J(x) = ﬁ-i(wx)- VY@ - Vi ve, where
&(x) W(x) are operators of the nucleon field, and with the

use of the hydrodynamical representation for the Hamiltonian
of a, Ferml system with the effective two-body interaction
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which is equivalent in’ view of the equation of motion for -the
operators p(X) and j(X) to the usual nuclear Hamiltonian’/47/.
If we restrict our analysis to the only vibrational motion
(supposing the nuclear motion to be irrotatiomal), it is sui-
. . > -+ - -
table to use the velocity potential operator j(® s-g-{p(x),qu(x)}#
The operators p and ¢ are connected with canonical commuta-
tion relations:
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following from the definition of these operators and the commu-
tation relations for the operators of the nuclear field:
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Extracting the mean density po(?{) and the operator of its
deviation 8p(y) from the density operator: PE =po @ + @D
and demanding po()_(,) to be the equilibrium one we get the equa-
tion of the Thomas~Fermi type for po(x): -
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A is the number of nucleons of a nuclear systems.

The equations of motion for §p and ¢ operators in the har-
monic approximation are the following:
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This sytem of equations has the first integral of motion
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Equations (4) can be derive from (5) by the usual rules
(mp and 8p are canonically conjugated quantities). H[g] is
a part of the Hamiltonian of the second order in powers of
operators Op and ¢ (the harmonic approximation means neglec-—
ting all the terms of a higher order).

“In order to analyse  the stationary oscillations operators
8 and ¢ can be expanded, as usual, in terms of creation and
annihilation operators (b} and bg) of the boson (Ibg,bh- 1= 204,
3 is its quantum number):
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b (x) = i—m- 28, f, () (b -bg).

The amplitudes fs(;) , B5(x) satisfy the following relation
of ,orthonormalization:
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resulting from the definition (6) and commutation relations bet-
ween Sp, &3 b: , bgoperators.

With the relations (6), (7) the equations of motion (4) can
be rewritten in terms of amplitudes f (%), gs(g) and frequencies

wg (H[z] = Eshw;é b:bs + const):
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To solve these equations together with equation (3) for the
equilibrium density and the relation of orthonormalization (7)
is a very difficult task. In paper’?/ we suggested an approxima-
te variant for the equations (8). One equation of the Schro-
dinger type for ts(i) _?nd wg (with an approximate functional
connection between f_(x) and gs(ﬂ) ) instead of the system
of two coupled equations (8) has been written, that way has
been a success in qualitative investigating the influence of the
nuclear surface diffuseness on the properties of oscillations
of spherical nuclei. In the next section an analytic solution




of equations (7), (8), suitable for the description of density
vibrations in the double nuclear system will be derived.

3. TWO-CENTRE NUCLEAR DENSITY VIBRATIONS

A successive scheme of solving the equations (3), (7)), (8)
seems to be as follows: One chooses a two-body interaction VCD
(or a functional &l[pl ) and derives a continuous normalized
solution for the equilibrium density poﬁﬁ.Substituting it into
(8) one solves this problem for eigenvalues w4 and functions
fs , 8y with the orthonormalization conditions (7). But in
practice this way meets with considerable difficulties.

It is extremely difficult to get a continuous, normalized
in the whole space solution of the Thomas-Fermi type for equa-
tions (3) while choosing realistic interactions (for instance,
those used in Nuclear Matter Theory 711/ ), especially with the
dependence of the interaction on the density and exchange effects
(see ref.”12/ ), If even we were a success in obtaining such
a solution, we would get a very complicated system of integro-
differential equations (8). That is why we shall act as follows:
We won't select an interaction, we'll take the form of the den-
sity in its ground state, and calculate the second variation
52&/8p2 in equations (8) with the help of equations (3). By
this we'll effectively coordinate all the quantities in equa-
tions (8) for wg f4(¥), , g5(X). This is the simpliest task
for a spherical or one-dimensional case. It is more difficult
for a nonspherical case. Further we'll consider the simplest
analytically solvable variant, modelling the double nuclear-
system.

Let us select the equilibrium density of the form:

P, 7, O =p esp(-n(r, 2), (9a)

where (r, z, ®) are cylindrical coordinates of a point. p» can 'be
found from the normalization density conditions (3). .
The equation w(r, 2) =0 is an equation of theboundary of th
nucleus (we suppose an axial symmetry), i.e., the surface,
where the density has the maximum value. Let us select the.

simplest/fgg%/for 7, having two distinguished centers at points
Z = +2 i » .
tzg :
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where parameters A, R are connected with the geometric sizes of
the nuclear system.
For. this case:
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It is necessary to mention that one has been a success in
deriving these expressions due to a special form of the density
(9). Substituting (9) into (7) and (8) we get:
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The functions f;(ﬁ.

ggdb are diagonal in the basis of the two-
centre oscillator /13147,
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where Sfé\r are Laguerre polynimials, D
linder functions 715/ The frequencies

are Weber parabolic-cy-
wy Ay and constants

v

F‘ntAv ) GnrAV can be found from the' equations (7), (10),
(11):
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The eigenfunctions ¥ Av (5 and eigenvalues N depend on the
distance between centers 2z, and can be found analogously to
the Two-Centre Shell Models /13J4< with the inclusion of
the conditions of continuity of the wave functions and their
first derivatives at the origin of the coordinate system.
Substituting (9), (11), (12) into (6) we get explicit ex-—
pressions for the operators §p and ¢, i.e., a complete hydrody-
namic description of the symmetric two-centre huclear density
vibrations.




Selecting other’ forms for po(ﬁ (analogously to the nuclear
fission /1% ) one may try to generalize this method to more
realistic cases of asymmetric double muclear systems. .

It is necessary to note that the formulas above can be ap-
plied only for the analysis of the isoscalar density vibrations.
In conclusion we should mark that it is very important to
have a consistent solution to equations (3) for the density in

the ground state and to equations (4), (8) for 8p and ¢
operators. Moreover, the presence of surface terms gives~us
a possibility to obtain a solution correct in the whole space.

Let us illustrate this statement by the following examples. :
We will select the simplest parametrization of the effective
interaction in the Finite Fermi System Theory/1748/

2
T
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where m* is an effective nucleon mass, Py a Fermi momentum,
fp the scalar scattering amplitude.
Having neglected the surface terms of the pressure operator

in equations (8) and taking into acccount that § 26/3p% =
= nzhafo/m*p F we'll obtain a more habitual form of these

equations:
> 2
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po(0) ™) u? °
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where for convenience the '"sound" velocity u in the nucleus
is introduced as usual Szé/apg = m*uz/po(OL

Ifwe'll also omit the surface terms in the equation of con-
tinuity (the first eq. (833),we'11 obtain the usual Helmholtz
equation for wg and %(i) It is necessary to keep in mind
that in that case the Helmholtz equation will be cqﬁfect only
inside the nucleus (where py(x) ~ py(0) = =0.17 fm
=0.2 +0.5) and needs corresponding conditions at the boundary
of the nucleus. In order to get the solution in the whole spa-
ce, all the surface terms should be taken into account. Parti-
cularly, B.Rumjantzev in his papers”%/ pointed out that solving
equag}ons of the type (8a) with natural boundary conditions
(f ([X] » )~ 0) leads to a physically unsatisfactory
result (to a continuous spectrum w, ) if one takes the interac~
tion (13) and the density in the ground state in the Wood-Saxon

» fo= fyp=

%Such terms are indispensable for the right description of
commutation properties of the kinetic energy tensor in terms
of density and flux operators. N
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form: p (‘)VS ® ~- 1 + BXP((|7_;| - R)/a)) -1 To our mind,
the reasons are the following. First, the density ;)gs(ﬁ is
not' consistent with the choice of the interaction (13) in the
whole space (but only near the centre of a nucleus) and, se-
cond, the surface terms of the pressure operator were not

taken into account (they were omitted while the transition from
the equations (8) to (8a)). The solution of equations (7), P
(8) for the density ;b(i) of the Gauss type, derived in this
section, is free from these drawbacks. However, if we solved
the approximate system (8a) we would meet the difficulties
above. To our regret we cannot vividly illustrate these asser-
tions now, because we have failed to obtain an analytical solu-
tion of the equations (3), (7), (8) to describe the Wood-Saxon
type density vibrations. And the first attempts to solve, this
task numerically have shown that further hard efforts are need—
ed. We are going to investigate this problem in a subsequent
paper.

The author expresses his heartiest thanks to R.V.Jolos for
his kind encouragement and helpful discussions and J.Delchev.
V.P.Permyakoff, H.Hristov for their useful critical remarks.
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Kaprasenko B,I'. KomeGanusi OBYXIEHTDPOBOH sAlLepHOL E4-82-554
IIJIOTHOC TH .

B rumpomHHaAMHUECKOM NPHOJIMKEHHM HCCIeIVITCS KoJjleBaHHsa
sIepHOH IUIOTHOCTH, UMelmefi [OBa BblOelleHHbBIX umeHTpa. llokasano,
UTO ecilM PABHOBECHAA IUIOTHOCTH MOXET 6me npeHCTaBneHa B BHue
OBYX[IeHTPOBOI'0 rayccouga po(x).aexpGA(r +(lz} - zg)? ),

TO CHeKTP KOJUIEKTHBHBIX BO3OYXIEHHH, OTKIIOHEHHE TJIOTHOCTH OT
PaABHOBECHOI M NMOTeHUHAall MOoJIf CKOpoCcTeH IpoCThM 06pasoM cBs3a-
Hbl CO CIEKTPOM H BOJIHOBBIMHM GYHKIHUAMH OBYXLEHTPOBOTO OCIMILIS-

TOpAa.

PabGora BuIosiHedHa B JlaGopaTopuu TeopeTudeckoH duanxu OUIU,

NpenpuHT 06vegrHEHHOro MHCTUTYTA AfepHux uccnegosamuit. fy6ua 1982

Kartavenko V.G. The Oscillations of Double—Centre E4-82-554
Nuclear Density

The density oscillations in a composite nuclear system are
analysed. A hydrodynamical approach is used to investigate
the vibrations of the two-centre nuclear den51ty It is shown
that for an equilibrium density of the form po(x)~ exp (A (T2 +
+ (lz] - 2¢9)2)) the spectrum of excitations, the deviation]
of the density from the equilibrium one and the velocity po—
tential are connected in a simple way with the spectrum and
wave functions of the two-centre oscillator.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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