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Exact solutions of integral equations for the inverse scat
tering problem were obtained for a wide class of interactions -
Bargmann potentials (see the review article/1/), 

The Bargmann potential chosen from these model solutions 
for the best approximation of the scattering data in some par
ticular case can be considered as an approximate solution of 
the corresponding inverse problem. 

Such calculations have been already performed for numerous 
nuclear systems (potentials for quarks N-N , N-a , a--a , N -
nucleus, nucleus-nucleus, and even for heavy ions have been 
reconstructed, see the review 111). 

It is impossible to judge about the quality of this inter
action reconstruction procedure without its verification in the 
cases with a priori known potentials (how are these potentials 
deformed after successive solution of the direct and inverse 
problems). However, very little of such necessary verifications 
have been fulfilled until now. And these are absent at all for 
some classes of Bargmann potentials. 

We present results of such calaulations with an approximation 
- & --- ........ -.-!- ~ ...J- .... - & -- .... 1-- 1.- --- -- .... -- .... ! - ., - \... -- - L..- - - .! - - - .! -
V.A.. U"-fO.&""'"-'-~ ..... U.f) U4ol.to-'-" .&.OJ&. "-ll._ ~l"oJWI.l t''-'""'lf;..l.l"-.&.U..&..::t UJ ll...llVV.::t.Ll.lb .:t..LU. 

gularities of the trialS -matrix in the complex k -plane. 
A multichannel (matrix) generalization of Bargmann poten

tials (VaB(r)) was originally considered by Newton and FultOI/2 •31. 
They restricted themselves, however, to the case when the 
thresholds of excitation for all the channels coincide (kinetic 
energies of the free asymptotic motion in different channels 
are equal). This formalism was used for reconstruction of the 
tensor and spin-orbital nucleon-nucleon forces /3,4/. 

Systems with different channel excitation thresholds have 
been investigated by Cox/5/. 

Recently it has been found/6/ that new solutions, more 
simple than the exact solutions of Cox, exist in the case of 
separable dependence with respect to channel indices, of the 
kernels of the inverse problem integral equations. In ref. 161 

interaction matrices V ~,for which the kernels of Gelfand-Levitan 
equations contain the ~ontribution from bound states only, have 
been constructed (with kernels not necessarily completely de
generated as in the Cox paper/5~). 

In the present paper exact solutions of multi~hannel systems 
of equations (for direct and inverse problems) corresponding 
to scattering matrices with a finite number of resonance sin-
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gularities are derived. The resonance states have also not ne
cessarily to be completely degenerated, as it was demanded in 
ref ,/5/, 

I. EXAMPLES OF APPROXIMATE SOLUTIONS OF SINGLE-CHANNEL 
INVERSE PROBLEM 

A remarkable demonstration of the quality of the approximate 
potential reconstruction was given in papers /7,8/ by collabo
rators of Fermilab. (Batavia). They restricted themselves, 
however, to infinitely deep potential wells (with the discrete 
spectrum only) developing the algorithm of reconstruction of 
interquark confinement forces. A specific technique /7,8/ does 
not permit the applications of their results for estimating the 
errors of the potential reconstruction for systems with the 
continuous spectrum. 

The scattering function S(k) in our calculations was chosen 
in the factorized form 

8 a= ~ <t-aj> (k+ap <t+bj> <t-br > 
(k-bj ) (k+bj) (k+aj) (k -a{) 

to which there corresponds the Bargmann potential 

B d 
2

N a. -b. ib.r 
V 4i - I ~ bj 1 J f (b j ,r) e J I , 

dr j aj +bj 

(I) 

(2) 

where 

f (b. r ) 
J 

P. 
JB 

Parameters ~ ,bj were taken as to provide the best possible 
approximation of S(k) (realk>O) corresponding to the potential 
to be reconstructed. 

As typical examples the following potentials ~ill be consi
dered here A) Wood-Saxon potential which is often used in nuc
lear physics and B) V =Vo e-ar 2 for which many calculations have 
been already done in the inverse scattering problem in the 
framework of a formalism with fixed energy*,C) potential 
V = 2e-1°r-e-6r with a repulsive core and an attractive tail. 

*There are two main approaches in the inve~se scattering 
problem: the reconstruction of interaction from partial phase 
shifts of with different values of the angular momentum f for 
a given value of E (successes along this line are discussed in 
review/1/) and formalism with fixed f considered in this paper. 
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· · 1 · f the inverse problem using F1g. 1. Approx1mate so ut1on o l'd 
Bargmann potentials. Original potentials are drawn by so 1 
lines, and the ones reconstructed from phase shifts o(E) -
by dashed lines. 

InitialVi and reconstructed Vr potentials (upon so~vi~~ t7e 
direct and inverse problems: Vi -.S-. V r ) are compared 1n ~· 
The position of poles of S Bin the complex k -plane cor:espon
ding to approximate solutions of the inverse problems 1~ case 

h wn in fig.2. It is remarkable that tr1al po-D are s o . . 1 f r s 
tentials VB appear to be rather close to the or1g1na V o e -
sentially different sets of parameters a j ,bj • 
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Fig.2. The displacement of 
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for reconstruction of the poten
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2. MULTICHANNEL EQUATIONS 

The motion in systems with N coupled channels will be des
cribed here by equations ( h2 =2m = 1): 

(3) -'1'~~ cK,r)+~ v , (r) 'I' •13 cK.r)=E 'l'f3(K,r). al-' aa a a a 
where Vaa' (r) ~re elements of an interaction matrix V(r), 'Paf3( K,r) 
is the wave function in a channel "a", corresponding to the 
incident wave in a channel" f3 ": 

'I' rKn,_n· ·'· _.,.-iknr "' " ,v,_iknr. 
ap · · ' ~ · r a/3 ~ ~ap -a{3'" 1

v 
"' \~) 

Saf3 are elements of the scattering matrixS, K is a diagonal 
matrix of channel wave numbers k0 : K = I Kaf3 = ka 8af3. l ; ~a = 
= k 2 =k 2 - ~2 is a kinetic energy of the asymptotic mot1on 
in ~he channeal "a"; -~~ is the threshold energy at which the 
channe 1 "a:· opens. 

Besides l(laf3•we will use the matrix of Jost solutions F(K~) 
corresponding to asymptotic conditions 

-i'b r K lim e Faf3( ,r) = 8af3. (5) 

Ther;~lues of Jost solutions atr =0 determine the Jost matrix 
Faf3 ( K) = F af3 ( K, 0) connected with the scattering matrix: 

S(K) • KY.F (-K)F(K)K-l-1. (6) 

Solutions F(K,r) correspon4,ing to a potential matrix V(r)=/0 can be 
obtained from solutions Fa8 ( K,r) = eika r 8 af3 . of th~ free mo
tion by the integral transformation (a general1zed sh1ft): 

K ikr K ')ikf3r'd, Fa/3( ,r) = e a 8af3 + ( af3 (r,r e r , 
r • 

where kernels K'nl3(r,r') of transformat10n. (7) are 
by multichannel 1ntegral equations of the 1nverse 
(Marchenko): 

(7) 

determined 
problem 

) 

) 

K 13 cr,r') +Q 13cr,r)+l (K (r,r")Qf3(r",r')dr"=0, 
a a y r ay y 

and kernels Qaaof equations (8) can be determined by 
tering matrix saf3. bound state energies E~ =- ( K~ ) 2 
the corresponding normalization constants M~: 

(8) 

the scat
and by 

1 
00 

-ii i(k r+k13r') ii 
Qal3(r,r ') = 217 . .L, ka. (8af3-Sal3) e a. kl3 k

1 
dkt + 

(9) • 0_• 
+ I. e-"a r MA

13
e- 13r 

A a 

The cases when (8), (9) have exact solutions, which are espe
cially interesting for practical applications, are considered 
in the next section. 

3. INTERACTION MATRICES OF THE BARGMANN TYPE 

The simplest exactly solvable models were derived in the 
Gelfand-Levitan approach when the continuous spectrum does not 
contribute to kernels Q of inverse problem equations 11.61*. 

But in the Marchenko approach it turned out to be more easy 
to construct the solutions for which only resonance singulari
ties of S contribute to kPrnPl" Q 

Let a system have no bound states and kernels Q 13in (9) have 
the factorized dependence on coordinates r,r' and channel indices 
a, f3 

Qa13(r,r') =Faa (K
11 

,r) ~ ['13 Fl313 (K
11 
,r')' ( 10) 

where K11 is the value of K corresponding to a pole of the S -
matrix on the imaginary axis in the complex k 1-plane. 

The solution of Marchenko equations with such kernels can be 
constructed in the form 

N II 0 II 
K •= I. F aCK ,r)f'af',F, -(K ,r'). 

aa 13 a~-' 1-' a. a a 
(II) 

We find~ Fai3(K" ,r) r13 , substitutingK andQ from (II) and 

( 10) into (8) 11 

Faa .c K" .r> ra .. 
"" 0 

1+~ ( r 2 F2 (K",r')dr' 
y r y yy 

-K r 
e a· r ·---.:;a_.---· ' (12) 

*The integral term in (9) cannot be omitted restricting the 
contribution into Q by discrete states only, because this cor
responds to the choice Sal3 =I and violates the Levinson theorem. 
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So Kaa' is also determined. The potential matrix can be expres-
sed using these Kaa' v v 

-K r -1( , r 
d earr,e a 

V,(r)=2-l- eta --· 
aa dr l+l r;e-2K~r/2KV . 

and according to (7)Ywe have for solttion Fa{3(K,r): 

e-K~ r 1. 1.{3 e (-K{3 +ik(3 )r 
F ( K ) ik r " + a a{3 ,r • e a 0 a{3 --~--2..;:....-_.z2~Kv,_r ___ v __ . ___ v __ 

(1+..:. rye Y /2Ky) (lkf3-Kf3) 
The validity of formulle (13), (14) can be verified by 

rect substitution of Vaa' and Fa~ into the system (3). 
Using these ~{3 (K,r) we can find the Jost funtion 

Faf3( K) • oaf3- __ r.~q.__l..wa ___ _ 
(K$ -ilrtJ)(l+l (ry2/2K~)} 

( 13) 

( 14) 

di-

( 15) 

and we get the scattering matrix, substituting (15) into (6). 
In a more general case of M resonance singularities, the 

expressions for Q and Kin the right-hand sides of eqs. (10), 
(II) have to be summarised over v. Then a system of M algebraic 
equations has to be solved. So, we get K, which determines 
V~(r) and F{3(K,r), from (13), (14), we get F {3 (K) from F{3(K,r) a a . a a 

an saf3<K> 1s determmed from ~6); 

F {3 (K,r). F (.1\,r) o {3+I 
a aa a vv' 

0 v ' 
F ( K ,r')dr' ikr " -~ p-1, (r)e -Ka r l'vl,l/ 

x {3{3 -e ua{3 ..:. w a {3 

d 
-2--

dr 

~ v v 
.,.. -1 -(K +Kf3)r I ..:. pvv,(r)e a 

FV 

8 {3 - ~ P- 1, (0) F"' 'rf3v __ :..__ 
a , vv a 'k v 

VV 1 - K{3 

where v v' 
V -(Ky + K y )r 

rye 
P ,(r) .. 8 , + 

vv vv 

4. CONCLUSION 

I' 
(ik 13- Kf3 ) r 

~-·----
ik{3- K8 (16) 

Results of investigations on the theory of Bargmann poten
tials and applications of the corresponding technique can be 
classified according to the following scheme 
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Crosses signify the domains to which there correspond the 
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resent the areas where a lot of investigations were performed 
(see review /1/ ). Until now no results exist concerning the es
timation of errors of solutions of multichannel inverse prob
lems (the cell with a question-mark). 

The reconstruction of forces for particular nuclear systems 
with a coupling of channels (the lowest right corner of the 
scheme) was made only in the case when thresholds of all the 
channels are equal to each other (tensor and f-s interactions 
of nucleons /3,9/ ) • About the fitting of parameters of S B for 
approximation of S see papers 19·10/, 

The authors are grateful to I.V.Amirkhanov, V.N.Pivovarchik 
and A.A.Suzko for useful discussions concerning the subject 
of this paper. 
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HHKHIDOB n.ID., llnexaHOB E.B., 3axapbeB B.H. 
0 TOqHhlX pemeHHRX 3aAaq paCCeRHHR 

E4-82-525 

.[laHbi npHMepbl, xapaKTepH3YJOm;He KaqeCTBO BOCCTaHOBJieHHH no
TeH~HaJIOB no AaHHbiM OAHOKaHaJibHOrO paCCeRHHR C llOMO~ID TOqHo 
pemaeMbiX MOAeJieH. HaHAeHbi npOCTble TOqHbJe pemeHHR AnR MHOro
KaHaJibHhlX CHCTeM C HeBbiPOEAeHHbiMH pe30HaHCHbiMH OCo6eHHOCTHMH 
MaTpHJ:.U>l pacceHHHH. 

Pa6oTa BblllOJIHeHa B na6opaTOPHH TeopeTHqecKOH ~H3HKH OHHH. 

Nikishov P.Yu., Plekhanov E.B., Zakhariev B.N. 
On Exact Solutions of Scattering Problems 

E4-82-525 

Examples illustrating the quality of the reconstruction 
of potentials from single-channel scattering data by using 
exactly solvable models are given. Simple exact solutions for 
multi-channel systems with non-degenerated resonance singula
rities of the scattering matrix are derived. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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