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I - INTRODUCTION 

The negative parity states in deformed nuclei and in particu­

lar in actinides provide an interesting field of studies both for 

theorists and for experimentalists. In actinides the collective nature 

of low-lying negative-parity states was predicted in the calculations 

made within the framework of R.P.A. (l-4). This prediction is in agree­

ment with the data obtained by Coulomb excitation. Large moments of 

inertia and small energy intervals between the collective band-heads in 

actinides accentuate the role of Coriolis mixing of such states. The 

latter aligns the vibrational angular momentum with the axis of nuclear 

rotation. 

The properties of aligned states differ essentially from those 

which are known in the region of adiabatically slow rotation (i.e. in 

the region of small I) (S). The effects of Coriolis coupling may be 

conveniently studied in terms of align~ent of the angulnr momentum (jx) 

8S bU~~~bL.t::U UJ uvuL au_; !!.._..~~.:.!.,:::,:;: ( 6) '1",.. nrt"~"'"'t-'"' ; J-t:1c: tn knoW 
·x 

the dependence of the total angular momentum of states (I) on the fre-

quency of rotation (w). If one knows such a relation for the distorted 

band (Ieff(w)) and for the rotating core (lcore(w)), one finds jx from 

the relation : 

(I) 

In applying eq.(l) one uses the energies of the states in the distorted 

band to find Ieff(w). In the simplest approximation one writes 

i (E(l+l) - E(I-1)) (2) 

to calculate the function "'eff(I) for discrete values of I and then to 

find Ieff(w) by means of interpolation. 

There is no direct way to find such a relation for the 

"'core(!) (or lcore(w)) function. Different empirical procedures were 

suggested to calculate these functions using the energies of the 

ground-band states (l,S,g). The possible Coriolis distortions of the 
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ground-state band even at low spins make such an approach rather ambi­

guous, which is a serious drmvback of the theory. Here we present a new 

procedure for calculating the aligned angular momentum. Our derivation 

of jx is model-dependent, but, within the model, definit~ relations are 

obtained between the pa~ameters of the intrinsic Hamiltortian and the 

aligned angular momentum. \{e shall first present the model, which is a 

straightforward generalization of that given in ref. (IO). In the present 

formulation we introduce the attenuation parameters of the Coriolis 

interaction between the octupole bands which is necessary to describe 

the spectrum of the negative parity states. Then, we shall describe the 

procedure used to calculate the inertia parameters cf the rotating core 

and simultaneously the aligned angular momentum. Further, a systematic 

application of the scheme to some nuclei of the actinide region is 

presented. The results are summarized in the last section of the paper 

where some tentative conclusions are drawn concerning the influence of 

the quasiparticle degrees of freedom and the effects of anharmonicity of 

octupole vibrations. 

II - THE MODEL 

The following study of the structure of coll~ctive negative-

parity states influenced by a strong Coriolis force is based on the 

Hamiltonian (IO) : 
~ ... 2 3 + li HR (R ) + K:-3 "'jK jbK bK 

where the first term represents the rotational 

(3) 

energy of the core and 

the second term is the intrinsic part of the Hamiltonian including the 

phonon operators b;, (bk) which create (destroy) the negative-parity 

states of predominantly octupole-vibrational nature. The phonon opera­

tors are labelled by the quantum number K which is the projection of the 

vibrational angular momentum on the symmetry axis of the nucleus in a 

corresponding one-phonon state. 

In the following, only the one-phonon states will be conside­

red. The core states are supposed to belong to one rotational band. Then 

the eigenfunction of the Hamiltonian (3) may be written as a superposi­

tion of adiabatic wave-functions (ll) 

. /ffiT 3 _I_ 
'¥ (I,M) = V -:-:--1 E lj!K ~ 

16112 K=O K,O 

+ 
(VMK(Il)bK (-I)IVI {ll)b+K)jO> 

M-K -

and represented by the column vectors as follows 

2 

(4) 

lj!~ 

lj!~ 

'¥ (I,M) lj!2 I I, 3, 5 ... 

lj!; 

(5) 

'¥ (I,M) G) 0, 2, 4 ... 

The transformation '!' ~ Rx (11) 'I' leaves '!'invariant when I is 

even and changes the sign in the other case (notice, that b; becomes 

-b~ after such a transformation). For this reason the even-! and odd-l 

states may be called correspondingly as positive (a= +I) and negative 

( a=-1) signature states(l
2

). 

The first term in the Hamiltonian (3) depends on the rotatio-
~ .;.;.; ..... 

nal angular momentum of the core : R = I - j (I and j being respecti-

vely the total angular momentum and the angular momentum of phopon exci­

tations). If the properties of the core change slowly with R the 

\::vL.ivi.i::. W.LX.Lug may oe r.aKen 1.nto account approximately as follows : 

~ ~ ~ -
HR(R) % HR (I(I+I)) - d ~f~7~l~:~) • (2 I.l- f2) (6) 

The first term of the right-hand side of (6) is actually an operator 

H(f2). Looking for the wave-functions with definite value of the total 

angular momentum, we may replace it by its eigenvalue H!ll(l+l)). 

The same goes for the factor before the bracket in the second ·term. In 

the following, the~ 2 operator will be incorporated in the intrinsic 

part of the Hamiltonian. 

Using the known expressions for the matrix elements of the 

V-functions, the matrix elements of the operator appearing in eq.(6) may 

be conveniently written as follows 

~ ~ I 

(t.j)K,K+I ,ti(i+Tj (j ) x K,K+! • X (I ,K) (7) 

where 

jx 112 <f+ + L> (8) 

3 



is the x-projection of the vibrational angular momentum and X (I,K) 

is equ~l to : 

X (I,O) 

X (I, t) 

X (I, 2) 

[ . 2 11/2 
1 - I(I+11 ' 

= [1 -~1/2 
I(I+1) 

In the high-spin approximation, when I>>1, X (I,K)% 1 and 

eq.(6) becomes: 

HR(1h 

where "' rot is the rotational frequency of the core defined as 

'V 

d E (I) 

"' core rot 
'V 

di 
with 

!' /r(I+li, 
'V 

Ecore (I) I! rot (I(I+1)) 

(9) 

(10) 

(11) 

(12) 

The matrix elements of (jx)K,K' 

given by the expressions 

between the one-phonon states are 

(jx)01 -16 11 (a= -1) 
0 

(jx) 12 
_I...L 

~ (a= tl) (13) 2 

(jx) 23 
_,II_ 

2 112 (a= ±1) 

The numerical factors in (13) correspond to the pure octupole 

states with the intrinsic angular momentum equal to J and with the phase 
(IJ) 

convention suggested in • The parameters ~ describe the attenuation 

of the Coriolis coupling between the one-phonon states. 

After the described approximations the Hamiltonian becomes : 

H 
'V 'V - + 

Ecore (I) - "'rot (I) • jx + K;O "'K bK bK (1 4 ) 

A Hamiltonian similar to that in eq. (14) was given in 

ref. (13), in the high-spin approximation of the Corio lis coupling 

scheme. The operator in (14) has the physical meaning of the Hamiltonian 

operator transformed to the frame of reference rotating with the angular 

velocity w t and has the same structure as the Routhian operator in the 
ro (12) 

nuclear cranking model . The eigenstates of (14) have definite sym-

4 

metry properties with respect to the rotation of the intrinsic coordi­

nate axis over the angle TT around the x-axis. Thus the signature 

quantum number a = ± 1 may be attributed to intrinsic states as was 

already stated before. 

Notice that the Coriolis coupling between the states with 

K;K' = 0;1 in the operator (14) is not affected by the high-spin appro­

ximation in which X(I,K) = 1. This makes this approach applicable to 

the analysis of the states in K = 0- band even at low spins, because the 

admixtures of phonon states with K = 2,3 are small in this case. It is 

easy to modify the scheme so that the first order effects of 

the Coriolis coupling of the band K # 0 with the other bands be treated 
'V 

exactly by a change in the relation between I and I in eq.(12). 

III - SPECTRUM OF THE NEGATIVE-PARITY STATES. INERTIA PARA}IETERS OF THE 

CORE 

Given the Hamiltonian (14), one calculates the energies of 

negative-parity states and the corresponding wave-functions, solving the 

Schrodinger equation : 

(H~,K' c3 6K,K') ~ ,K' 0 (15) 

where 
'V 

"'K 6K,K'- "'rot (I)(jx)K,K' (16) 

Here a= ± 1 is the signature and v is the label of the distorted band. 

The formulae for ca and '!'a K are given in Appendix A. The symmetry 
v v 

properties of the wave-functions (4) lead to the relation : 

(-1)
1 a = 1 (17) 

The spectrum of negative-parity states splits into 4-families of states 

with negative signature (odd-! states) and )-families of states with 

positive signature (even-I states). The energy of the states is given 

by : 
'V 'V 

E (I) + £va (wrot(I)) core 

"' 'V 

E (I) 
core - w (I)< •P rot v 

3 

IJxl 'I' a 
v 

a l I: 
+ < '~'v K=-3 "' IKI 

b+ 
K 

> 

bK 'i'a > (18) 
v 

The right-hand side of cq. (18) contains the function E <i> 
core 

and its derivative with respect to dE/ dl and may be considered as a 

"' differential equation which allows one to find Ecore(I) if the left-hand 

side of (18) is known from the experiment. It is more convenient, however, 
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to use another relation for the definition of the core on the basis of the 

experimental data. From the expression for the energy E~ (I) in eq. (18), 

it follows : 

d E~ (I) 

"' d I 
(19) 

In writing eq. {19) we use the definition for the aligned angular 

momentum of octupole vibrations 

(20) 

Eq. (19) allows us to determine the function "' "'rot{I) using the 
experimental data on the energies of states in rotational bands. The 

explicit relation between jx and "'rot depends on the parameters of the 

model which we discuss in more detail further on. Being the first order 
'\, '\, 

differential equation for w (I), eq. (19) defines ., (I) if an 
rot rotrv '\.. 

initial condition for this function at a certain value of I {at I ) is 
'\, 0 

formulated. The proper choice of initial condition for "'rot(!) gives 

simultaneously the solution to eq.(lB) : 

"' Ecore {I) 

In practice, the 

'\, 

I "' "' 
Eo+ { "'rot(I') di' (21) 

0 

calculations.were done for several values of 
(a) ~t thP ln:r.:roo ... ••:::!•..:':' ~! ~ .:::;.~ 

<UL 
. . 

.., .. vpca uluic.:.e was made, taking 

into account the level spacings of the first states of the 0- band. 

The solution to eq.(19) defines together with "' the "'rot (I) 
aligned angular momentum jx as a function of spin. Graphically jx is 

shown in fig. 1, equal to the difference of I values at the points 

corresponding to the same value of "'rot : one of the points belongs to 

the line "'eff at a given value of I, while the other is given by the 

intersection of a horizontal line and the tangent to the curve w at 
core 

the same value of I. This definition of jx is consistent with eq.(l) if 

02 

0.1 

W(MeV) 

~ - Frequency of rotation of the 

core ( wcorel from eq.(l9) as a 

function of the spin (solid line) in 
232

Th. The dashed line represents 

weff ~ 1/2 [Eo- (I+I) -Eo- (I-I)]. 

The graphical expression of the 
L_~~~--~~~~~~~=-~' 

0 2 4 6 8 10 16 18 20 aligned angular momentum jx is shown. 
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w core (I) may be approximated by a linear function of I in the 

from I - jx to I. The examples given below will show that this 

is satisfied. 

interval 

condition 

Finally, one may define the moment of inertia of the core as 

J 
core 

"' "' I/"'rot(I) 

"' and find its dependence on "'rot or on I. 

"' I 
When "'eff/I 1e~f and jx/"'rot 

the solution to eq.(19) becomes 

"' "'rot I/ 1core 
with Jcore satisfying the relation 

(22) 

"' 6 J do not depend on I, 

(22) 

(23) 

Thus, the linear dependence of jx on w corresponds to thespin­

independent renormalization of the moment of inertia. 

When w is small, the Coriolis interaction may be treated in 

the lowest order of perturbation theory leading to : 

12 11
2 
0 "' rot 

(24) 
00 l-

00
o 11' 

in the case of perturbed K = 0- band (see eqs. (A,5) - (A, 7) in 

Appemnx A). t·rorn eq.lLJ) one obtains an estimate for the moment of 

inertia of the core at small w 

(25) 

It must be noticed that eq. (25) gives a solution to the 

differential equation (19) only when the expression under the square root 

of eq.(25) is positive. 

IV - CALCULATIONS FOR THE ACTINIDE NUCLEI 

The procedure outlined in Sect. 3 was used to define the core 

for the negative-parity states in actinide nuclei 232Th, 236 • 238u. The 

experimental data (! 4- 18 ) which we describe here concern the energies 

in the distorted 0- band and also in the K = 1-, 2- bands whose collec­

tive nature is well established. The moment of inertia of the core )core 

at small "'rot depends on the attenuation coefficient 11
0 

(see eqs.(24), 

(25)). The value of 11 is fixed by the condition that the dependence 
2 0 

)core ("'rot) is close to linear in the interval of "'rot(I) corresponding 

to the few first points in the angular momentum I. The coefficient 111 
and the energy of the band-heads are obtained using the information on 

7 
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the energy intervals in the bands with K f 0. The parameters used in the 

calculations are listed in Table l. (The left-hand side of eq.(l9) is 

approximated by eq.(2)). 

'\, '\, 

Figure l shows the functions w ff(I) and w (I) for the 
232 "' ~ core 

nucleus Th. The dependence "core(I) on I is also smooth in the other 

considered cases. The calculated and experimental spectra of negative­

parity states are compared in figures 2, 3, 4. Notice, that the quality 

of reproduction of the spectrum of 0- bands is determined only by the 

accuracy of solution of eq.(l9). The estimations of the energy levels of 

the states in Kn = l-and 2- bands depend strongly on the parameters n0 

and n
1

• As is seen, the experimental spectra are reproduced quite well 

within the model. 

In the considered nuclei the experimental data on the collec­

tive states in the band Kn = 3- are absent. The coupling of this band 

with the other octupole bands is not important for the estimations of 

the energies in the 0- band. Indeed, the states I = 1-, 2- are free 

from admixtures of states with K = 3-. In the region of low spins 
n -

w is small and the admixtures of states with K • 3 are small 
core 

because they come from the high orders of perturbation expansion in 

"rot" At large spins the Coriolis force tends to align the vibrational 

angular momentum perpendicular to its direction in the state Kw = 3-, 

i.e. it modifies the wave function of the aligned state so that it 

becomes almost orthogonal to the function in the state Kn = 3-. Eq.(B.3) 

in Appendix B determines the asymptotic value of jx at large "rot as a 

function of the parameters ~· The actual value of n2 used in calcula­

tions is ~ = 1. Putting n
2 

= 0 one simulates the situation in which w3 

is so large that there is no Coriolis coupling with the band Kn • 3-. In 

table 2, the asymptotic values for jx at large "'rot are shown for 

different sets of parameters ni. The table shows that the variations in 

jx following the changes in w
3 

are certainly smaller than a few 

percents. From the above considerations it follows that the function 
11 -

jx(w) depends weakly on w
3

, and the lack of information on the K • 3 

band should not affect the estimations of the properties of the core in 

an essential way. 

The calculatio~s allow us to compare the moment of inertia of the 

core Jcore in eq.(22) with the moment of inertia of the ground-state-

band 

J gr 

'\, 
I/wgr' with "gr = 1/2 (Egr (I+l) - Egr (1-l)) 

(26) 
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Table 2 

. '12 - 1 n2 - a 
----------~----------- -----------

2.562 2.442 

236-238u 2.188 2.014 

Asymptotic values of jx for the case with 

full Coriolis interaction with K" = 3- band 

(n2 • I) and with no interaction (n
2

- 0). 
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The comparison of different inertia parameters is given in fig. 5. 

In addition to ] and ] the effective moment of inertia of the O-
core10_ g&x, a-

band is shown here : eff = I/weff' 

The moment of inertia of the core appears to be significantly 
a-

smaller than Jeff(wrot). Having in mind that "'eff(I) ~ wcore(I- jx)' 

we notice that, at large I, where jx reaches its limiting value, the 
a- a-

curves ] eff and ] core become almost parallel. 

The starting value of jx at low spins is zero but, as is shown 

in eq.(23), the Coriolis coupling gives an essential rise to the effec­

tive moment of inertia here. Thus j-ff(w ) presents a more or less 
e rot 

pronounced minimum at some finite value of w, which reflects directly 

'the alignment of the vibrational angular momentum. 

The difference between j- and ] could be understood as a 
core gr 

difference in the polarization effects of the nucleus. For example, 

rotational coupling effects with other bands, which differ for the 

ground state band and for the octupole bands,may play a role even at low 

spin. This difference is rather sensitive to the parameters of the model 

(we mention that our earlier estimations of it (l 2), which neglect the 

attenuation of the Coriolis force, differ from what is obtained here). 

aligned angular momentum j defined formally by eq.(20) and calculated 
'1. X 

together with wrot(I) when solving eq.(l9) as was described before, 

Figs 6a,b,c show the calculated jx in the nuclei 232Th, 236u, 238u. The 

attenuation of the Coriolis interaction reduces j in comparison with 
X (10) what is expected for pure octupole phonons (see fig.2 in ref, ). The 

dependence of jx on wrot at low spin is given by eq,(24), while the 

high-spin limit follows from eq. (B.3) in Appendix B. As is seen, 

comparing fig. 6 with the content of Table 2, the high-spin limit is 

already close for wrot ~ 0.2 MeV, which corresponds to the highest spins 

measured in the actinides. The alignment may be clearly seen already in 

the states with I _;: 9 1i. 

In fig.6 there are also given the values of i:F extracted from the 

experimental data on the basis of Bengtsson-Frauendorf procedure (l,S), 

This procedure defines an aligned angular momentum with respect to a 

ground reference chosen simply as an extrapolation of the linear part 

of :Fff (w
2
). Thus, besides the alignment of the vibrational angular gr 

momentum, jx calculated in this way may contain the alignment of 

angular momenta associated with other degrees of freedom. 

II 
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Fig.6 - Vibrational aligned angular momen-

. h 0- bands (.oct 232 236 tum 1n t e Jx ) for Th, U 

and 238u calculated within the present 

model and compared with the aligned momen­

tum obtained by the Bengtsson-Frauendorf 
!!g_,___2 - Inertia parameters ]0- ]0-

,.n,...,.' nFF ~,..n,..~rhn•e~o f~BF) Tl.n ,..._,,...,"'"'+-n..- ... ........ ..:1 /=,....,.. 

and J for 232Th 
' 

236u 
' 

238u 
gr 

"X , 

j!F are respectively: 

The comparison of jx obtained by our model and j=F allows us to 

estimate the importance of the degrees of freedom which are not explici­

ty treated within the model. 

BF 
At high spins, a more or less pronounced rise of jx as 

compared to joct takes place, indicating an individual alignment of 
X 

quasi-particle angular momenta. The different behaviour in the three 

nuclei may be understood if one takes as a guide the microscopic 

structure of the K"· 0- states as described in ref. (l 9), and considert 

the experimental evidence of alignment effects in even and odd acti­
nides (15,18,20,21) 

In this region of nuclei it is well known that both 113/2 

protons and jl5/2 neutrons are close to the Fermi surface and the irre-

gularities observed in the yrast sequences have been attributed to 

12 

alignment effects and discussed in relation with the strength of interac­

tion with the crossing s-bands, as predicted by cranked HFB (Z 2) and 

cranked shell-model calculations ( 23 ) 

In order to understand the different behaviour of .BF at large 
Jx 

spins, the following points should be considered : 

i) The two-quasiparticle components of the 0- octupole phonon 

involve predominantly j15/2 neutrons and much less i13/2 protons. 

ii) The importance of the small i13/2 proton component decreases 

when one goes from 238u to 232Th. 

Thus the alignment of the j15/2 neutrons is blocked in the 

octupole sequence and the more or less important additional alignment 

which is observed in some cases may be attributed to the transition to 

the proton a-configuration. One may notice also that 232Th is expected 

to be a case where the oscillating interaction strength is near its 

maximum for both neutron and proton crossing s-bands. 

At low spins fig.6 shows that in the t~<o nuclei 232Th and 236u 

j oct d .BF 1 h h h 1 238U a x an Jx are c ose to eac ot er, w i e in noticeable 

difference is seen. This may be directly seen from the experimental 

level spacings in the K = 0- band : in 238u the levels are more 
236 

compressed than in U, while the ") = "'
1 

- w
0 

energy differences are 

the same within a few keV. Such differences in the spectra could thus 

on~y ne associated with the difference of the moment of inertia of the 

core (jO- ), but not with the choice of the other parameters. We may 
core ~- 238 

tentatively associate the larger value of J- in U (and the larger 
~ t c~ 

j as compared to j
0

c ) with the coupling of the K = 0- band with an X X 
additional K = 1- band. 

V- THE POSSIBILITY'OF STABLE OGTUPOLE DEFOR}~TION INDUCED BY THE 

ROTATION. 

Consider eq.(18) for the energy of negative parity states. The 

last two terms in it (Cv("'rot)) determine the excitation energy of one­

phonon states. When "'rot is small, Ev is close to the corresponding band­

head energy. Due to the alignment, the excitation energy of the lowest 

one-phonon state decreases with "'rot" At a certain value of rotational 

frequency w
0 

c vanishes. Within the model ~0 satisfies the 
equation : 

rot v rot 

(3110112)2(.,~ot)4- z{3~"'2"'3 + 5/411iw3w0 + 3/4.11~"'1"'0}(oo~ot)2 
+ "'o"'1"'2"'3 = 0 

13 
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At w > 00° the excitation energy as defined in this paper 
rot rot 

becomes negative, which means that the yrast sequence is no more a va-

cuum state with respect to the phonons of octupole vibrations. Of course 

the harmonic approximation in the intrinsic hamiltonian for phonon 

becomes invalid when E\1 beco~es smali. But if anharmonicity is small at 

00 = 0, eq.(27) gives the estimations for the frequency of rotation at 
rot 

which the unharmonicity becomes important. 

The dependence of E on w found from the calculations is 
\1 rot 0 

shown in fig.7. As 
(0) 

is seen, the critical frequency wrot appears to 

I(O) - 30 to 40 ~). The model is 

be 

rather large (wrot - 0.3 to 0.4 MeV, 

too schematic to put much importance to the quantitative part of the 

present discussion. However, it is of interest to follow the consequen­

ces of a rotationally induced instability of the vacuum state with respect 

to the octupole excitation. If the potential energy as a function of 

octupole deformation parameters has minima corresponding to stable 
0 

octupole deformation, the yrast sequence at wrot > wrot may represent 

the rotation in the field with such a deformation. Then the spectrum of 

high-spin states must contain the pairs of states with opposite parity. 

The other possibility is that w0 corresponds to fission. In the rot 
considered situation the probability of fission from the aligned state 

must be larger than from the state of the ground band. 

VI - CONCLUSION 

~ - Excitation energy 

of one-phonon negative-parity 

states as function of ~rot 

for 232Th, 236U, 238u. 

In this paper we suggest a method to determine the aligned 

angular momentum associated with the Coriolis interaction between 

adiabatic rotational bands. Together with jx,the inertia properties of 

the rotating core are determined using the data on the spectrum of 

distorted bands. Our estimations of jx depend on the assumptions on the 

intrinsic Hamiltonian and on the strength of Coriolis interaction. The 
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calculations tvhich are presented in the paper are r.wde within a very 

simple phenomenological model where the negative-parity states are 

treated as one-phonon excitations of a rotating core and the parameters 

of the intrinsic Hamiltonian are fixed in an empirical way. 

The moment of inertia of the core calculated in our way shows 

sometimes significant differences with the moment of inertia determined 

from the energies of the ground band states. Such differences are 

discussed in terms of different polarization effects in the nucleus. 

The unharmonicity of phonon excitations may be important at 

large spins as follows from the discussion in Sect. 5. 

Of course, the modifications and the generalization of the 

present approach with a more fundamental treatment of the nuclear 

dynamics is possible. In particular, the method may be used to determine 

the inertia parameters of the core in odd nuclei. 

APPENDIX A 

From eq.(l5), one obtains the following expressions for the 
a a "'a eigenvalues E \1 Ev - w

0 
and the components of the wave-functions 'l'v (K) 

<"' K 
w - w with K 

K o 

~-:_!_!_i~~~~-!-~!~!~~) 

where 

3 
l: 

n=o 

a3 a 

a2 

0 

-t.l -
al ~ t. 

1 "'2 

ao -61 

"' ljJ+ (K) 
\1 

t.2 

.; f (<(K)
21 

K=l 

I , 2, 3) 

4>+ 
\1 

(I) (6 
2 

- E +) (6 
\) 3 -f.~) 

4>+ 
\1 

(2) -/i\, 
2 I 

w rot (t.3 - £~) 

< (3) v0 2 
2 11 1 112 w rot 
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(A, I) 

(A,2) 

ln 2 w2 
2 2 rot 

(A,3) 



where 

4 
l: 

n=O 

a3 

a2 

a, 

a 
0 

"' 

- "', 

"'' 
- 61 

- 6 

'!'~ (K) 

~ ~ (0) 

4>-
\1 (I) 

¢~ (2) 

<1>\1 (J) 

0 

- "'2 - "'3 

62 + ~~3 (!II + "'zl 
2 ( 2 

- "' 6q rot o 
5 2 

+ 2 n, 
3 2} 

+ 2 nz (A,4) 

2 r 6 
2 

(!12 + 63) 
5 2 

"'3 + 
3 2 

6,} 
"'2 1'3 + w rot ' no 

+ 2 n, 2 n2 

2 2 9 
2 2 4 

no 6 2 
6 3 w + n n2 w rot rot 0 

<j>~(K) (A,5) 

(!II -E: ~) (!12 -C) (ll - E.-l 
\1 3 \1 

2e2 -52-) 
- wrot Zfi2(!11-E)+znl (!13-i'vJ 

V&no [<ll2 -E~)(!\3 -9 3 2 w!ot} w - 2 nz rot 
(A,6) 

2 
["'3 -£~ J VT5' no n I w rot 

R ~ ~ 

- J v 2 no n 1 ll2 w rot 

The aligned angular momentum is given by : 

where, in the case 0 = +1, one should take ~~(0) = o. 
(A, 7) 

APPENDIX B 

Various tendencies in the changes of nuclear properties with 

accumulation of spin can be understood considering the limit of high Wrot 

in the above equations, when the differences in WK become small compar-ed to 

wrot' Here some asymptotic relations for the aligned negative signature band 

are presented. 
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jx 

The eigenvalue problem (A,4) becomes 

0 (B,I) 

From (B,I) it follows in the case of aligned (lowest) band 

+ 
rot 2 

Then the aligned angular momentum 

= { [ 6n~ 
5 2 3 2] 

+ zn, + znz d£ + 
dw 2 

rot 

is given by 

( 2 5 2 
6no + znl + 

4 

3 2]2 
Zfi2 

211/2 
nz 

(B,2) 

2 2 ]
112 

9 n0n2. 

(B,3) 

The wave-functions of the aligned state have the components 

"' 'I' (0) 

"' 'I' (2) 

~ {3) =-3N .4' n n n2 2 o I 
"' 2 

( E 1[1 (K) I) 
K 

(B,4) 

When ni = I , jx= 3 and l[i(K) 

results of ref.{IZ) (d1 
(¢) 

\JT 

,f L dj ( ~) in accordance with the 
v~ 3,K 2 K,\1 

being the middle part of the Wigner V-function). 
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MHxafinoB H.H. H AP· E4-82-489 
Hsy~eHHe KonneKTHBHhlX COCTOflHHH OTpH~aTenbHOH ~eTHOCTH 
B aKTHHHAaX B paMKaX ~eHOMeHonorH~eCKOH MOAenH 

llpeAno~eH MeTOA onpeAeneHHfl MOMeHTa HHep~HH H BhlCTpoeH­
Horo yrnoBoro MOMeHTa, onHChJBaJO~X cneKTPhl Bpa~aTenbHhlX nonoc, 
HCK~eHHhlX B3aHMOAeHCTBHeM KopHOflHCa. MeTOA OCHOBaH Ha ~HCneH­
HOM HHTerpHpOBaHHH ypaBHeHHfl, B KOTOpOM 3KCnepHMeHTanbHbJe 3Ha­
~eHHfl 3HepreT~eCKHX HHTepBanOB Me~AY COCTOflHHflMH ITOflOCbl Bhl­
p~aJOTCfl KaK HeKOTOpafl ~YHK~Hfl yrnOBOH ~aCTOThl Bpa~eHHfl OCTOBa 
H BhlCTpoeHHOro yrnOBOro MOMeHTa. TaKOH ITOAXOA IT03BOnfleT o6Ha­
p~Tb 3~eKTbl ITOnflpH3a~HH OCTOBa. llpo~eAypa npHMeHeHa Aflfl 
aHanHsa OKTynOnbHhJX 0- nonoc B aKTHHHAax; o6c~eHbJ pa3nH~Hhle 
IT0flflPH3a~HOHHbJe 3~eKThl, B03HHKaJO~e ITpH B036~eHHH OKTynOnb­
HbJX KOne6aHHH. 

Pa6oTa BhlnonHeHa B na6opaTOPHH TeopeTH~eCKOH ~H3HKH OHHH. 

Mikhailov I.N. et al. E4-82-489 
Negative Parity Collective States in Actinides 
in a Phenomenological Approach 

A method is suggested to determine the moment of inertia 
of the rotating core describing the spectrum of rotational 
bands distorted by the Coriolis force. The method is based on 
the numerical integration of an equation in which the experi­
mentally found energy intervals between the states of a rota­
tional band are expressed as function of the rotational angu­
lar frequency of the core and of the amount of aligned angular 
momentum. It allows to detect the polarization effects in the 
core. The procedure is applied to the octupole o- bands in ac~ 
tinides, and the polarization effects originating from the 
excitation of octupole vibrations are discussed. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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