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I. In this paper we consider the (rr, 
4

He) elastic scattering 
in the framework of the unitary potential approach recently de
veloped in refs! 1- 41 . This approach is based on the so-called 
method of evolution with respect to coupling constant (CCE) (see 
review/ 51). In the description of the pion-nucleus interaction 
one must very carefully treat the unitarity condition because 
the pions can be absorbed in nuclear matter (unlike, e.g., the 
nucleons). 

In ref. 111 an iteration procedure for the calculation of rr
nucleus phase shifts in the low-energy limit (quasi-two-particle 
case) was developed. The basic element of this expansion is the 
two-body u-matrix of pion interaction with a separate nuclear 
nucleon. In refs. 12- 41 we have generalized this approach to 
arbitrary energies of the projectile and have carefully studied 
the first-order approximation in the two-body u -matrix. It was 
shown that this approximation gave an acceptable description of 
the low-energy pion-light-nucleus scattering data. The goal of 
the present paper is the calculation of the second-order correc
tions. This enables us to establish the convergence region of 
the considered series. The comparison of the calculated phase 
shifts, cross sections. etc., with the low-energy data can pro
vide us with some information about the role of the true pion 
absorption channel. 

The paper is organized as follows. In Sec.2 we derive the 
general expressions for the first two iterations for rr-nucleus 
phase shifts. In Sec.3 the first-order approximation is consi
dered. Unlike to refs.12 - 41 , where nucleons were considered to 
be "frozen", here their Fermi motion in the target nucleus was 
taken into account. Sec. 4 is devoted to the calculation of the 
real and imaginary parts of the rr-nucleus phase shifts in the 
second-order approximation. In Sec.5 we discuss the off-shell 
behaviour of the two-body u -matrix. The application of the pre
sent approach to the description of the (rr, ~e)-elastic scat
tering is given in Secs.6 and 7. In Sec.8 we have discussed the 
main results of this paper. 

2. In the framework of the CCE-method the Hamiltonian for the 
system is 

u- --~ (2.1) 
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where K 17 is the pion kinetic-energy operator, H A is the nuclear 
Hamiltonian, U1 labels the pion interaction with an i -th nucleon 
and A plays the role of rrN-coupling constant. The pure nuclear 
problem with the Hamiltonian 

(2.2) 

is assumed to be known and the system evolution in the coupling 
constant A from A= 0 to the realistic value A-1 is considered. 

The !'latrix elements U111 . "<11 1U!,·' of the potential over the 
eigenfunctions 11''·1,.·., etc., of the Hamiltonian H are the basic 
quantities in the CCE-rnethod 151• In the absence of the IT-nucleus 
bound states there is one-to-one correspondence between the ei
genfunctions of H and h. Thus, one can represent U

1
H. as: 

(2. 3) 

~ 

where V(A) 1s some Hermitian operator and !k 11 ,a11>. etc., are 
eigenfunctions of the channel Hamiltonian (2.2). Here k11 .~. de
notes the pion momentum in the IT-nucleus c.rn.s. (Aero-system) 
and a

11
,

11 
the nuclear states (all, 1,=0,1,2, ... ,;a11 ,l' =0 labels 

the ground state). There is a system 1 1.51 of exact integral equa-· 
tions for U 11 ~, (or V ) • In ref. Ill an iteration procedure for 
solving these equations was developed. The series obtained for 
V(A) is the expansion in po\Y"ers of the so-called two-body u
matrix. Ea~h tPrrn of this PX~:tnsinn is HPrmit.i"'n '!'hi" !'rmri...J<>c 

the unitarity of the scattering matrix at each step of successive 
approximations. Two first terms of this expansion are 

V(A)· V (l)(A)+ V (llJ(A ), 

where 

v<
1
>(A). ~ ui (A), 

i=l 

(II) A 
V 1 (A)=- ~ ~ 

i~ j=l s 

v<IItA) = ~ ~ 
2 i ,j= 1 s 

(ll) (II) (II) 
V (A)aV 1 (A)+V 2 (A), 

The two-body u -matrix 1s defined as follows: 
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(2.4) 

(2 .5) 

(2 .6) 

(2. 7) 

where ui is the exact two-body matrix element of the pion-
om ) En i -th nucleon interaction (see Sec.5 , .n> 0 , ~ etc., are 

eigenfunctions and eigenvalues of the free Hamiltonian H0 =KIT+KA 
( KA denotes the nucleus kinetic-energy operator), a<g~E)=(E-HifH>)';- 1 

(±) . -1 . 
G (E)=(E-h ± 18) are the Green funct10ns. 

In the low-energy limit (the two-body case) the ~ IT-nucle~s 
phase shifts are determined by the matrix element <k,O V(A) ,k',O> 
( k and It' are pion momenta before and after collision in Acrn) 

as 
1 ~ ~ 

o(k) =-77, A<k>l r ctA< k, or V<A> · k', o> 1. 
0 

(2.8) 

where 'A(k) is the level density:' A=k
2
/l2rr 2dE 0/dk\, E 0 =wiT(k)+<<JA(k) 

is the collision energy counted from the nuclear ground state, 
''JIT(k)=(k2+rn2)Vz ,,,1 A(k)=(k2+(AM)2)Yz, . rn and M denote.the 
pion and nucleon masses. By the braces :.n the gEne:cal relations 
like (2.8) we denote an appropriate partial harmonics with res
pect to the angular momentum, spin, and isospin. For the zeroth 
spin-isospin nuclei, 1 ike 4 He, the symbol is: 

1 1 
lflv= -- f dxPL(x)f(x), 

2 -1 

where PL are the Legendre polynomials and x = k k'. 
The generalization of (2.8) to the case of an arbitrary energy 

of the projectile is as follows/21: 

I ~ ~ 

,)(k)=-rr•A(k)l ldA<k,O U
0

(E,A)'k',O>I, (2.9) 
0 

where U0 (E, A) is some effective energy-depend';m~ operato:· In 
general U0 (E,A) is non-Hermitian. Its non-Herrn1t1an part 1s due 
to the contribution of inelastic channels to the elastic one. 
By an exact integral equation (see ref / 21 ) U 0 (E, A) is ex
pressed through the V(A)(2.4). Two first iterations of this 
equation give: 

A ~ 
U

0
(E,A) = V(A)-21Ti I dA

1 
V(A 

1
)o(E-h)QV(A), 

0 
(2. 10) 

where Q , ~ n > <n is the projection operator for the excited 
n" 0 

nuclear states. The contribution of the second term in the r.h.s. 
disappears when the projectile cannot excite any nuclear state 
energy and U0 (E,A)= V(>..). Hence, in the low-energy limit the two
body unitarity condition is justified in our approach. 

Substituting (2.4) and (2. 10) into (2.9) gives us the follow
ing expression for two first iterations of the IT-nucleus phase 
shifts: 

(2. II) 
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where 8 (I) is the first-order approximation: 

8 <I>(k) "'-17( A(k) 1 } d.>.< k,o 1 v<I> (.>.) lk',O> 1. 
0 

(2. 12) 

8~1 ) and 81~1 ) are real and imaginary parts of the second-order cor
rection: , 

(II). 1 -+ (II) -+ 
8RJ..k)~-7TfA(k)l (d.>.<k,OIV (.>.)lk',O>, 

0 
(2. 13) 

8~~)(k): 2rr
2

£ A(k) I f d >. ~d .>.
1
< 'k,OI V 0 \.>. 1 )8(E-h)QV (1)(.>.)1 k',O >. (2. 14) 

0 0 

Operators V (I} and V (II) are defined in (2. 5)- (2. 7). Note the 
matrix elements in (2.12)-(2.14) are similar in structure to the 
first and second-order optical potential (see refs/6-9/ ). Thus, 
for its calculation we shall use below methods elaborated in the 
optical model. 

3. The first-order approximation. Using the overlap function 

F(t)k-+ -+, A dJG -+ A-+ -· -+ -+ -+ -+,-+ -+ 
OO ( 1'k 1 )= (H -

3
.0(k +.l k. )¢

0 
(k 1• k 2 .... ,kA )¢

0 
(k

1
,k

2
, ... ,k A), 

1=2(2rr) J=1 J 

where t/Jo is the ground state w. f., the quantity ( 2. 12), 
can be represented 11!,6/ in the form: 

(11 1 dp (1) ..f.. .. -+-+ 1 ...... 
8 {k)=-Arr,.(k)lfd.>.f--_Fnn(D.o-o)<k.olu (,>.)lk~o-0 >1. ('Ll) 

0 (2rr)" vv 

Here <i= k-k' is the transfer momentum. In ref.121 we have 7al
culated (3.1) in the static limit, i.e., whenm/M-+0. In refs.3 •41 

for its calculation the so-called factorization approximation 
was used. In addition there was admitted the picture, in which 
the nucleons are "frozen" in the target nucleus. Here we take 
into account the nucleon Fermi motion. Following ref. 161 we 
make use of the fact that the 4He -ground state w. f. is well 
described by the ls -harmonic oscillator function 
<I>Q(p)- exp(-a¥/2),where 11o is the oscillator parameter. Then 

us1ng the Jacoby coordinates in (3.1) one can easily obtain 

(3. 2) 

where 

(3. 3) 

is the nuclear form factor, a2 .[(A-1)/A]a~. and u1 is the two
body u -matrix averaged over the nuclear density 

4 

~ 

1 ~ ~ dp {1) ........... ..... ...... 1 ...... ~ -+ .... --+ 
ii (k,k';.>.),. f----aF00 (p,p)<k,p+p lu (.>.)lk.P+P -q>. (3. 4) 

(2rr J 0 0 

Here p o=-kiA+[(A-1)/2A]q, the index "1" of the u -matri~ s7ands 
for its spin-isospin part (see Sec.5). For the zeroth sp1n-1so
spin nuclei, like 4He, the result of the averaging of u 1 over 
the nuclear w.f. is obtained from (3.4) by the substitution of 
the isoscalar part of u-matrix- u0 for u 1• The nuclear density 
of 4He has the form 161· 

F (
1

) (p,p) = (2J7b)3 
exp (-J,2b2 ), b2 =[ A/(A-l))a~. 

00 
(3.5) 

In the calculation the form factor p00 is assumed to be 
charge form factor determined by the electron scattering 1101. The 
parameter "a" is expressed through the nuclear charge radius, 
Rch= 1.71 fm for 4He and the proton radius, rp • 0.76 fm; 
i} =2(R2 -r2p)/.3, i.e., a -1.25 fm. Thus, for a 0 and b we get: 
a 0= 1.~e fm and b= 1.67 fm. 

The dependence of Po in (3.4) on q makes this integral to be 
very time-consuming. Thus, taking into account that the nuclear 
form factor has a pronounced maximum at q -0 we shall take 
p ~k/A that reduces the integration over p to be tw.g-dimensio
n~l. This "Fermi-folding approximation" is usually used in the 
optical model calculations 16 •81• 

4. The second-order approximation for the "-nucleus phase 
"hift-c: A 'l'l.o ~ ... ~1 n<J't't' nf t-hi" f'n't''t'Pf't'inn ;)IU) (7.11). ic: 

... ···- • --- r·-- . • .,(IILI) (II} , 1)<11/" , where 
the sum (see (2.4)) of two terms. uR - R, 1 + R, 2 

(II) 1 ~ (II) -+, · (4 I) 
8R. (k)=-mA(k)l (d.>.<k,OIVi (.>.)lk ,0>1, 1•1.2. • 

,I 0 

Here V~II) are defined by (2.6) and (2.7). The first term desc-
ribes the pion rescattering on the noninteracting nucleons and 
the second one - through intermediate nucleon interaction. 

Consider the correction 8~II) . To evaluate the matrix ele-
ment < k, 0 IV \11

) I k ', 0> it is a'Jvantageous to introduce the two-
particle overlap function: 

(4.2) 

V 
(II) 

Using it one can represent the matrix element of 1 as: 
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h ->' k~ -+,, -+,, -+,, .... , .... , .... f! 4 -+ 
w ereq. -k ,q ·k -k,p 1 .p 1-[(A-1)/A1q',p~-P2 +[(A-1)/A)q", 
the energy E0 (k.p) ,.E 0 (k)+[A/2(A-1)M]p 2 , E

0
(k)·wrr(k)+w (k). 

In the calculat1on of the energy denominators the notrelativistic 
kinematics for nucleons was used. 

Now to simplify (4.3) we employ the factorization approxima
tion, i.e., in the integral of (4.3) we put: 

F( 2)(-> _,p ... __ .-. _,, ... ) C (_,'_," F 0 l(-> _, F(l) _, _, 
oo pt, 2-q 'Pt+Qt,p2:: oo q,q ) oo pt,pt) oo (p2,p2), (4 .4) 

where 

(4. 5) 

is the correlation function. Next, 
a pronounced maximum at <i '= a" ~ o 
dence of the energy denominators 

noting that C 00(q',q")has 

tions we get: 

we suppress the a -depen
in (4.3). With these approxima-

(4. 6) 

where the sign P means the principal value integration. In the 
derivation of (4.6) the spin-isospin structure of the (rr,4He)
system was taken into account: j= {3' 1, -t• -t[(ltf')-(lti'-')(~i"" )], 

- f£(\i')-(ilt")(fi")]. Integrals over >.. of the two-body matrix 

elements, Uf3 , in terms of the rrN -phase shifts are presented in 
Sec.S. 

Let us consider now the 8~1~ -correction in (4.1). It is 
expressed through the matrix eiement of V ~II) (2. 7). In ref.1 11 

we have shown that this correction is strictly zero in the sta
tic limit, i.e., when m/M-. 0, due to the cancellation of G and 
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G0 in (2.7). Indeed, in that limit the energy denominators in 
G and G0 do not depend on the nucleon variables. Thus, due to 

the completeness of eigenfunctions of h and Ho we get the desi
red result. Note that the similar approximation we have just 
used in obtaining (4.6) when we have neglected the q-dependence 
of the energt denominators in (4.3). Hence, below we shall put 
that o ~II). 0 ~ I) • One can show that this implies the - 20Z-level 
of accuracy ol our calculations of the second-order corrections. 

~(II) B. The imaginary part of the second-order correction, u 1m , 
(2.14) has the form: 

(II) dk" 1 A. _, (I) ... o1m(k)=-2rr2fik)!(- fdA. (d/.. 1 ~ <k,OIV (A.
1
)!k",a">x 

(2rr) 3 o o a">o (4. 7) 

x 8(E 0 (k)- E a" (k" )) <k ",a " I V (I) (A.) lk' ,0> }, 

(I) 
where V = ~ u (see (2.5)),E0(k)=w

77
(k)+r."A(k), Ea(k)=E 0(k) +t\a, 

t\a is the duclear excitation energy counted from the ground 
state. 

The matrix elements in (4.7) are similar in structure to that 
one in the first-order approximation (2. 12). Thus we generalize 
(3.2) to any excited states: 

-+ i -+ ..... -+ 
<k ,O!fu (A.Jik",a">:: Apaa,(Q')tP(k,k";>..). (4. 8) 

Here Paa" is the transition form factor, q'sk-k". In the cal-
culation of (4.7) we have also used the closure approximation 
by the set: Ea (k)-E0 (k)+t\, where t\ is the nuclear mean excitation 
energy. For 4He its value is about 20 MeV. In ref. 181 it was 
shown that the variation of t\ from zero to 20 HeV in integrals 
like (4.7) gives the effect of about 10%. Therefore, in the subse
quent calculation we set (as in ref. 181 ) t\= 0 to avoid the un
necessary complexity. Then by using the identity: 

~ ( , ) (-+" 1 ... , ... ") (1 1 c (-+ , ->,') ->, (q-+" ), 
a>opOa q pao q )= XPoo(q +q + - -x> 00 q ,q -poo(q )Poo 

and averaging over spin-isospin variables in (4.7) we get: 

(4. 9) 

x iitJk ",k ~>..>l-}p oo(q)Af3- Poo (q' )poo(q ")0{3o+(1- ~ >j=f3c oo<<i ',q")]t. 

A"' ,._,.. A A A A A A ,.. A 

Here k = lkl =! k' I= \k "I. A {3: 1.2, (kk' )-(kk" )(k 'k" ), -2[ (kk ')-ckk" )ck' k")], 
the coefficients j={3 are defined in (4.6). As will be shown in 
Sec.S, the integrals of products of the two-body u-matrices can 
be expressed in terms of rrN -phase shifts. 
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5. Out goal is to express the rr-nucleus phase shifts in 
terms of the ~-ones and nuclear bound state characteristics. 
To do this, we must transform the rrN-u-matrix in (3.2),(4.6), 
and (4.9) from the Acm-system into the rrN c.m. frame (2cm-sys
tem). Considering that the u -matrix has the same transforma
tion properties as the 'scattering matrix, t, we have 

y = wu(:)w N(;:)w 17 (;:' )w N(;(') 

wrr(k)wN(P)w
17

(k')wN(p') 

'h 
]. 

(5. I) 

(5. 2) 

Here u(A) and the pion initial and final momenta; and~- refer 
to the 2cm, w (k),. (k2 +m 2)'h , wN(k): (k2+M 2)'h. The quantities 
-+ "'""'' 1T • k~ -+ -+ -+ ( 
K ,K can be expressed 1n terms of , p , k' , p' for de-
tails see refsJ2.3,6/ ). 

The spin-isospin dependence of the u -matrix can be expres
sed as follows: 

3 
<~I u (A)! K' > - ~0< K ! u i3(A) I K .... '> 0/3 ' (5. 3) 

where 013=1, (ti) , i(;n) ,i(;n)(t;), Here ;;;2 is the nucleon spin 
operator, and 7/2 and 1 are, respectively, the nucleon and 
pion isospin operators. Neglecting the spin-dependent terms 
(/3-2,3). the matrix elements of u0 ,1 can be wri~ten as 

</7:1utfA>I~'>=I. c~ I. (j+..!.)u/ (K,iC';A)Pf (;K::,'), (5.4) 
I fj 2 J 

where 1-1/2,3/2 labels a given isotopic rr N-state, c~12 =113, 
Ca/l:f 3/2 , ci/~ -C1~2 = 1/3 , j = f ± 1/2. 

In each e1genchannel v(l, f ,j) the on-energy-shell (K•K') uv
matrix determines the rrN -phase shift/51 

1 • 
0 (K)"'-TTf2(K) ( dAUV(K,K;A), (5,5) 

1/ 0 

where £ 2(K) is the level density. Now substituting (5.4) and 
(5.5) into (3.4) and (3.2) gives us the desired expression of 
the f irst·-order approximation, 8 (I), in terms of rrN -phase shifts 
and the nuclear form factor (see refs.12- 4/ ). 

The off-energy-shell dependence of uv(K,K',A) in (4.6) (fol
lowing ref. 171 ) is assumed to have a separable form: 

uv(K,K'; A)•Uv (K,K'; A)gv(K ')/gv (K) (5.6) 

with g)K )•/ exp(-/3v K
2 ). The parameter 8v is related to the 

range of ~-interaction. Acceptable values of 8v probably 
lie/71 in the region 0.1 fm 2<8v<0.4 fm2. 
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Consider now the integrals over A of products of u -matri
ces in (4.6) and (4.9): 

1 A 
Avv'"' r dAr dA1[ui/(K,K; A1)u •(K',K';A)+(v ~ v' )]. 

0 0 v 
(5. 7) 

1 A 
B ,,. r dA fdA1[u (K,K:A1)u •(K',K';A1)+(v-:. v')]. 

1/V 0 0 1/ 1/ 
(5. 8) 

Integrating by parts with taking into account (5.5) gives an 
expansion the leading term of which is: 

(5. 9) 

The estimation of higher-order terms (see for example Eq. (31) 
in ref.11/ ) gives a contribution of about 20%. Therefore we 
may safely neglect it within the accuracy of our calculations 
(see Sec.4). 

The formulae we have obtained in this section complete. the 
definition of the two first iterations of the (rr, 4He) -phase 
shifts. Substitution of (5.4), (5.6) into (4.6) and (4.9) gives 
us the desired expressions of the second-order corrections in 
terms of the rrN -phase shifts, the nuclear form factors, and 
the correlation functions. In the numerical calculations we have 
neglected the spin-dependence of rrN -interaction. In ref. 191 

it is shown that it contributes only at the pion energy above 
100 HeV. 

6. We present now the calculational results of the two first 
iterations (3. 2), (4. 6) and (4. 9) for (rr.~e) -phase shifts. 
The parameters used in the calculations have been defined be
fore (see eqs. (3 3), (3.5) and (5.6)). The rrN -phase shifts 
we have used here. are from ref • 111 ~ Only s and P-· rrN -waves were 
taken into account. The correlation function (4.5) due to the 
Gaussian form of the 4 He -ground state wave function is 

Coo (q,q')=exp[- . ..La2(q2 +Q •2) + l.a2(q·q')),. 
4 . 6 

(6. I) 

where a= 1.25 fm (see Sec.3). In (6.1) the effect of the short
range NN correlations have not been included. These correlations 
give a rather small contribution in the low-energy region. Their 
contribution is determined by the parameter (fc/a) 2•0.02, where 
fc= 0.4 fm is the correlation length (see ref. 111 ). The NN 
short-range correlation gives 171 an appreciable effect only at 
energies higher than, say, 180 MeV in a large momentum transfer 
region. \i 

Figures I ,2 show the energy dependence of the s and p-{rr, &)
phase shifts and inelasticity parameters up to 140 MeV. The da
shed lines are the first-order approximation (8 .. o<1J71 <1> .. t) and the 
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-30 

12 

"'08 
""" 06 

0' 
0.2 

20 '0 60 80 

Energy T•, MeV 

~· The (rr, 4He) -phase shift, 88 
and the inelasticity parameter, ~s , 
calculated from o<1> + 8 (II) by using 
f3v=0.2 fm 2 (solid curves) and 8(1) 
(dashed curve, ~(I)= 1 ) • The results 
of PSA at 24, 51, 68 and 75 MeV 
(refs/13 ·141 ) are shown by black 
points, at 98 and 135 (ref,/15/) by 
open circles, and at 60 and 110 MeV 
(ref! 161) by triangles. 

so.-----------------------. 

-30 

Fig.2. The same as in Fig. I, 
but for the op -(rr. 4He) -phase ~ 
shift and for the inelasticity ' 
parameter ~ P. Energy T" , Mev 

full ones the sum of the two first iterations (o=o <
1> + 0<11 l 

~=exp(-28 ~~l). We also present in Figs. I 2 the results ofR s~me 
phase shift analyses (PSA). ' 

From Figs.I,2 we see that for the real parts of phase shifts 
0~,p. the se~ond~order correction o<~l (4.10) gives an appre- ' 
c1able contr1but1on (~10%) at energies T" above 80 MeV*. One 
can admit this value as defining the convergence range of the 
~onsidered series. Note that at lower energies the PSA data are 
1n good agreement with the calculational results. 

It must be noted that the correction 8~ 1 ) becomes essential 
at very low energies: below -40 MeV. At 24 MeV (see Table I) 
its contribution is about 30%. The contribution of 0 <11) increa-

. h d " 4 R ses w1t ecreas1ng energy. If the (rr, He) -scattering length 
8 rr4He. calculated in the first-order approximation (3.2)with 

/11/ 
the Solomon rrN -phase shifts is equal to -0.033 fm, then 
the sum of two first iterations gives a rr4He • -0.126 fm. This 

*Here T" is the pion kinetic energy in the lab.system. 
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value is in a fairly good agreement with the experimental re
sult: Rearr4He .. -(0. 143:!:_0.04) fmll'l( Nevertheless, the numerical 

convergence of the iteration scheme is not accidental (see 
ref. 111 ) • Smallness of o(l) as compared to o<11> at very low 
energies is due to the specific isotopic stru~ture of the prob
lem resulting in the cancellation of two "large" quantities in 
the first-order approximation. 

Now let us consider the potential description of the PSA data 
for inelasticity parameters. We see from Figs.I,2 that especial
ly in the s-wave the potential predictions diverge from the 
data. For that reason we have carried out some additional in~es
tigation of our iteration scheme. We have estimated the third 
and fourth-order corrections and have found that they give more 
than 10%-contribution at energies above 70 MeV. Thus, the obser
ved discrepancy indicates the importance of the inclusion into 
consideration of the pion absorption channel. A more detailed 
discussion of it will be given below. 

7. In the preceding section we have established the conver
gence range of the iteration scheme to be lower than 70 MeV. 
Here we shall analyse the (rr, 4He) scattering data at 24 and 
51 MeV from refs.I12,141,At these energies there are data both for 
rr+ and "-~mesons. Hence it is possible to define the so-called 

mean differential and total cross sections as: da/dl1-(da+fd0+ 
+da'""/dn )/2, etc., which are of an accuracy of 0(1/a 2),a-1/137, 
riecermineci on1y oy cne scrong inceraccion. ic is convenienc co 
use these quantities for comparing the theoretical and experi
mental results. It should be noted that the present available 
precision of experimental data in the low-energy region is not 
high (see, for example, Fig.4). Also there are no differential 
cross section data at small angles ecm<30°- 40°). That makes the 
PSA data be not free from some ambiguities. Especially this con
cerns the PSA predictions of values for the total cross section. 
This quantity is obtained by the extrapolation of the scattering 
data to the zero angle. Thus, we consider the comparison of the 
calculations with the data presented below only as preliminary. 

The (rr, 4He)-phase shifts at 24 and 51 MeV are shown in 
Tables 1,2. The first two columns contain the results obtained 
in the first-order approximation (3.2) with (o<1> ) and without 
(o~~ ) inclusion of the Fermi motion. We see that the Fermi ave
raglng reduces the s -wave at 24 MeV by more than 20% and at 
51 MeV by 15%. The effect of this reduction on the differential 
cross section at 24 MeV is shown in Fig.3. The Fermi averaging 
shifts the differential cross section minimum to the right. Co
lumns 3 and 4 show the second-order correction effect (with the 
Fermi averaging): Reo-o<1l(3.2)+ o<11>(4.6), Imo- 8~11 >(4.9), 
the range parameter of o~I) is f3v=0.4 fm2'and 0.2mfm2,respec-
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Fig.3. Pion- 4He differential 
cross section at T 17 o: 24 MeV. 
Black points label mean differen
tial cross section data from 
ref. 112(Dash and the dash-dotted 
lines are obtained by using o (I) 
and o ~I) , respectively. Solid and 
the da~h-double-dotted lines are 
calculated from 8 (I)+o (II) by using 
f3 '"' 0. 2 fm 2 and f3 • 0. 4 fm 2 

v • v 
respect1vely. 

/ 

I 

Fig.4. The (11, 4 He) -differnti
al cross section at 24 MeV 
calculated from Q<I\_ o (II) by 
using f3v=O. 2 fm 2 (dash-dotted ~ 
line) and o<I) (dashed line). 
The data from ref.' 121 for 
( 17 T 

0 
'iie) are cieno~eci oy open 

circles and for (11 -;~e) by 
black points. Solid lines are 
obtained by using the PSA data 
from ref. /13/, 

30 60 90 120 150 111! 
Sc.m, deg 

tively. We see that the influence of the 8v-variation is rather 
small (about 10%). The dependence of da/dn on f3v at 24 MeV is 
shown in Fig.3. We see that a larger f3v (corresponding to a lon
ger 11N interaction range) yields a smaller differential cross 
section both at small and large scattering angles. Hence in ac
cordance with ref. 171 we can conclude that the difficulties en
countered in fitting the low energy data cannot be resolved by 
simple adjustments in 8v · 

Finally, in column 5 in Tables 1,2 we have presented the PSA
data from refs /13,141. The corresponding differential cross sec
tions are shown in Figs.4 and i· We see that the two first ite
rations well reproduce the PSA data for Reo. We obtain the 
most distinction in the P -wave at 51 MeV (about 30%). The desc
ription of the inelasticity parameters is worse. At 24 MeV Im~.P 
(4.9) is by an order smaller than PSA predictions and at 51 MeV 
the calculated value of Imop is twice smaller than the data. 
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Table I 

The (11,
4He) -phase shifts at 24 MeV 

!Phase 
o(.TJ 6 (1) 

t5 (J)I- J (i!) J 6(7)+ J(j'~ 
PSA date !Shifts, in 

degrees 2 fm2 [13] ;..-t. fSt = 0.4 fm ;,=0.2 

Red'.; -3.47 -2.69 -).59 -3.81 -4.28 

.lin cf..., o.oo o.oo 0.34 0.34 2.53 

l?e Jp ).)4 J,J4 ). 75 ).91 3.49 

.Trn dp o.oo o.oo 0.12 0.12 1.19 

/(p db 0.18 0.19 0.19 0.19 0.25 

..T.tn dJ:) o.oo o.oo 0.06 0.06 0.07 

G'Et., m$ 10.2 9.1 12.3 1).5 1).8 

Dror,ml 10.2 9.1 21.6 22.8 87.2 

l?eJ(o), 1m 0.32 0.)5 0.)6 0.37 0.31 

Table 2 
4 

The t 11. 116)-phase sh1tts at :::>I MeV 

Phase ~(.{) cS'IJ 0 fiJ~- c5 rF~ a·li)+ J f.F), PSA data shifts, in 2 2 [N) degrees Pl. fi::-0.4 f'm f!.:0.2 fm 
.~ 

fit d...r -7.91 -6.71 -7.18 -7.47 -8.40 

.lm J'.1' o.oo o.oo 2.56 2.56 1.75 

/i( 6p 9.86 10.53 12.04 12.68 9.05 

.1/n c.Sp o.oo o.oo 1.07 1.07 2.30 

Re 6J> 1.26 1.34 1.39 1.43 1.00 

1/n J'Z> o.oo o.oo 0.15 0.15 0.15 

~I.., md 36.0 37.4 46.7 51.5 )0.6 

if;-..,;-, mt 36.0 37.4 81.7 86.4 79.6 

I? d (u), fm 0.79 0.88 0.97 1. 01 0.61 
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Fig.S. The same as in Fig.4 but for 

(rr, 4He) -scattering at 51 MeV. Black 
points label mean differential cross 
sections data from ref. 1141, 

Note that this discrepancy goes bey
ond the 20%-accuracy of our calcula
tions. Thus, we conclude that the pure 
potential calculations cannot fit 
the PSA data for inelasticity parame
ters. The discrepancy between theory 
and data for da /dO 1n Figs. 4 and 5 
reflects this result. 

Tables 1,2 also show the total 
elastic, uEL, the total, u TOT' cross 
sections and the real part of the 
forward scattering amplitude, Ref(O). 
We see that the potential calculati
ons well reproduce the PSA predicti
ons for Ref(O). It is consistent with 

u~~~~~~~~~ 30 60 90 120 150 180 that this quantity is mainly deter-

our 

E>cm. deg mined by the real parts of the phase 
shifts which are well reproduced by 

calculations, too. In prhnciple the difference between the 
Tll"A -~- .. '1._~ C-- -----' £-1._ .'1 _ '1 -• 1 _ ~. • 

A-'-OU.&.Io,.oJ ..t....V.L HTQT a.u.u. L.il'C ~0..1.\..U.LClLCU VllC.~ \-QU, b.LVC a..u t;;;L) 

timation of aABS .. Here as was mentioned above one must remember 
that the PSA data for aTOT can be not free from some ambiguity 
at present. Thus, now we can conclude only that at very low ener
gies (-20 MeV) a!NEL is mainly contributed by the pion absorp
tion channel. At higher energies (-SO MeV) we observe an interes
ting situation when the rate of aABS in a 1N L is relatively 
small (see Table 2), but the absorption channef strongly affects 
the elastic one. 

8. In this paper by calculating the second-order terms in the 
unitary pion-nucleus phase shifts expansion we have established 
the convergence range of the series to be T" 'S_ 70 MeV for (rr.~e)
scattering. We have observed that the second-order corrections 
somewhat destroy the obtained earlier 12 - 41 agreement with the 
data in the first-order approximation especially in 50-MeV re
gion. This disagreement comes mainly from the difference between 
the calculated inelasticity parameters, ryL, and those of PSA. 
Our potential calculations show a simple regularity of the beha
viour of ryL at a given energy with increasing orbital momentum 
L:ry 5 <ryp<ry 0 < ... , etc. Thus, the most part of the inelasticity 
is concentrated in the s -wave. This potential picture may be 
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simply explained by the increase of the centrifugal barrier 
with increasing L. But the PSA data show (see Table 2 and 
Figs.) ,2) the deviation from this regularity in s and p -waves: 
1J "IJ • Hence, one may consider this as a direct indication of 
t~e Etrong influence of the pion absorption channel on the elas
tic one. The importance of a careful treatment of the absorp
tion channel to get a satisfactory description of pion-nucleus 
scattering data in the low-energy region was pointed out in 
refs/18 •1 9 / based on the first-order optical model calculations. 
Here the role of the pure pion-absorption channel due to the 
unitarity of the considered approach is reflected more impar
tially. 

The author is grateful to V.B.Belyaev, D.A.Kirzhnitz, T.I.Ko
paleishvili and R.A.Eramzhyan for helpful discussions. He is al
so indebted to V.Ju.Ponomarev for assistance in numerical calcu
lations. 
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XaHxacaes M.X. E4-82-468 
IToTeH~HanbHoe orrHcaHHe HH3K03HepreTHqecKoro yrrpyroro 
pacceHHHH ITHOHOB Ha ~e 

Yrrpyroe (rr, 4He) -paccerrHHe paccMaTpHBaeTcH B paMKax 
YHHTapHoro rroTeH~HanbHOro rrogxoga, B ocHoBe KOToporo ne~HT 
3aKOH 3BOTIIO~HH CHCTeMbl C H3MeHeHHeM KOHCTaHTbl CBH3H. B gaHHOM 
rrogxoge HTepa~HOHHaH rrpo~egypa CTpOHTCH HerrocpegCTBeHHO gnH 
BblqHcneHHH <l>a3 ITHOH-HgepHOrO pacceHHHH, Bb!qHCTIHIOTCH rrorrpaBKH 
BTOpOrO ITOpHgKa K H3yqeHHOMY paHee HH3WeMy rrpH6n~eHHIO TeOpHH. 
IToKa3aHO, qTO gOC TaToqHo rrepBbiX gByX HTepa~HH gnH OITHCaHHH 
rroTeH~HanbHoro yrrpyroro (rr, 4He)-pacceHHHH rrpH 3HeprHHX rrHoHa 
H~e 70 M3B. CpasHeHHe TeOpHH H 3KcrrepHMeHTa rrpH 24 H 51 M3B 
yKa3biBaeT Ha CYIIIeCTBeHHYJO pOTib KaHana C HCTHHHbiM ITOrTIOII\eHHeM 
ITHOHa B OITHCaHHH HH3K03HepreTHqeCKOrO ITHOH-HgepHoro pacceHHHH, 

Pa6oTa BbmonHeHa B Jla6opaTopHH TeopeTHqecKoH: <l>H3HKH OIU:IH. 

npenpHHT 06DeAHHeHHOro HHCTHTyTa RAePH~X HccneAOBaHHH. Ay6Ha 1982 

Khankhasayev M.Kh. 
Potential Description of the Low-Energy 
Pion Elastic Scattering on 4He 

E4-82-468 

The (rr, 4He)-elastic scattering is considered in the frame 
work of the unitary potential approach based on the method of 
evolution in coupling constant. In this approach an iteration 
procedure for the direct calculation of rr-nucleus phase 
shifts is developed. The second-order corrections to the con
sidered earlier first-order approximation for pion-nucleus 
phase shifts are calculated. It is shown that the two first 
iterations are quite enough for the description of the poten
tial ( rr, 4He)-scattering below 70 MeV pion energy. The compa
rison of the calculated differential cross sections with the 
scattering data at 24 and 51 MeV indicates the importance 
of the inclusion of the true pion absorption channel to obtain 
a good fit of the data. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 

Preprint of the Joint Institute for Nuclear Research. Dubna 1982 


