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1. In this paper we consider the (n,4He) elastic scattering
in the framework of the unitary potential approach recently de-
veloped in refs”/!=*/. This approach is based on the so-called
method of evolution with respect to coupling constant (CCE) (see
review /% ), In the description of the pion-nucleus interaction
one must very carefully treat the unitarity condition because
the pions can be absorbed in nuclear matter (unlike, e.g., the
nucleons).

In ref.’! an iteration procedure for the calculation of 7 -
nucleus phase shifts in the low-energy limit (quasi-two-particle
case) was developed. The basic element of this expansion is the
two-body u-matrix of pion interaction with a separate nuclear
nucleon. In refs.”’?~% we have generalized this approach to
arbitrary energies of the projectile and have carefully studied
the first-order approximation in the two-body u -matrix. It was
shown that this approximation gave an acceptable description of
the low-energy pion-light-nucleus scattering data. The goal of
the present paper is the calculation of the second-order correc-
tions. This enables us to establish the convergence region of
the considered series. The comparison of the calculated phase
shifts, cross sections. etc., with the low-energy data can pro-
vide us with some information about the role of the true pion
absorption channel.

The paper is organized as follows. In Sec.2 we derive the
general expressions for the first two iterations for m-nucleus
phase shifts, In Sec.3 the first-order approximation is consi-
dered. Unlike to refs./2=%/, where nucleons were considered to
be "frozen", here their Fermi motion in the target nucleus was
taken into account. Sec. 4 is devoted to the calculation of the
real and imaginary parts of the #~-nucleus phase shifts in the
second-order approximation. In Sec.5 we discuss the off-shell
behaviour of the two-body u-matrix. The application of the pre-~
sent approach to the description of the (n., *He) -elastic scat-
tering is given in Secs.6 and 7. In Sec.8 we have discussed the
main results of this paper.

2. In the framework of the CCE-method the Hamiltonian for the
system is
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where K. is the pion kinetic-energy operator, Hp is the nuclear
Hamiltonian, U' labels the pion interaction with an i -th nucleon

and A plays the role of #N-coupling constant. The pure nuclear
problem with the Hamiltonian

h=K, +Hp (2.2)

is assumed to be known and the system evolution in the coupling
constant A from A=0 to the realistic value A=1 1is considered.
The matrix elements Uw,z<uFU!p\ of the potential over the
eigenfunctions ly>,!r>, etc., of the Hamiltonian H are the basic
quantities in the CCE-method “®/. In the absence of the =-nucleus
bound states there is one-to-one correspondence between the ei-
genfunctions of H and h. Thus, one can represent U, as:

. .
U, ()2 <k, a, [V, a, >, (2.3)
where V(A) is some Hermitian operator and {k,.a,>, etc., are
eigenfunctions of the channel Hamiltonian (2.2). Here k,, de-
notes the pion momentum in the =-nucleus c.m.s. (Acm-system)
and ¢, , the nuclear states (a,,=012,....;a, , =0 labels

the ground state). There is a system /13’ of exact integral equa--

tions for UuV (or V). In ref.’! an iteration procedure for
solving these equations was developed. The series obtained for
vy is the expansion in powers of the so-called two-body u -
matrix. Each term of this expansion is Hermitian Thie nravidec
the unitarity of the scattering matrix at each step of successive
approximations., Two first terms of this expansion are

1 I 1T I1 II
veon=v Ponsv Pon. vTavP o v o, (2.4)
where
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V)= 3 u (), (2.5)
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The two-body u -matrix is defined as follows:

i = 3! i
u (A)-n;]‘ntb unm(A)Sm‘,

where ugul is the exact two-body matrix element of the pion-

i —th nucleon interaction (see Sec.5), n>g; , Ej et§., are
eigenfunctions and eigenvalues of the free Hamiltonian H0=KN+KA_4
( KA denotes the nucleus kinetic-energy operator), G;(EyAE—H§15L

G(i)(E)=(E—-h +i8”! are the Green functions.

In the low-energy limit (the two-body case) the | n—nuclegs
phase shifts are determined by the matrix element <k,0° V(r) k50>
(% and B’ are pion momenta before and after collision in Acm)
as

1 - -
5(k)=—-77(A(k)f"d)\(k,OTV()\)W(’,O)f, 2.8)
0

where ¢, (k) is the level density: eA=Wv[2n2dE0ﬂm\, E =0 (k)rao,(k)
is the collision energy counted from the nuclear ground state,
m,-,(k)=(k2+m2)l/2 ,mA(k)=(k2+(AM)2)VZ , m and M denote'the
pion and nucleon masses. By the braces In the general relations
like (2.8) we denote an appropriate partial harmonics with res-
pect to the angular momentum, spin, and isospin. For the zeroth
spin-isospin nuclei, like *He, the symbol is:

1
i) = -;. fdxP (0f(x),
-1

where P; are the Legendre polynomials and x=KKk" ‘
The generalization of (2.8) to the case of an arbitrary energy
of the projectile is as follows’2/:

1 Y -
5(k)=—mA(k)i [dA<Kk,0 UO(E,A)’k’.0>l. ) (2.9)
0

where Ug(E, ) 1is some effective energy-dependent operator. In
general Ug(E,A) is non-Hermitian. Its non-Hermitian part is due
to the contribution of inelastic channels to the elastic one.
By an exact integral equation (see ref.’2/ ) UgE,N) is ex-
pressed through the V(r)(2.4). Two first iterations of this
equation give:

A ~
Up(E,A) = V(A) =271 [ dA, V(A ,)8(E-h)QV(]), (2.10)
0

where Q= ¥ ‘n><n 1is the projection operator for the excited
n>0

nuclear states. The contribution of the second term in the r.h.s.
disappears when the projectile cannot excite any nuc%eér state
energy and Ug(E,A)=V(r). Hence, in the low-energy limit the two-
body unitarity condition is justified in our approach.

Substituting (2.4) and (2.10) into (2.9) gives us the follow-
ing expression for two first iterations of the 7-nucleus phase
shifts:

) n

1 (). (2.11)
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where 8" is the first-order approximation:
3] 1 > @I *
8 (k) =~me ()t [ dA<K, OV (A)|k50>1, (2.12)
0

an (It ; :
ORr §nd Bhn)are real and imaginary parts of the second-order cor-
rection: |

1 - -
g t==nc (ot far<kolv™yisos, (2.13)
0

() 2 1A I - "
81 (=212, (i1 [axfdag 0/ VPO E-DAVP) k0 >. (2.14)

operators V" and VD are defined in (2.5)-(2.7). Note the
matrix elements in (2.12)-(2.14) are similar in structure to the
f1rsF and second-order optical potential (see refs./®=9/ ). Thus,
for its calculation we shall use below methods elaborated in the
optical model.

3. The first-order approximation. Using the overlap function

F(l)(l-(’ -];’ ﬁ dl-{; e g-o - _ d -, -
00 (k1K) = fi=2(—2~—~n;-38(k + 2 W By oy Vg (] Rgpern ),
where Y, is the/%round state w.f., the quantity (2.12),
can be represented '%8/ in the form:
a 1 p (1) 4+ 5 -,
5 W= <A 0l rax r 3P D8 B @Dl K 1EE >t (3.1)
0 @2m° °° ' '
Here =k ~k* is the transfer momentum., In ref/z/ we have 9a1—
3,4/

culated (3.1) in the static limit, i.e., when m/M+0. In refs’
for its calculation the so-called factorization approximation
was used. In addition there was admitted the picture, in which
Fhe nucleons are "frozen" in the target nucleus. Here we take
into account the nucleon Fermi motion. Following ref./®/ we
make use of the fact that the 4He—ground state w.f. is well
described by the 1s —harmonic oscillator function
¢Q(P)~expoaéﬁ/zywhere ay is the oscillator parameter. Then
using the Jacoby coordinates in (3.1) one can easily obtain

I 1 -y wlry
8% () = —Anc, W 1py, @ [ aATERLN), (3.2)
0
where
= dp’ (D) 4o -
poo(q)’ f-E- oo (P —q)=exp(—a2q2/4) (3.3)
(2n)3

is the nuclear form factor, az-KA—JJ/A]ag.and t! is the two-
body u -matrix averaged over the nuclear density

4

-

- > o, dp (1) »>» - - > R
W RN 2 [~ F o) BB) <K.b 4B ERENPAT IS (3.4)

m
Here ﬁo=—i/A+[(A—1»QA]a, the index "1 of the u-matrix stands
for its spin-isospin part (see Sec.5). For the zeroth spin-iso-
spin nuclei, like *He, the result of the averaging of ul! over
the nuclear w.f. is obtained from (3.4) by the substitution of
the isoscalar part of u-matrix-uy for ul. The nuclear density
of “He has the form’%:

F‘;;) @B) = (2v7b)° exp (HP12), bE=[A/(A-D)aZ . (3.5)

In the calculation the form factor Poo is assumed to be
charge form factor determined by the electron scattering’/19/. The
parameter ''a” is expressed through the nuclear charge radius,
R,,=1.71 fm for “He and the proton radius, T, = 0.76 fm;
é3=2(R2 _r%)ﬁ, i.e., 8 =1.25 fm. Thus, for a; and b we get:
ag= 1.44 fm and b=1.67 fm.

The dependence of P, in (3.4) on § makes this integral to be
very time-consuming. Thus, taking into account that the nuclear
form factor has a pronounced maximum at q =0 we shall take
p.—k/A that reduces the integration over p to be two-dimensio-
nal. This "Fermi-folding approximation' is usually used in the
optical model calculations 788/

4. The second-order approximation for the = -nucleus phase
chifte A Thoe veal nart nf thic cnrrection SUL) (7.13). ie
——— l gt - - n . P
the sum (see (2.4)) of two terms: 8,9”:6“1“1) +5‘R”; , where

1 R
857 (k)= —me ,(0)1 [AA<K, 01V (M) K705], im1,2. (4.1)
0

R.i
Here an) are defined by (2.6) and (2.7). The first term desc-
ribes the pion rescattering on the noninteracting nucleons and
the second one - through intermediate nucleon interaction.

Consider ?Pe‘correction Bé"). To evaluate the matrix ele-
ment <k.0|VS )1k’ 0> it is é&vantageous to introduce the two-
particle overlap function:

(2) » i

Foo (K p Ky

00 kf'ké)’

(4.2)
= ﬁdl:l&l-(' §k-o - k’ﬁ' l_(, l_(. k”_l;‘l_{’ E
= r)-azgﬂ)a ( +J=1“)'J’0( phor Rgreees A)wo( 1! 2° 3...., A ),

. . . 11
Using 1t one can represent the matrix element of Vg ) as:

o Il - K’ dphdpo A
<B01VY (W1E05-AA- [ 2 1R aa
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2) "‘ 2.3 a2,
l?i)o (B -By=0 s Bl Bp) <k By ul 0 DIK B 4> € P+4 1B IR B> (4. 3)

1 1
-» > > ,.+ ]" o
Eokp )-Eo(k”pp—iy * EK"B,)-E°(K”p,)+1y

where 4 ak-k”’ q”.f”-EﬁBI-pl—[(A-D/AM p2-p2+[(A—D/A]q”
the energy E°(k,3) = Eq(K) +[A/2(A-)M]p2 Eg(K) = w (K) + w ,(®).
In the calculation of the energy denomlnators the nonrelatlvlstlc
kinematics for nucleons was used.

Now to 51mp11fy (4.3) we employ the factorization approxima-
tion, i.e., in the integral of (4.3) we put:

@) > 2 & ypa 1
Foo 1By =878, 48, .6,z Co @@ IFS) B B F V@, 8,0,  6.0)
where
dp dpy ..(2) 5, > 3, o
Cogd ") =f --—1—-§"lF0( PyBy=Gip+d0)) =
m) (4.5)

>

=<0lexp(i@F, +4”r,)lj0>

is the correlation functlon. Next, noting that Coo(aﬁd")has

a pronounced maximum at §°=3°" =0 we suppress the aq —-depen-
d?nce of the energy denominators in (4.3). With these approxima-
tions we get:

( d;’l
(k)=—m (A=) :2p( 1 ”
Oy, A ©m? E g (0-F - )) 00 (@ 4" x

(4.6)

35t} el
xBﬂ)BJdAJdAwdkx ;AQudk,k;AQh

where the sign P means the pr1nc1pa1 value integration. In the
derivation of (4.6) the spin-isospin structure of the (=,%He) -
system was taken into account: ‘?B 1 -%-,--%n—[(ﬁ'k ) (li’k‘”’)(ﬁ"l?")],

—-%{&ﬁ’%{ﬁ%”)(éi’ﬁ].Integrals over A of the two-body matrix

elements, ug, in terms of the sN-phase shifts are presented in
Sec.5.

Let us consider now the 8(“% ~correction in (4,1). It is
expressed through the matrix element of vy (D (2.7). In ref.
we have shown that this correction is str1ct1y zero in the sta-
tic limit, i.e., when m/M+0, due to the cancellation of G and

av

6

G, in (2.7). Indeed, in that limit the energy denominators in
G and G, do not depend on the nucleon variables. Thus, due to
the completeness of eigenfunctions of h and Hy we get the desi-
red result. Note that the similar approximation we have just
used in obtaining (4.6) when we have neglected the g-dependence
of the energY denominators in (4.3). Hence, below we shall put
that SR D One can show that this implies the ~207-level
of accuracy o} our calculations of the second-order corrections.

B. The imaginary part of the second-order correction, 8(”),

(2.14) has the form:
(II) -»
8Im(k)_’_2” (A(k){f fd)\fd)\lz <k0|v ('\1)“(”'(1”>X
(2) ¢ %o (4.7)

xa(E(,(k)—Ea» (k) <k a” VO ) (5,051,

where V 2 u' (see (2.5)),EykK)=w K)+w k), E_(K)=E (k) +A,,
Ag is the nuclear excitation energy "counted from the ground
state.

The matrix elements in (4.7) are similar in structure to that
one in the first—-order approximation (2.12). Thus we generalize
(3.2) to any excited states:

<K 01Su’ (A)[K%a”> = A PACE a1 (KK ). (4.8)
1

Here p, is the transition form factor, ¢’ak-k’’. 1In the cal-
culation of (4.7) we have also used the closure approximation

by the set: E; (k)=Eg(k)+A, where A is the nuclear mean excitation
energy. For He its value is about 20 MeV. In ref.’% it was
shown that the variation of A from zero to 20 MeV in integrals
like (4.7) gives the effect of about 107. Therefore, in the subse-
quent calculation we set (as in ref.’8/ )A=0 to avoid the un-
necessary complexity. Then by using the identity:

3 @0, (@)= G0 (G30)+(1= F0C0 @207 (), (7).

and averaging over sp1n—1sospin variables in (4.7) we get:

(In 2 ,,,
a,m ()==2[A- e, (k)] r-4—”—rd>« rdA 3 uﬁ(kk L) x o

x Tgk ks A)[—Kp (DAg=p (@) 0034 +(1——) C o @ gl

Here k=|K|='K"|= |E"|,AB: 1,2, (KK )~(KK*" )& “K** ), —2[ (kK ") —(EK )K" K)],
the coefficients are defined in (4.6). As will be shown in
Sec.5, the integrals of products of the two-body u-matrices can

be expressed in terms of ~N-phase shifts.
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5. Our goal is to express the = -nucleus phase shifts in
terms of the sN-ones and nuclear bound state characteristics.
To do this, we must transform the ~#N-u-matrix in (3.2), (4.6),
and (4.9) from the Acm-system into the N c.m. frame (2cm-sys-
tem). Considering that the u -matrix has the same transforma-

tion properties as the scattering matrix, t, we have

<EBIu(MIKD” > =y <R TN >, (5.1)

o wz (K)o N K)o (K Vo yRE) ]% (5.2)
0 ®)oy®o, )o@ ) '

Here E(A) and the p{Pn initial anq,final momenta « and kX’ refer
to the 2cm, o (K)= (K2+m2)% | wN(k)s(E2+M2)%. The quantities
®# ,%" can be expressed in terms of kK, B , K , p” (for de- \
tails see refs./2:3:6/ ),

The spin-isospin dependence of the
sed as follows:

u -matrix can be expres-

- 3
<RIu)IR > = 2 <k lugA)I>04, 5.3
B=0 8 8 -3
where 03:1,(?5* ,i(s0) ,i(@WXtr). Heres/2 is the nucleon spin
operator, and /2 and ' are, respectively, the nucleon and
pion isospin operators. Neglecting the spin-dependent terms
(B=2,3), the matrix elements of Uy, can be wriqten as

- >, B . 1 I > 9., a5
<K|uB()\)Ix >=% ¢ é (1+—2--:)ugj (R.Z7 0Py (Re”), (5.4)
where 1=1/2,3/2 labels a given isotopic
63/ 8/2 , ol m—0ihp=1/3 Lj= L1/
In each eigenchannel v(L ¢ .j) the on-energy-shell (k=«’) u, -
matrix determines the #N -phase shift/5/

[e]
m N-state, ¢r/p=1/3,

1 .
By k) = =meglic) [ dAuy (okih). (5.5)
where ¢,(x) 1is the level density. Now substituting (5.4) and
(5.5) into (3.4) and (3.2) gives us the desired expression of
the first-order approximation, 5, in terms of »N -phase shifts
and the nuclear form factor (see refs./?=%/),
The off-energy-shell dependence of u (x,x",A)
lowing ref.

in (4.6) (fol-
) is assumed to have a separable form:

uV(K.K';A)-uV(K.K':)\)gv(x')/gv(x) (5.6)

with gV0<)-Kyexp(-ﬁg x2). The parameter B, is related to the
range of ~#N-interaction. Acceptable values of B, probably
lie/?/ in the region 0.1 fm®<g, <0.4 fm?2.

Consider now the integrals over A of products of u -matri-

ces in (4.6) and (4.9):
1A )
A, gof dAO{ dAyfu, (ko AU (<S50 + (v @ v 5.7)
1 A
B, -2 g dAofd)\l[uy(x,x:Al)uvf(x',x'; Ap+(v 2 vl (5.8)

Integrating by parts with taking into account (5.5) gives an
expansion the leading term of which is:

AVV,=BVV,={1/(n252(x)e2(x’)ﬂﬁbﬂx)ﬁvf(K')- (5.9)

The estimation of higher-order terms (see for example Eq. (31)
in ref./1/ ) gives a coutribution of about 20%. Therefore we
may safely neglect it within the accuracy of our calculations
(see Sec.4).

The formulae we have obtained in this section complete the
definition of the two first iterations of the (=, *He)-phase
shifts, Substitution of (5.4), (5.6) into (4.6) and (4.9) gives
us the desired expressions of the second-order corrections in
terms of the #N -phase shifts, the nuclear form factors, and
the correlation functions. In the numerical calculations we have
neglected the spin-dependence of 7N —interaction. In ref./?/
it is shown that it contributes only at the pion energy above
100 MeV,

6. We present now the calculational results of the two first
iterations (3.2), (4.6) and (4.9) for (m%He) -phase shifts.
The parameters used in the calculations have been defined be-
fore (see eqs. (3.3), (3.5) and (5.6)). The N -phase shifts
we have used here are from ref.’! . Only s and p-nN —waves were
taken into account. The correlation function (4.5) due to the
Gaussian form of the %He -ground state wave function is

Coo @) =expl~ a%(@®+q") + 2al(aa"), (6.1)
where a2 = 1.25 fm (see Sec.3). In (6.1) the effect of the short-
range NN correlations have not been included. These correlations
give a rather small contribution in the low-energy region. Their
contribution is determined by the parameter ({./a)?=0.02, where
f,= 0.4 fm is the correlation length (see ref. /77y, The NN
short-range correlation gives’/?/ an appreciable effect only at
energies higher than, say, 180 MeV in a large momentum transfer
region.

Figures 1,2 show the energy dependence of the s and p—(ﬂfHe)-
phase shifts and inelasticity parameters up to 140 MeV. The da-
shed lines are the first-order approximation (3=3(Qn(IL1) and the

9
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Fig.1. The (n, % He) -phase shift,
; and the inelasticity parameter, Ng »
calculated from 8D +5 () by using
B70.2 fm? (solid curves) and &
(dashed curve, =1 ), The results
' | of PSA at 24, 51 68 and 75 MeV
(refs.”13:14/" ) are shown by black
points, at 98 and 135 (ref./15/) by
2 open c1rc1es, and at 60 and 110 MeV
1 (ref /187 by triangles.

ds »
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Fig.2. The same as 1n Fig.l, g;
but for the dp ~(m, He)—phase ' 0 .
shift and for the inelasticity 20 w0 & 8 10 120 o

parameter p P Energy T, Mev

full oneslthe sum of the two first iterations (§= sy 5””
nneXp(—ZSIm ). We also present in Figs.l1,2 the results of some
phase shift analyses (PSA).

From Figs.1,2 we see that for the real parts of phase shifts,
55p, the second -order correction )(4 10) gives an appre-
ciable contribution (210%) at energies T, above 80 ‘MeV*. One
can admit this value as defining the convergence range of the
considered series. Note that at lower energies the PSA data are
in good agreement with the calculational results.

It must be noted that the correction 8&1) becomes essential
at very low energles. below ~40 MeV. At 24 MeV (see Table 1)
its contribution is about 30Z. The contrlbutlon of 8(D)  increa-
ses with decreasing energy. If the (=, ‘He) —scattering length,
calculated in the first-order approximation (3.2)with
11/

arr 4'He ’

/
the Solomon 7N -phase shifts is equal to -0.033 fm, then
the sum of two first iterations gives & 4y, = -0.126 fm. This

*Here T, is the pion kinetic energy in the lab.system.

10
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value is in a fairly good agreement with the experimental re-
sult: Rea, 4y, = —(0.14340.04) fm’11/ Nevertheless, the numerical

convergence of the iteration scheme is not a001denta1 (see
ref./1/ ). Smallness of 60 as compared to 5! at very low
energies is due to the specific isotopic structure of the prob-
lem resulting in the cancellation of two '"large" quantities in
the first-order approximation.

Now let us consider the potential description of the PSA data
for inelasticity parameters. We see from Figs.1,2 that especial-
ly in the g-wave the potential predictions diverge from the
data. For that reason we have carried out some additional inves-
tigation of our iteration scheme. We have estimated the third
and fourth-order corrections and have found that they give more
than 10Z-contribution at energies above 70 MeV. Thus, the obser-
ved discrepancy indicates the importance of the inclusion into
consideration of the pion absorption channel. A more detailed
discussion of it will be given below.

7. In the preceding section we have established the conver-
gence range of the iteration scheme to be lower than 70 MeV.
Here we shall analyse the (n,%He) scattering data at 24 and
51 MeV from refs.”/12.14/ At these energies there are data both for
#t and r -mesons. Hence it is possible to define the so-called
mean differential and total cross sections as: dz/dQ=(de ¥/dQ+
+do™=7dQ)/2, etc., which are of an accuracy of O(1/q2),qa=1/137,
determined oniy by the strong interaction. it 1s convenient to
use these quantities for comparing the theoretical and experi-
mental results. It should be noted that the present available
precision of experimental data in the low—energy region is not
high (see, for example, Fig.4). Also there are no differential
cross section data at small angles 6,,<30°- 40°). That makes the
PSA data be not free from some ambiguities. Especially this con-
cerns the PSA predictions of values for the total cross section.
This quantity is obtained by the extrapolation of the scattering
data to the zero angle, Thus, we consider the comparison of the
calculatlons with the data presented below only as pre11m1nary.

The (m,? He) -phase shifts at 24 and 51 MeV are shown in

Tables 1,2. The first two columns contain the results obtained

in the flrst—order approximation (3.2) with (S(D ) and without
(E(D ) inclusion of the Fermi motion. We see that the Fermi ave-
raglng reduces the s -wave at 24 MeV by more than 20% and at

51 MeV by 157%. The effect of this reduction on the differential
cross section at 24 MeV is shown in Fig.3. The Fermi averaging
shifts the differential cross section minimum to the right. Co-
lumns 3 and 4 show the second-order correction effect (with the
Fermi averaging): Re5-5(1>(3 2) + M4.6), ms= 5D (a9,

the range parameter of &} an g B = 0.4 fm2 and O. fm2 , respec-
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Fig.3. Pion- *de differential
cross section at T, =24 MeV,
Black points label mean differen-
tial cross section data from
ref./!?/Dash and the dash-dotted
lines are obtained by using &

E and 8, respectively. Solid and
. the dash—double-dotted lines are
8 calculated from §(D¢5 (I by using

12 B, a02fm2andB = 0.4 fm 2

respect1ve1y

L T T T v T
A
/

L 2 PRI BT N /

30 60 90 120 150 180 3 :

8cm.deg T-

Fig.4. The (n, 4He) -differnti-
al cross section at 24 MeV
calculated from & 50D by
using g8,,=0.2 fm? (dash-dotted
line) and 8 (dashed line).
The data from ref. 12/ for
(s, *He) are denoted by open N \ &

circles and for (s~ ‘He) by \) - /i'l

black points. Solid lines are TS e
obtained by using the PSA data 30 60 90 120 150 180
from ref./13/, 8m  deg

do/da, mb/sr

v

tively. We see that the influence of the B, -variation is rather
small (about 10%). The dependence of do/d) on B, at 24 MeV is
shown in Fig.3. We see that a larger B, (corresponding to a lon-
ger oN interaction range) yields a smaller differential cross
section both at sma11 and large scattering angles. Hence in ac-
cordance with ref. we can conclude that the difficulties en-
countered in fitting the low energy data cannot be resolved by
simple adjustments in 8, .

Finally, in columm 5 in Tables 1,2 we have presented the PSA-
data from refs./13:14/,The corresponding differential cross sec-
tions are shown in Figs.4 and 5. We see that the two first ite-
rations well reproduce the PSA data for Re5. We obtain the
most distinction in the p -wave at 51 MeV (about 30%). The desc-
ription of the inelasticity parameters is worse. At 24 MeV Imdg p
(4.9) is by an order smaller than PSA predictions and at 5] MeV
the calculated value of Imép is twice smaller than the data.

12

The (n.4He) -phase shifts at 24 MeV

Table 1

Iph ) ) ), (5 (7], <(F) !
ehifis, in s 6('7) 85 s, ST ST b datg
degrees Tk fy=0.4 tu® | £:0.2 £ | [43]
' -3.47 ~2,69 ~3.59 -3.81 -4.28
/q?é_s'
Iin Sy 0.00 0.00 0.34 0.34 2.53
Re Sp 3.34 3.34 3.75 3.91 3.49
T & | 0-00 0.00 0.12 0.12 1.19
Re & | 018 0.19 0.19 0.19 0.25
Zm &n| 090 0.00 0.06 0.06 0.07
.2 . 12, 13.5 13.8
7% mh |10 9.1 3 3
0.2 . 21.6 22.8 87.2
Tror,mé |} 21
Roflo), §4 032 0.35 0.36 0.37 0.31
f ]
Table 2
4
The (#, He)~phase shitts at 5| MeV
Phase 54 PV L BN 59 §@)) b data
ghifts. in Fe o4 m2 0.2 fm2 [__!4'.]
egrees ﬁ- . A’. .
Reds -7.91 -6.71 -7.18 ~7.47 -8.40
im & 0.00 0.00 2.56 2,56 1.75
Re Sp 9.86 10.53 12.04 12.68 9.05
Zm S 0.00 0.00 1.07 1,07 2.30
Re ‘5,0 1.26 1.34 1.39 1.43 1,00
Im &5 | 0-00 0.00 0.15 0.15 0.15
. . . . 0.6
G;-m mf | 36.0 37.4 46.7 51.5 3
Gy, b | 360 37.4 81.7 86.4 79.6
707 )
Re(v), fm| 0.9 0.88 0.97 1.01 0.61
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1 Fig.5. The same as in Fig.4 but for

(n.4He)—scattering at 51 MeV., Black

"~ 1 points label mean differential cross
e sections data from ref.’1%/,
/

(! . I3

é Note that this discrepancy goes bey-

4 ond the 207-accuracy of our calcula-
i tions. Thus, we conclude that the pure
1 potential calculations cannot fit

the PSA data for inelasticity parame-
ters. The discrepancy between theory

and data for ds/dQ in Figs.4 and 5

reflects this result.

Tables 1,2 also show the total
elastic, o, the total, ogqgq, cross
sections and the real part of the
forward scattering amplitude, Ref(0).
We see that the potential calculati-
ons well reproduce the PSA predicti-
ons for Ref(0). It is consistent with
l.£0‘.€0 gO 156 1§d }80 t@at this quantity is mainly deter-

Ocm. deg mlged by Fhe real parts of the phase

shifts which are well reproduced by

our calculations, too. In principle the difference between the
POA rosulis £oT wgpgp and the caliulated uiied cau give au wa
timation of 0 ,pg . Here as was mentioned above one must remember
that the PSA data for oqgr can be not free from some ambiguity
at present. Thus, now we can conclude only that at very low ener-
gies (~20 MeV) o;yg. 1s mainly contributed by the pion absorp-
tion chamnel. At higher energies (~50 MeV) we observe an interes-
ting situation when the rate of o,pg in o;zp. 1is relatively
small (see Table 2), but the absorption channel strongly affects
the elastic one,. :

dé/dn, mb/sr

8. In this paper by calculating the second-order terms in the
unitary pion-nucleus phase shifts expansion we have established
the convergence range of the series to be T_ <70 MeV for (m4Hey
scattering. We have observed that the second-order corrections
somewhat destroy the obtained earlier/?~% agreement with the
data in the first-order approximation especially in 50-MeV re-
gion. This disagreement comes mainly from the difference between
the calculated inelasticity parameters, n; ,and those of PSA.
Our potential calculations show a simple regularity of the beha-
viour of »n, at a given emergy with increasing orbital momentum
Lipg<pp<np<.., etc. Thus, the most part of the inelasticity
is concentrated in the s -wave. This potential picture may be

14

simply explained by the increase of the centrifugal barrier
with increasing L. But the PSA data show (see Table 2 and
Figs.1,2) the deviation from this regularity in s and p -waves:
n.'n. . Hence, one may consider this as a direct indication of
the gtrong influence of the pion absorption channel on the elas-
tic one. The importance of a careful treatment of the absorp-
tion channel to get a satisfactory description of pion-nucleus
scattering data in the low-energy region was pointed out in
refs./18:19/ paged on the first-order optical model calculations.
Here the role of the pure pion—absorption channel due to the
unitarity of the considered approach is reflected more impar-
tially.

The author is grateful to V.B.Belyaev, D.A.Kirzhnitz, T.I.Ko-
paleishvili and R.A.Eramzhyan for helpful discussions. He is al-
so indebted to V.Ju.Ponomarev for assistance in numerical calcu-
lations,
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XaHxacaes M.X. E4-82-468
HoTeHuuanbHOe ONMHCAHHE HH3KOSHEepreTHUYecKOro YMNpyroro
paccesHHA NMHOHOB Ha ﬁ{e

Ynpyroe (n,4He)—pacceﬂHHe paccMaTpHBaeTcAa B paMKax
YHUTAPHOT'O TNOTeHUHaNIbHOTO MOAX0da, B OCHOBE KOTODOTO JIEXHT
3aKOH 9BOJIOLHH CHCTEMbl C H3MEeHeHHMeM KOHCTAaHTH CBs3H. B gaHHOM
nogxone HTepayHOHHAs Mpoueaypa CTPOHTCHA HENocpeACTBEeHHO [ANiA
BBIYHCIIeHUs $a3 NMHOH—AAePHOI'0 pacCesHHA. BLIYHCIIAITCA MONPaBKH
BTODOTO MOpsAAKa K H3YUeHHOMY paHee HU3meMy NPHOIIKEHHIO TEOPHH.
loxasaHo, 4YTO JOCTATOYHO nemex OBYX HTepauuil [OJIA OMHUCAaHHA
MoTeHuHanbHoro ymnpyroro (=, He)—paCCeHHHH NpH SHEeprvax MHOHAa
Hike 70 MsB. CpaBHeHHe TeODHH H 3KcnepuMeHTa npu 24 u 51 MsB
YKasbBaeT Ha CYMEeCTBEeHHYW pOJIb KaHajla ¢ HCTHHHbBM IOTJIONEeHHEM
MHOHA B OMHCAHHH HH3KOJYHEPTeTHUECKOTO MHOH—ANEepPHOTO paCCesaHHA.

Pa6ora BrmonHeHa B JlaBopaTtopuu TeoperuHueckoin ¢usuku OUAH.

NpenpuHT 06BbEAUHEHHOrO MHCTUTYTa AAEPHBIX uccnepoBawui . [lyGua 1982

Khankhasayev M.Kh. E4-82-468
Potential Description of the Low-Energy

Pion Elastic Scattering on *He

The (n,4Herelastic scattering is considered in the frame
work of the unitary potential approach based on the method of
evolution in coupling constant. In this approach an iteration
procedure for the direct calculation of mnucleus phase
shifts is developed. The second-order corrections to the con-
sidered earlier first~order approximation for pion-nucleus
phase shifts are calculated. It is shown that the two first
lteratlons are quite enough for the description of the poten-
tial (=, Herscatterlng below 70 MeV pion energy. The compa-
rison of the calculated differential cross sections with the
scattering data at 24 and 51 MeV indicates the importance
of the inclusion of the true pion absorption channel to obtain
a good fit of the data.

The investigation has been performed at the Laboratory

of Theoretical Physics, JINR.
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