


I. INTRODUCTION

In recent years many investigations have been performed
within the quasiparticle—phonon nuclear model 1V vo study
the fragmentation of a few quasiparticle wave function com-
ponents in a wide region of excitation energies. The neutron
strength functions are defined by the fragmentation of one-
quasiparticle components in odd-A nuclei and two-quasipartic-
le components of the wave functions in doubly even nuclei’/®2-5/
in the neutron-binding energy B, region. Integral characte-
ristics of the giant multipole resonances depend on the one-
phonon strength distribution /68,

New data have been obtained on the neutron strength func-
tions 719/ of 207.208py 5pq giant resonances /11-18/  of 208py,
A review of experimental and theoretical works on the giant
resonance problem is given in ref./1¢/,

The aim of this paper is to calculate the neutron strength
functions of 297:208pp and the giant quadrupole and octupole

rocnnance charantaricticre nf 2 bl

2. THE MODEL AND NUMERICAL DETAILS

The Hamiltonian of the quasiparticle-phonon nuclear model
includes the average field as the Saxon-Woods potential, the
pairing interaction and the effective residual and spin-
multipole forces. The radial dependence of these forces is
chosen in the form of R(r)=r (A is a multipole phonon mo-
mentum) or R(r) =gV/ar, which is a derivative of the ave-
rage field potential V(r). The model Hamiltonian in terms
of the creation and annihilation operators of quasiparticles
and phonons is given in ref. /1,8/

We make calculations taking into account the quasiparticle-
phonon interaction. The excited state wave functions of
doubly even spherical nuclei are

¥ (M ={IR (v)Ql, 2 Jv v,
v (M) 1 (v)Qpy + "\ )‘1 l( )[QA,M:, Azugizl.m} 0
11142 2
m
where ¥y is the phonon vacuum wave function. For odd-A sphe-
rical nuclei the wave functions are = -~ = IR
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Here a]m and QA ; are the quasiparticle and phonon creation

operators. The wave functions (1) and (2) satisfy the norma-
lization condition

<YX IMY,@W> = 1.
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Using the variational principle we find the secular equation
for the energies 7,

F‘(r,” )=0

and the equations for the coefficients of the wave functions
(1) and (2). Their explicit form is given in refs.’/!17/ 1o
find the energies and coefficients of the wave functions (1)
and (2), one should solve very complicated systems of nonli-
near equations with large dimension. For the investigation
of highly excited states, it is reasonable to calculate the
corresponding strength functions 71617/ Let ®;, be the
amplitude of excitation of the state V(JM) 1n the nuclear
reaction. Then, instead of the values of |® nﬁ for each
state with energy n, we calculate the strength function

b(®,n)= X pln~-7, )|<I>JVI2 » pln-n )——1— a

v R (n—nv)2+‘4A2

The energy interval A defines the way of presentation of the
results of calculation. If excitation of the state ¥, (IM)
of doubly even nuclei proceeds mainly through the one phonon
components of the wave function (1), then /567

«(3)

Pp= TR GOy,
-1 (4)
LMo+ i=A) Oy 0,
b(®, n) = Lim{ -1 2 b,
" F‘(n+i-é—A)
where F(n+iE§A) is the determinant at complex energies,

and Mjj are the minors of this determinant. For instance,
for the EA transitions from the ground to the excited states
described by the wave function (1)

® 5 =<¥, [IMEDQY,, 1Y, >, (5)

where M(EJ) 1is the electromagnetic transition operator. The
strength functions for the one-quasiparticle components of
the wave function (3) are (see refs.”/1%)

CJ2 (=2 p(rp-n,,)Csz= ?l-lm-——-——l—i—- (6)

v F(p+i=-4A)

For numerical calculations we use the following parameters
of the quasiparticle-phonon nuclear model. The parameters
of the Saxon-Woods potential are given in ref.’/9/.The single-
particle energy levels, lying near the Fermi surface, obtained
with this potential are close to the experimental values. The
constants of the multipole and spin-multipole forces have
been determined from the experimental data on the energies
and electromagnetic transition probabilities as in refs./9:18/,
The ratio of the isoscalar and isovector constants in calcula—
tions with the radial dependence R(r)= dV/ar has been
fixed so as to describe the experimental energies of the
21 1level and isovector quadrupole resonance. We have used
the value A=0.2 MeV.

3. NEUTRON STRENGTH FUNCTIONS

If a neutron with orbital momentum f 1is captured by the
target with spin In,the neutron strength function is deter-
mined by

Sp =2 g@s ), €]
Ij ¢
1 .. .
where g(J) = A+ is the statistical weight,

Jj 221 + 121 +1)
Sp is the partlal strength function with the spin of com-

pound-nucleus equal to J =10+ ?+_% =10+ j in the channel j.
J
For the doubly even target I3=0 and J=j.Then ng has the
following form: . .
5, % Q) rd
spl=8/ = = —2 i1 cZmam, (8)
AE AE Ae 7

where uj; is the Bogolubov transformation coefficient equal
to unity for 208pyp, 3 [‘l is th? sum of reduced neutron widths
in the energy 1ntervaTAE and Fo is the single—particle
reduced neutron width in the form given in ref.’19/ for the
Saxon-Woods potential. In doubly even compound-nuclei one
should substitute C?(n) by the strength function b(®,n) for
the two-quasiparticle components /8/ Then in formula (4)

Ji .
¢‘ = % Ungs wnﬂ-nofolo where nlj are the quantum
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Fig.l. Plots of the sum of the reduced neutron widths for
the 8Pb+n resonances versus neutron energy,the points
are the experimental data’1%/, the solid line is the
calculation, a) for the s-wave resonances, b) for the

P -wave resonances, experimental plot for the weighted

sum withJ =1/2 and 3/2, calculation for the states with

J =1/2, ¢) for thed -wave resonances with J=5/2, d) for

the d -wave resonances with J=3/2.

numbers of signle-particle states, and l,//
the phonon amplitudes.

The s-,p- and d-wave neutron strength functions in the
reaction 298 py,, for the neutron energy of 0-900 keV have been
studied experlmentally in ref./19/ Substructures appear in the
energy dependence S[(’?) The experlmental and calculated
energy dependences of the sum of reduced neutron widths for
=0, 1, 2 in207pp are shown in fig.l. The strength function
Sy is given by the slope of the curve. The s -wave strength
function in 207Pb exhibits significant changes near 300 and
500 keV. The calculated values of 211 also change the
slope at these energies, but they are 1ess pronounced. The

ni’j, ﬂogolo are
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fragmentation of the subshells 4s 1/2 3Py, ,3d5/2 and 3dg /s in

the energy interval (0-900) keV above the neutron binding
energy B, is shown in fig.2. It is seen from this figure that
the strength distribution of these states has local maxima.
Just this substructure of Cz(n) manifests itself as the
change of slope in the sum of neutron reduced widths EF

. A similar situation occurs for the p—~ and d-wave resonan-
ces. It is seen from fig.l that the experimental p-wave
strength function changes considerably near 200 keV and
slightly near 700 keV. We have calculated the fragmentation
of the 3py/p subshells and have not calculated that of 4p,

The calculations taking into account the subshell 3p;,g cannot
reproduce completely the function %- 3, g(J)I‘l?V1 . However,

the energy dependence -—1—2 2! for the 3p resonances 1is
P 3 “viov 1/2




Table 1

Experimental and calculated values of the strength
functions Sy in 208,207py 4 n

Compound Partial Sl'104
nucleus wave
exp. calc.

84/0 1.06 0.8

207Pb dg/g 1.81 2.4

d 1.24 1.1
5/2

0.32 0.2

208Pb 51/2 1.4 1.1

d 2.8 2.0

similar to the behaviour of the experimental weighted sum of
reduced neutron widths for the p -resonances with J=1/2
and 3/2. The calculations give less pronounced change of

Sf(J==1/2) near 300 and 700 keV in comparison with the

experimental data for J—l/2 and 3/2. There is a change in
an d wavc DLLC[IELI[ .Lull\_l- LUllD inedir “'UU l\t:V . L‘HC \.;'lldllst: lll

slope of 2I'j 02 versus neutron energy for the dg,s resonan-
ces is stronger than for the dgse resonances. The calcula-

tions reproduce the experimental data qualitatively, that
is seen from fig.2. The calculated sum of zrg2 for the

J"=3/2% states is above the experimental one at the neutron

energies E;>400 keV. :

The experlmentally determined in ref.”!% values of the
average strength functions 8¢ in the interval E_ =0-900 keV
and the calculated values are given in table 1. Our calcula-

tions give a fairly good description of the experimental data

including the absolute values of the neutron strength func-
tions without a special fitting of the parameters.

The 297Pb+n reaction has been studied in ref.”% in the
energy interval 0-500 keV. Substructures have been observed
also in the neutron strfngth functions. The available expe-
rimental data for EF for f=0,2 and the results of our
calculations are glven in fig.3. The change in the s-wave
strength function near 450 keV (i.e., change in slope of
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Fig.3. Plots of the sum of reduced neutron widths for
the TPb+n resonances a) s -wave resonances with J7=1",
d) d-wave resonances with J7 =1, ¢) d -wave resonances
with J7=2", d) d-wave resonances with J7=3" the
points are the experimental data 719/, the solid lines are
our calculations.
EFOO versus n ) for the 1~ resonances has been observed.

The calculated energy dependence of EFn also changes but not
so abruptly. There are also indications to-the substructures
in the d-wave neutron scattering 710/, The calculatlons indi-
cate a sharp, as in the experiment, change of 2r‘ near

250 keV for the 1~ resonances. Our values of ZF for the
resonances formed by dg,, neutrons are much hlgher that the

experimental data. In the channel with J" =27 and 3~ the
strength functions S{ also change near 300 and 400 keV.
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structures in the fragmentatlon of the correspondlng states.
In 298Pb the s-wave strength function is defined by the frag-
mentation of the two-quasiparticle states 8Py /0 145, ), and

the d-wave strength functions by the fragmentation of the
states {3py o ,3d3,0}and {8py 5 , 34,5} In the strength distribu-
tion of these states there are local maxima at the energy

above B .As an example fig.4 shows the strength functions
b(d, ) calculated with the wave function (1) and the strength
distribution over the roots of the RPA equations for the two-
quasiparticle states {8p,,5,3dg/5).92% of strength of this state

is concentrated on one level with an energy of 6.9 MeV, and
the rest part is distributied over three states. The quasi-
particle phonon interaction causes a strong fragmentation
of this state. As a result there is a local maximum in the
{3p;,,,3dy,, } strength distribution at n=7.45 MeV, which ap-

pears in the energy dependence of EI’OZ . There are similar

substructures in the sl,zandds,2 channels The appearance of
substructures in the two—qu331part1c1e state strength dis-
tributions in2%%pbat 7~7.5 MeV is due to a strong coupling
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of these states with the two-phonon states {21 e 37] ahd
4% e 37} with the calculated energies 7.32 MeV and 7.48MeV,
respectively.

The calculated and experimental neutron strength functions
for the compound-nucleus 208pp 4re glven in table 1. Ignoring
the possible effects of substructure in ref. 107 there has
been obtained the total d-wave strength function between
180-480 keV as Sy ~2.8.1074% Our calculations by formula (5-1)
give 85=2.10"%for the energy interval 200-500 keV. If the
averaging is performed over the interval (0-800) keV, we get
S2 =1,4-10"% We find So=1,1.10"% and the experimental value
is Sg =1.4-10"%, if substructure is ignored. The difference
between the experimental and theoretical values of the strength
functions for ds/zln 207,208 py, can be diminished by changing

the parameters of the Saxon-Woods potential.

4. GIANT QUADRUPOLE AND OCTUPOLE RESONANCES IN 2%8pb

Our RPA calculations show that the most part of strength
of the giant isoscalar quadrupole resonance is concentrated
on one collective level, For the radial dependence of the
multipole forces R(f)=r the resonance energy is 9.2 MeV
and 76.37 of the isoscalar energy welghted sum rule (EWSR)

ie avhauctod Wo hawe caoloulared BUCD a5 - rof /07 ot
............ caLcul ca a2 1o Tio. [+Sciivy

the uniform distribution for <r2)‘ 2 > g.s. at Rg=1. 2Af>/3 fm.
For the radial dependence R(r)=dV/or the GDR energy 1is
10.1 MeV and EWSR is exhausted by 727. It should be noted
that the calculations of the states of other multipolarities
with both types of the radial dependence R() are very
similar.

The E2 strength functions calculated with the wave fun-
ction (1) are shown in fig.5. The isoscalar quadrupole re-
sonance strength is fragmented in the interval (8-11) MeV,
in the calculations with R(r) =dV/dr this fragmentation
being more strong. The results of calculation of the GDR de-
pend on the radial form of the quadrupole-quadrupole forces.
In the case of R()=dV/ar for the E2 strength centroid
energy is E; =9.5 MeV, and the isoscalar EWSR is exhausted by
66%. The substructures are observed near 8.8, 9.5, 10.4 and
10.8 MeV. The calculations of ref. glveEIx-ll 2 MeV
and the EWSR is exhausted by 727. The experimental papers
on excitation of the isoscalar quadrupole resonance in the
(a, a’) and (d4,d’) reactions in 208 py, give for E =10.5-
10.9 MeV, and the EWSR is exhausted by (60-80)7. A large number
of 2% states in the excitation energy interval of 8-12 MeV
has been observed in the electron scattering from 208 py/14/,



Fig.5. E2 strength functions in
lb(Ez,'l)ezfm"/MeV 208Pp the dashed curve is the -
calculation with R(@)=r? the
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They observed a rather strong fragmentation of strength with
individual centers of gravity around E;~8.9, 10.2, 10.6 and
perhaps 11.2 MeV. The experimental data on the fragmentation
of E2 strength is qualitatively similar to our calculations
with R(r) = dV/or. However, the experimentally measured
strength exhausts only (29 lé)% of the EWSR. The calculations

performed in this paper in the frame of the 1p-1h +2p-2h
TDA employing the MSI-interaction’?!/ giveE =9.6 MeV and

the EWSR is exhausted by 307. About 457 of the strength is
shifted up to excitation energies between 12 and 20 MeV where
it rests in many weakly excited states. Neither our calcula-
tions nor the calculations of refs./20:22/ taking into account
the 2p-2h configurations give such a strong fragmentation of
the E2 strength. Our calculations of the isoscalar GDR give
the result;&g;imilar to those obtained in "20/.

In ref. the distribution of the quadrupole isoscalar
stre%Fth is measured in the energy interval of (4-8.17) MeV
in #98Pp, The sum of reduced E2 transition probabilities
% B(E2) =480 e?fm* has been obtained for the states lying
below the neutron binding energy without taking into account
the 2% level. Our calculations with R() =r* give
3B(E2) =900 e? fm4, and with R(r)=9V/dr we get IB(E2) =
=465 e® fm4% A group of states with noticeable B(E2) -values
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Table 2

Distribution of the octupole strength in 208py,

E, MeV EWSRZ
Exp. Calc, Exp. Calc.
37 2.61 2.4 20 21.3
4.7 4.78 1.5 0.93
4.96 4.99 1.6 0.3
LEOR 5 34 5.33 2.5 2.61
5.58 5.76 7.1 3.32
HEOR 17.5 17.4 60 58.3

at the energies (7.8-8.2) MeV is also observed experimental-
ly. It has been obtained /48/ that for them 3 B(E2) =54le2fm4.
Our calculations indicate also a certain concentration of the
E2 strength in this interval. We obtain  $B(E2) =410 eZfm4
in the calculations with R(r)=r>‘ and IB(E2) =240 e®fm4
with R()=aV/ar. -

FOor the 1sovector quadrupole resonance we get Ey=21.3 MeV
and the EWSR is exhausted by 70%. The experiment/18/ gives
E ,=21.5 MeV and the EWSR is exhausted by 80%.

The experimental data have recently been obtained from
the a-particle scattering from 208pp for the low-lying
octupole resonance /1 (LEOR) and high-lying isoscalar octu-
pole resonance’/!%/ (HEOR). Four 3~ levels have been observed
in the energy interval (4.5-5.7) MeV. The experimental data
and the results of our calculations for the octupole strength
distribution in?°®py are shown in table 2. The calculations
for the LEOR give a good agreement with experiment for the
level energies, but the EWSR is exchausted by 1.8 times as
less as in experiment. The results of our calculations for
the HEOR are in good agreement with the experimental data /!9
In the deuteron scattering it has been obtained’/!?/ that the
HEOR is at E, =17.8 MeV and the EWSR is exhausted by 127.

The latter contradicts the data of paper 718/ and our calcula-
tions,

CONCLUSION
So, within the quasiparticle-phonon nuclear model one can
correctly describe the neutron-strength-function energy de-
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