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I. INTRODUCTION

The problem of the relativistic generalization of the Fad-
deev equations emerged immediately after the appearance of
the method of the integral three-body equations’!/. The gene-
ral form of such equations and references to many original
papers can be found, e.g., in refs.”?3/ However, a detailed
analysis of the relativistic three-body equations including
the effects of particle absorption and emission has only re-
cently been initiated /8,107 iy connection with the studies
of pion scattering on a deuteron at low and medium energies,
i.e., in the case where the kinetic energy of the incident
pion is below the production threshold of the second pion.

At present this problem is intensively investigated both theo-
retically and experimentally since it can shed light on many
aspects of Pion-nuclear, pion—nucleon and nucleon-nucleon in-
teractions /3117,

The first attempt to take into account the effect of true
pion absorpticn in the elastic collision problem based on the
nonrelativistic three-body equation was made in ref.””", by
using the model of the bound #N state in the P;; wave. The
consistent formulation of the scattering problem including
pion absorption on the basis of the three-body equations was
given in refs. 56/ in which the effective interaction Hamil-
tonians of the aNN system, with an arbitrary number of par-—
ticles in intermediate states, were constructed using the
method of Feshbach—-Okubo projection operators/lz/and the pr
lem of overcounting of pions in similar equations has been
solved. Analogous three-body equations constructed with noi
relativistic reduction techniques and Taylor”s graphical
method’ 13/ have been obtained in ref.’?/ and employed to cal
culate the md scattering reaction in the (3.3) resonance
region. In ref.”’8 in constructing the three-body equations
to describe the 7d gcattering processes, the coupling of the
#NN channel to the NN and #w#zNNchannels was explicitly taken
into account on the basis of the pion-nucleon Hamiltonian
used in the Chew-Low theory and the role of disconnected diag-
rams that arise from including the three-body forces in equa-
tions for the sNN system has been explored. The most general
and convenient form o. the relativistic three-body equations
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for the #NN system with particle absorption and production
was derived, on the basis of generalized many-body Bethe-—
Salpeter equations of the relativistic field theory’!%, in
papers /9107, In these equations, in addition to including the
true pion absorption, there have been obtained the coupled
sets of equations for the amplitudes of the NN-2NN and #»d-#NN
channels and all the diagrams necessary for preserving two-
body and three-body unitarity. In addition, in ref.’? it

has been demonstrated that such equations are equivalent to
the equations given in ref.’?®, which were obtained using the
method of projection operators of Feshbach~Okubo. We note

that all the above three-body equations were solved numerical-
ly by using the separable or isobar models of two-particle
interactions, which does not allow one to separate the contri-
butions coming from the pole and non-singular parts of the
two-particle ‘t-matrices to the channel amplitudes of interest.
The problem of the separate inclusion of the pole and non-
singular terms of the two-body t-matrices or the appropriate
Green functions incorporated in the non-relativistic three-
body equations was investigated in refs./!%18/ guch studies,
however, are very complicated because of the necessity to
solve integral equations with two variables. The relativistic
quantum field theory offers a different possibility of singl-
ing out the main singularities of the three-body equations.
This possibility consists of describing, through the single-
particle local field, a composite particle (deuteron or A iso-
bar in our case), as well as other "elementary" particles
(nucleons and a pion). As a result of such a treatment of the
deuteron and the A isobar, the term describing the interme-
diate transition into the single-particle deuteron, A-isobar
or nucleon state, i.e., the pole term of Green”s two-body func
tion, is separated from the nucleon-nucleon and pion-nucleoh
complete Green function. As will be demonstrated below, this
separation of single-particle intermediate states provides the
possibility of calculating individually contributions coming
from the pole and non-pole terms of the two-body Green func—
tion into the amplitudes of the #nd and NN scattering proces-
ses in question.

The present paper consists of two parts. The first one de-
als with the formal derivation of relativistic two-body and
three-body eqiations. The potentials of these equations are
written down in a form convenient for further use and the re-
normalization of multiparticle propagators has been carried
out. In the second part, the three-body equations derived are
applied to the problem of the #NN interaction'with pion ab-
sorption and emission included. The final equations take into
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account the three-body forces completely; in addition, the
possibility of incorporating the singular terms of three-body
potentials is proposed which does not require an increase
in the dimensionality of the integral equations. In other
words, in contrast to ref. /, there is no need in introducing
auxiliary and non-observable amplitudes for the purpose of
regularizing the iteration series of the set of the three-bo-
dy equations. In the set of equations derived a certain appro-
ximation leads, in the (3.3) resonance region, to singling

out the subsystem of relativistic two-body equations, which
permits the calculation in a unified manner of characteris-
tics of the =d, NN and NA interactions by using the vertex
functions of the NN-~d, NmA and Nv-N particles. A method
of constructing the vertex function of the NN-d or A-N# par-—
ticles is suggested. This method is based on the previously
obtained formal relations between the one-body and two-body
Green functions.

2. GENERAL RELATIONS

We shall proceed from the existence of the relativistic
many-body Green function 7, involving n particles in the
initial state and m particles in the final state. In the re-
lativistic quantum field theory one can take for such func-
tions the following expression

i + + +
T = <OITCY, (W (Xt (X Wg (9) il (7, D10>, (1)

where T denotes the time ordering of the ¢, (x,) and v, (x5)
single-particle local fields of the i-th and j-th dréssed
particles (i=12,...,m, j=12,..,n0) and [0> is the state vector
of the physical vacuum.

Furthermore, taking into account the fact that the functions
Tmn describe all possible processes n-m with infinite mul-
tiplicity of k -particle intermediate states, we present this
function as a sum of the same Green functions over all k -par-
ticle intermediate states, i.e.,

Ton = Omn Gp + Gmi ok 7k (2a)
=amn Gn+ Ek " mk }{kn G (2b)

1 m=n, . .
where an={0 ménls the known Kronecker symbol, G, 1s Green's

function for m free particles, which can be defined as the
product of the Feynman propagators Ay (i) of particles i=1,..m.
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gfﬁ_\‘_ Fig.!. The simplest vertex func-—
N =y : t%ons Hoy (a) and }(32 (b) in
I - pion—-nucleon -interactions.
.
N ey N
N N

From relations (2a,b) it is seen that }(mk describes the
particle .interactions preset by the original Hamiltonians or
Lagrangians and leading to the transition k-m. In terms of
the graphical diagram method of Feynman }{km is describable
by simplest vertex diagrams, of both connected and discon-
nected type, with Kk —incoming and m-outcoming lines. For
example, Fig.la shows the vertex diagram aN- N(H )X whereas
the 51mplest disconnected vertex diagram nNN—NN(ﬁ
given in Fig.1b. In both cases the vertex functlons are deter—
mined from the original Hamiltonians of the #N interactions,
for example, for Hyy=fy,r the Hamiltonian H; = fy,rié.
If we incorporate other reducible diagrams into an ,then,
according to relations (2a,b), these diagrams will arise re-
peatedly in calculating the Green function 7, and this is
eliminated from the beginning.

Equation (2a) can be presented in a more compact form if
one explicitly singles out one-particle and two-particle sta-
tes and includes the remaining many-particle states in the

"effective potentials" we ., i.e.,
r»~5 p:Gy + G W2 r L G WE.
22 22 221 12 2%og” Te (3a)
o G . wl P)
12 1 Wigrryge+ GWig 7997 (3b)
1'21. = G2W21 1 + G2W22'r2’1 ’ (43)
re =8, G, +G WSt .G W,
11 171 Y1 17 M1 Tyt Sy NseTey . (4b)

where primes at subscripts | and 2 denote different one-par-
ticle and two-particle states, and here and below is supposed
a summation of all corresponding quantim numbers and variables
by idgnFical indices of two meighbouring expressions; the W%m
quantities are given by the following expressions

2 2 -1

P = o +k>22 E§2 Hoe &7 70 Mgy min =12 (5a)
2 -

A%)yp =8 Gel - Xy k,f =34,.... (5b)

The superscript over the W%u‘ effective potentials means that
the Feynman diagrams describing these functions in interme-
diate states include more than two particles, that is they
can be regarded as two—hody irreducible diagrams.

In calculating Green”s functions r_ it is more comveni-
ent to use, instead of Green’s functions G, for n non-inter-
acting particles, the renormalized propagators §,,which can

be expressed as follows

Gn = Q Ay @ (6a)
=CGp+ G Fy G,
where " @“

Ap @ =<0IT@, ), (D105 =G O =ry O (6b)

is the Feynman propagator of the i —-th dressed particle, F =

n
= I f @, f,0=1[0" (D]"l-{A (i)]"1 is the self-energy part
j=1 1 1 F F .

of the propagator, well known in the quantum field theory.

Clearly this substitution of the propagators will lead to
changes in the definitions of function mk Since we have
included part of the reducible diagrams in the § =~ functions.
We impose the condition that the forms of eqs. (2a,b) and the
function should not change, i.e.,

"mn = amn gn + % gmhmkrkn : (7)
Comparing relations (7) and (2a) and using formula (6b) one
can easily see that K, =h,+8 ,F,.In other words, if we
succeed in calculating the self-energy part of the propagators
f1 (i) we shall be able to construct function hpg in rela-
tions (7).

Then, from relations (7) it is possible to derive sets of
equations for Green’s functions 7, which would be similar
to egs. (3a,b), (4a,b) and include renormalized propagators
Qn In place of Wgn , we shall have new functions wmn,whlch
are defined by the same formulas (5a,b), where Hop and G
are substituted by functions h and g . In this case eqs
(4a,b) will assume the following form

91 = S5 ¥ Wy @ + gz 22’ Ty » (8a)
_ 2 2
0 = § w8+ G Wi oy (8b)

The condition (8b) is the consequence of our choice of qlgsgl
as initial "free" propagators in relations (7). It means that

I
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we have already included in the propagator all possible off-
shell corrections incorporated in the self-energy part f,.
Therefore, it is legitimate to assume all the combinations

of kind (8b) or 8, f1 G4 to be equal to zero although, cle-
a?ly,f1£ 0. We shall see below that the equalities (8a,b)
will prove useful for the further analysis of the three-body
equations. In particular, condition (8b) will enable us to
write in a more compact form the equations for the »NN sys—
tem with the three-body forces included.

In order to derive a set of equations for three interacting
particles we single out in relations (7) the one-, two- and
three-particle states from those involving a large number of
pgrticles by including the latter into the effective poten—
tials vzgn (mn =1,2,3 which will be presented by the sum
of all three-body irreducible Feynman diagrams. For the ¢
(m,n=1,238 Green functions of interest we have m

- ) 3
"mg = 8m2 ’(12 + ’G}m > Wmkrk2 ’ (9)
"ms = o3 B3+ Sy >k: Yk kg (10)
where
8
w = h 8,1
mn mn +k§32§3 hmk (@) ]kf th ’ (11a)
3 @ —1
(A )kf =8ke gf —hkfv f,k=4,5.,. . (]]b)

The set of eqs. (9) and (10) describes the three-particle
interaction with particle absorption and emission included in
the framework of the quantum field theory. As far as we know,
such equations were first derived in ref.’1%/ on the basis of
the analysis of the Feynman diagrams. Subsequently many auth-
ors, in different formulations and approximations (refs/2,19,204
obtained the three-body equations including particle absorp-
tion and emission. The most common methods for deriving such
equations are that involving the analysis of the Feynman diag-
rams by using the first. (or last) cut lemma ‘13’ and the method
of constructing the effective Hamiltonian by the Feshbach-Oku-
bo projection operators/12/ In refs./5.6,9,10/ these methods
have just been used to obtain the three-body equations for
the 7NN system of particles. One can easily see that if we
take for Green”s functions 7p,; the two-time (quasipotential)

Green function /21 by assuming 7, ~r | ¥017'1 or Green”s
ma =Tmn Loy

function 7,  constructed with the effective Hamiltonians for
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interaction of three particles‘a ﬁfé?;ed in refs./5®9%/ oy
the functions rpy from refs. '™ ' then, despite the
fact that we shall have different prescriptions for construct-
ing the functions h ,'Q[n and an ,the final structure of
the two-body and three-body .equations (3), (4), (9) and (10)
does not change. For concreteness, we recall that in the quan-
tum field theory Green”s functions r and @n) are derived
by formulas (1) and (6a). :
In the present paper we shall use the quantum-mechanical
description of a composite particle through the one-particle
local field. For example, according to refs. A7 , one can
introduce for deuteron the annihilation operator a, (P4,a gt)
which, at t- * o, behaves exactly in the .same manner as the
annihilation operator for one particle in asymptotic states
and is constructed by means of the deuteron wave function, and
the time ordering of one-nucleon local fields. In this treat-
ment, in describing the »NN system there will arise Green's
functions rg; and 743 as the functions of the intermediate
transition to the one-particle deuteron state, whereas the
7d  and NA scattering processes will be regarded as the, 2-2
process, rather than 3-3, as was accepted in refs, /8107,

mn

3. EQUATIONS FOR COUPLED #NN, #d , NN , NA SYSTEMS

We apply the three-body equations (9) and (10) to describe
the processes occurring in the #NN system of particles. Ac-
cording to the generally accepted formulation of composite
particles, at low and medium energies (T ;<300 MeV) the fol-
lowing two-particle states 2= {zd} NN, NA| and only
one three-particle state 3=sNN will explicitly occur in the
initial and final states. Below the two-particle states indi-
cated will be denoted by Greek letters gz,v,0=1,2,3={rd,NN,NA};
the three-particle state is denoted by O and finally the pos-—
sible single-particle state of the deuteron will be denoted
by letter d. To simplify the further calculation we shall be-
low use the renormalized §_ , wg, functions and assume that
all the h = functions entering into eqs. (7) and (11a,b) are
equal to zero if the particle number m differs from. n by more
than unity, i.e.,

hpp =0 if  |m-n]>1. (12)

This assumption, according to the definition of functions “Q;,
gives

8 _wf. - 2t _ o3 .
wo - _wlé, 0 w132 w132 h12

2 = = = =

Wy = Wgy =Dy Vis 31 0. (13)
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After that, the sets of eqs. (9) and (10) for the processes
of the #NN system of interest can be written down as follows

7'00' =800l §0+ ‘G}OKOO” rO”O” . (14)
T =Spdp + Gy IRy ro + Guud oy -
° e (15a)
= G7IV+ E Gm woo Tov >
= ( 3 ( 3
T = go? Yon T ¥ 90 Yoor Ton o (15b)
where QOEQ NN’QV are Green”s functions for the non-interac-—
ting partic’fes of the »NN and v systems (sd, NN, NA),
g )
Knv=wr;u +hT)d gdhdv . (16a)
G, =677V S, +97l §KW’GW. (16b)
- w3 3 3 _ .3
Koo'— w00'+7,2.';W07)GanV0' =Woort Voo (17a)

h,y and hg, are the vertex functions of the v pair of par—
ticles and deuteron; 3,6 , wso and a)gol are the potential
functions which, according to (1la), have not less than four
particles in intermediate states between the corresponding
combinations of particles. As at the beginning we took into
account only the », N, A and d particles, by analogy with
ref. /% it is possible to include intd\sh\e w® “potentials the
exchange interactions involving any number of heavy p,o,... me-
sons, NN pairs, etc..

To derive the final form of the three-body relativistic
equations with particle absorption and emission included, it
is important to take into account the disconnected parts of
the w3, | wg and w3 , potentials so that the iteration se-
ries of similar equations should not contain the products of
the two neighbouring disconnected diagrams of the same type.
Let us denote the connected and disconnected parts of the w®
potentials by w©C and wD,respectively. From Figs.2,3 and 4
we see that if W%V and WBO (see Fig.2) contain only one or
two terms, thenwD , incorporates not only the terms describ-
ing the nucleon-nucleon Vyy (Fig.3a) and pion-nucleon Vyy
(Fig.3b,c) interactions in the three-body NN space, but al-
so the disconnected parts (Fig.4a) vg; and VS/28 (Fig.4b) of the
three-body interactions, considered in ref.’8/. Note that the
v and vy potentials are describable by the sum of all pos-
sihle two—p’grticle irreducible diagrams, in the presence of

8
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Fig.2. The disconnected diag- d)
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Fig.3. The disconnected parts
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a third, non-interacting particle (see Fig.3), i.e., vyyand
v,y are the W;z’ -potentials (5a2) in the three-body NN

space. For example, for the v potential, if we express .
wZ_. (NN),by using a set of egs. (9), through potentials Wi
(r§,2n=1,2,3), we obtain

w2 , -1 18
Yo = W, NN @17, (18a)
. A . -1
= [Wz?z’ (NN) + WI\?N.O g%o’ .Wog’, wy AL @175, (18b)
3 _ ' X 3 3
800 %007 S0 * G Yoo Eoegr (19)

Let us consider the problem of including the three-body forces
wC , , v andv, . To do so we introduce the following com-
binations of potentials

c
Vv, = VNt W07 s (20a)
Vy = Van, Vst (20b)
Vg = VaNg+t Vs2 . (20c¢)
-9



After that formula (17a) can be rewritten in the following
form

Koo’=i=1 i * Vo - (17b)

Using the procedure of constructing the three-body equations
for transition matrices’??/ we obtain that in dividing the Koo+
potential into four parts according to eq. (17b) equations
(14) will be equivalent to the following set of equations

21 8o , .
0. 4=@
0= 9 * jflﬁu tj'@oojo’ Y 1580000 (21a)

3
0 .t .
oo’ J-,_ZI i S O5- - (21b)
where 3;; =1-8;; ;and the 0,, transition matrices are connected
with Green”s functions r in the following way

00~
T00° = Sab g, +gaoabg b a,b=0, i=0,1,2,3 (22)
y = 2 @ = @ &} Q
£ a '10+"O Vaga '(’0+'L’0$a'(10' (23

In this case, according to the definition of the Vyy, v,y and
Vj potentials, Green’s function g, contains only the non-
pole part of the complete nucleon-nucleon (j=1) or pion-nucle-~
on (j=2,3) Green s functions.

In fact, from eqs. (18a), (20a), and (23) for the 8y func-
tion we have

o= 2 “ v?' A7 c v
g1= 85y (NNALU ¢ g5, NNAL WS, 5, (24)

where Green”s function ggg, is determined by means of the
potential, i.e.,

2 =8 © @ 2 2

- < + w or rrey ”
Bon™ 027 Fg T Fp Vo By (25)
and corresponds to the discontinuous part of the spectrum of
complete two-body Green’s functionr__.. This can be easily
seen if eqs. (3a,b), (4a,b) and (Saﬁ)?) are used to present
Green”s function T o in the following form

=8 © @ w2
To27 = % §2 O Ny e Y B Ve e - (26a)
_ o2 2
T Bgpr * Bgpe hz”x 12”7’ (26b)
e 3
Bogr * Xy £’1 X1g (26c)
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1 .
where X21="2‘1"’§""'-In a similar manner one can demonstrate that
1

functions gy and g4 contain the non-pole partAg222,(nN) of
complete pion-nucleon Green”s function rg,-(aN).

Now, combining eqs. (14) and (15a,b) one can express
Green”s functions r and g, through function 7y,- and using
relation (22) we obtain

. 3

Tow = E giOm 8 0% GW , (27a)
3 3

T.,’V = GT[I/ +0§’Gmwa° (g.o500»+g0000’30')W0,0,G0,V . (27b)

After that, on the basis of equations (2la,b) and relations
(27a,b) and using some algebraic transformations it is pos-—
sible to deduce (see Appendix 1) the following equations for
the Uy and Uy matrices of the transition from the v  two-
particle state to the two-particle 7 or three-particle 0=#NN
state, namely,

s - 4
] 3
Uw = w0V+ §WO7I 'G;T)Uﬂl’ +j§2 5” l:j QOU_]'V . (28a)
3
8
Upy=Mp, + 2 Mm,@o Uow *+ Wyo g Oj§1ti ,"OUju . (28b)
- -

where Uy, and Up, transition matrices are connected with

Green”s functions T ov and i~ in the following way
"o, = 8,0, 8, (29a)
r =86 @ 4+Q U § . (29b)
™ w '@n ‘(’n Sy

The potentials M entering into the set of equations (28a,b),
in addition to K (16a), contain also the single-particle
exchange interaction Z between the % and v pairs of part~D
ic%es (see Fig.S? and the (.iisconnected diagrams [W:O QOWO?/]
which are shown in Fig.6, i.e.,

v

M 3 3

w = K’IV + wno‘ o You (30a)
3 3 D
=Ky, v 2, vlwh Gowld 1P (30b)
In Appendix 2 it is demonstrated that the disconnected ‘
parts M of the kernel of eq. (28a,b), as well as the v s

vg, Ppotentials entering into V,, Vg (20b,c), do not lead
to the appearance of divergent terms in the iteration series
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of eq. (28a,b). In this case, essential are relations (8b)
which, after taking into account conditions (12) and (13),
will take the -following form

deuteron and A isobar were regarded as single-particle states.

On the one hand, this leads to the appearance of new two-par-

ticle amplitudes and potentials of the interaction of the =d ,

@ h Y =0, : (31a) NN and NA particles. In particular, instead of one 3-2 matrix
' of the #d-NN transition and three three-particle amplitudes

o
; ° . ;x 3-3 used in refs.’®1% to describe the =d scattering proces—
thig gzgfhz,l,?}i, = 0. (31b) 4 ses, in the set of eqs. (28a,b) three two-particle amplitudes
wd
1;,' are present which describe the processes nd» NN , and three
Panl @ MRS o' NA
——X«MMM— o U,, transition matrices each of which corresponds to a tran-
E . sition from the two-particle state v to the three-particle
—_—— - D \ . state 7NN =0. Moreover, in our case there have arisen addi-
tional potentials of interaction between the particle pair NA
- QWYAA A and the off-mass shell potential of the intermediate transi-
\ A - tion from the NN state to the deuteron single-particle state
A\ ' \ : . (see the second term of the potential (16a)). On the other
No—me \;- : : hand, the treatment of the deuteron and the A isobar as
single-particle states leads to the fact that in the (3.3)
. - . resonance region it becomes possible to make the following
SMAMAMARAMALD ————— e L g ' approximation. Omitting the three-body forces and neglecting
/ 1 the non-pole term of pion-nucleon Green”s function, i.e., as-
A Fig.6. Th.e disconnected suming gg= g3=0, we obtain the following two-body equations
—— i
M- parts of the My, potentl— \ Up =~Uy (1) =My + 2 my QUU(S) (32)
Fig.5.0ne-particle exchange poten— al entering into w,’(,@Ow : 4
tials. (30a,b). ; where
mr]u =MT]V+ wn?(’) g0':].g0 W03V ' (33a)
By using relations (3la,b) one can demonstrate that all the
diagrams leading to the renormalization of the already renor- . ) . .
malized single-particle propagators cancel out in calculating =W +hog G, @hg, W0 81 Vo (33b)
the iteration series for the Uy, 'and Uy, transition matrices.
Therefore, the disconnected dlagrams enterlng into M (30a,b) and Green’s function g; connected with the t-matrix by rela-
and those occurrlng due to potentials v and vge in the tion (23) is defined by formula (24).
iteration series of equations (28a,b) can be omitted from the , Potentials M,, and m,, differ from the complete two-par-
beginning. : ) g . 4. NN "" ticle potential, e.g., from NN potential (when p=v=2) in
The three-particle equations (28a,b) describing the =d , N ]
and NA scattelr)lng procecslses including pion absorptlon and emis-— 3‘] that in M,,.(NN) the term I,,.» (NN)= WNg 0 QO wg'o, gg'o, WC?NN
sion fully take into account the Cont‘rlbutlons coming from the m:) entering into the potential W§2' (NN) (18a,b) is absent and

three-body forces WO%,, Vgy o ¥ W and WC It is no-
teworthy that, in contrast to ref. /8/we Sld not nZed to in-
troduce any auxiliary transition matrices for the purpose of
including the disconnected potentials vg, and vgy.The main
difference between equations (28a,b) and. 31m11ar equatlons from
refs. 7910/ 1ies in the fact that in deriving eq. (28a,b) the

in m_, A(NN) thlS term is substituted by its part wy NNgw03NN
i We note that the mlCl’OSCOplC calculation of the two %0 y nuc- '
) leon-nucleon potentlals w ¢ (NN) or vy (18a,b) is complica-
ted because the total inc u81on of all intermediate three-par-
ticle 0 =#NN states in these potentials requires taking into
account the term I,,.(NN) which contains three-particle Green's
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function g &),(19). Function g%orin turn contains, through
the potential yyy, also the function I,5- (NN),i.e., the const-
ruction of the complete nucleon-nucleon potential with all
three-particle #NN_ states included is a nqnlinear problem.

A similar conclusion concerning the vgy potentials can be ar-—
rived at if one takes into account the three-particle states
maN, this property being inherent in the corresponding Vyy
and V,y potentials from refs./587.910/ v  yhich seems to be
characteristic. of the potentials constructed in the quantum
field theory with an infinite number of degrees of freedom.

Equations (32) allow us to calculate in a unified manner
the two-body processes of #d , NN .and NA scattering on the
basis of the simplest vertex functions N-Nr, A-Ns and
d-NN. In calculating similar processes one can include also
the heavy meson contribution by including the W%V potentials
(16a) in the corresponding diagrams. Another difference of
eqs. (28a/b) and (30) from similar three-body equations from
refs.” ™ lies in the fact that in .deriving eqs. (28a,b)
and (30) we .did not use the separable model of the two-body
interactions for the NN potentials and this enables us in
calculating (30) to employ non-separable, microscopic poten-
tials NN and:NA, e.g., the NN and NA potentials constructed
e.g., in the one-boson exchange model.

In the low-energy region it is known that the contribution
from the A resonance is small and other partial waves of the
7N interactions are significant. Therefore, one should not
expect eqs. (30) to describe well the #d
To include the non-regonance partial waves of the #N interac-
tions in eqs. (28a,b) it is simplest to use the separable mo-
del of two-body interactions. In this case, if the two-term
separable model’23/ is employed for the resonance =N t-mat-
rices and the common single-term .separable model for the re-
maining t-matrices, then the final equations obtained from
eqs. (28a,b) will coincide with analogous equations from
refs./®1%, A difference will lie in the fact that it is not
difficult to include the separable potentials, vg; and Vsz/S/
by using eqs. (28a,b) and it is not necessary at all to use
the separable model of NN and N interactions to construct
the vertex functions d-NN and A-Nnm.

In the consistent microscopic calculation of kernels of
integral equations (28a,b) or (30) it is necessary to set the
simplest vertex functions hy, and h;, at least. In practice,
the situation however is different. Namely, it is commonly be-
lieved that the potentials of two-body interactions are set
(for example, by solving the inverse scattering problem or in
the one-boson exchange model for the NN interactions, etc.).
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and functions hg; and h,, should be found on the basis of these
potentials. Such a problem is substantiated by the circums-
tance that the vertex functions ¢-NN cannot be defined like
the vertex function N-#N from the known Lagrangians of nuc-
leon-pion system interactions since the deuteron state is for-
med on the basis of the NN-interactions and the vertex func-
tions &-NN should be constructed with the help of the given
NN potential.

In order to comstruct the functions hgy through the two-
body interaction potentials we make use of eq. (8a) which,
taking into account conditions (12) and (13), can be presen-
ted in the following form

L
S1

or explicitly, for the NN vertex function in the momentum
representation we have

d*qy dtqp
@mt (@)

-1
hgy = (§p Opp- "szz’)’z’x (34a)

h, ®;Py;Q) = (64 0, q)y ~my-3(p, ) x

(34b)

x8% (py ~ @y Npy ~m g~ (D)) ~w, 2 .0, a4, (4,0, Q) EL@ '
g1
where QI(Q)is the renormalized deuteron propagator; I 1is
the nucleon mass operator; p, q and@ denote the four-momen-
ta of individual nucleons and deuterons.

Then, bearing in mind the definition of the deuteron wave
function in the quantum field theory, the deuteron function
on mass shell Q2=ﬂn% and py +py=Q can be presented in the
following form

54 @ +py = Q¥ ;) =1y, (plpz:Q)é—(—é)-zx 21(PyPy1 Q). (35)

The two-body irreducible potential »®_, in eqs. (34a,b) can
be replaced by the complete two-particle potential Kopr =
= w§2,+l11 th 2 if the condition (31a) is employed. Then it
becomes clear that h,, is defined by the off-shell behaviour
of the potential wéz,, and on the mass and energy surface,
when Q2=m§ and Pi+Pp=q + Qp=Q, we have hzl(plpz;Q) =0
since the right-hand part of eqs. (34a,b) in this case is the
Bethe-Salpeter equation (or the Schrédinger equation, or a
quasipotential two-body equation) for the deuteron wave func-—
tion. Thus if we have the nucleon-nucleon potential W%2' pre-
set, eqs. (34a,b) permit the construction of the vertex func—
tion NN-d. In a similar manner one can construct the vertex

15



functions hgy and hyp of the A-Ns or N-Nw particle systems

through the corresponding potentials Wgz’

In conclusion the author expresses his deep gratitude to
T.I.Kopaleishvili for permanent interest in the present work
and numerous stimulating discussions. Thanks are also due to
I.V.Amirkhanov, V.B.Belyaev, M.Kh.Khankhasayev and A.A.Khela-
shvili for discussions and I.L.Bogolubsky and L.V.Pashkevich
for their help in preparing this manuscript.

APPENDIX 1

Let us follow the derivation of eqs. (28a,b) for the tran-
sition matrices Oy and Ogg-from eqs. (2la,b) for the auxilia-
ry matrices 7, and T - Using formulas (27a,b) and (29a,b)
defining the coupling between Green”s functions Top and 7

on the one hand, and the Oip » Og’0> U‘i and U matrlgzs,
on the other, from egs. (21a b) we obtain
~ P S 3 =
ginV§V=gi§0 8o Wy, G +g, ! 28”V . VQ +
e _ =t P p-1a)
3 w3 - ¢
+UW00 (gaUav gv+5w gv gw)
gT]UT]VQV+87’V QV_QU =§ vo aO gO(EVgUJVQ )
(A 1-1b)
where we have introduced new Green”s function
= 3 3
g171/~ Gn + 020 G %o0 80 Voo’ CGory (Ap1-2)

and used the known equalities following from the definition

of functions V., g, and t, (l7a,b), (20a,b) and (23), na-
mely
= . = 3 3
Vigi=t; 8o Vygg=tys 772 Yo CGm "o o080+ (Apl-3)

For further calculations we write in a more explicit form the
ty —matrix which will be sought in the following form

= 3 3
bo= 1’? Yo X Y0 (Apl-4)

Then, after using the explicit form of potential Vy from
equations for the ty “matrix we have

3
X =
w GT}V + X G W0_70 QO Wo,a")xa’v R

g,0

(Apl1-5a)
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XTF’:B”IVQV"LQWZ Mpo X gu s (Ap1-5b)
where the explicit form of potential M
mulas (16a) and (30a,b). Then, comblnlng eqs.
and (Apl-2) one can easily see that

is given by for-
(Ap1-5), (Apl-4)

i =6 o, (Apl-6a)

. ._1 3 ,

0 80 % oo O~ I Vg, 8 = O (Ap1-6b)
. g

% Gno Wtfo go E Qmwgogo . (Apl-6¢)

Substituting relations (Apl-6a,b,c) in eqs. (Apl-la,b) it is

easily to obtain eqs. (28a,b) sought.

APPENDIX 2

We consider the disconnected diagrams describing the ker-—
nels of the set of integral equations (28a,b) and occurring
in the calculation of the iteration series of these equations.
In addition to the disconnected parts wo3 and ty functions
shown in Figs.2a,b,c and 3a, the dlsconnected diagrams arise
also in calculatlng the ty, tg, M and Wuo (‘}Ot kernels
of integral equations (28a,b). From defining the scatterlng
to -matrix (20b) and (23) we have

Disc. ;

{tz } se = tTer + (1 + t”ng 0 ) V31 ’ (Ap2—]a)
3 Disc. ’

twyg Goto! =W, G {tﬂN1+ (1”an@0 g, b, (ap2-2a)
8 Disc. ;

twyy Sty ! o= go .t a”nN g 0)Vge b+ (Ap2-2b)

where the scattering t,y, matrix is constructed on the basis
of the potential vgn; (see Fig.3b) and the disconnected
parts wgol and w2002 of the w230 potential are shown in
Fig.2b. Analogous dlsconnectednesses arise in calculating

the w3 Goto 30@0 g and W10 (‘}Otlkernels of integral equa-
tions (28a, b) Therefore all the conclusions that we shall
make regarding the disconnectedness g].ven in (Ap2-2a,b) will
be valid for the remaining terms wyo@ot as well. Taking in-
to account that 2DO ~h, = th and Vgr ~ hagt _th,,Nl,
and according. to the definition og Green”s function g%a
= ,@2 +Q2t"N Q2 and following condition (31b) we have
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}Disc. - WDI

3
twao Soty 20 Joban, o (Ap2-3a)

3 Disec. D2
twao Gotg! = W20g0tnN2 . (Ap2-3b)
In exactly the same manner, using the conditions (31a,b) it
1s obtained that the Vs1 > Vg potentials shown in Fig.4
do not lead to additional disconnected diagrams in the itera-

tion series of eq. (28a,b). In particular,

Disc, ; -
e Gty =@+t Golvgy Sotay, +
(Ap2-4)

+(1+t’TN1 Gollvg; G o1+ t"Nzgo)vS:2 1=(l+t”N2§O)vSIQOt N

where in the second term of the first equality (Ap2-4) we
again used formula (31b). Both components of this equality are
shown in Fig.7, where we see that in eq. (Ap2-4) the term that
leads to the renormalization of the single-particle nucleon
propagator is equal to zero. It ig easy to deduce that the re-
maining disconnected terms in ty §0t3 and w_, g(ﬁj vanish in

calculation o t i i i ; Disc.
f the following lteratloninéé?., h2§0F3g0%} =0,

Disc. 3
[tsgotggotsl 8°20 and {w;z Qotjgoti&ji . and this
again 1s the consequence of the conditions (31a,b).

S
R S, -

Fig.7.The disconnected diagrams occurring in calculat-
ing t2§0t3. The #N scattering t-matrices and Green”s
functions gé%%nN) are indicated by oper and shaded

circles, respectively.

Disconnected diagrams appear also in the calculation of the
an kernels of the integral equation (28a,b) (see Fig.6), as
well as in the combination- wé% Qotj wi, of iteration
terms for the amplitude Up - However, substituting equation
(28a) into (28b) it is possible to demonstrate that these dis-
connected diagrams cancel
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-

3 )
: ' 3
UT]V ='M,7V+ E MWQUUW +Wn%g02 tjgo WOV +
’ = ) (Ap2-5)
. 3 . .
8@ %' LC 8 t 3 8, t Q.U
+ %o gOJ‘:lt] goélww G oUo+ o goj_z_1 190 2 fut SoUy

The disconnected diagrams in eq. (Ap2-5) occur in the follow-
ing expressions

Dise. D . D
[Mrp/ ! =8171/‘”170 QOWOV ’ (Ap2-6a)
8 .
S 38 ,Disc. D D
{ o 90151 t gOWOV} =611v Svj Yo So ty So Vov - (Ap2-6b)

After summing these disconnected terms, according to eq.(31b),
we see that they cancel. The same conclusion can be drawn
also in including the disconnected terms {WO% Q,7anlnis°in
the iteration series for the Uj, matrices, substituting eq.
(28b) into (28a) and using again formulae (Ap2-5) and (Ap2-
6a,b).
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Mauapapuaun A4, B4-82-306

K raopitin gungamnmx #NN-NN cuerom

Ha ocnopa omneanun  pastrpona u A usofaput n Bumo opHo-
HACTHYNOTO COCTONNUR nonydal oMM M3 DAPHAITOD DAIATHIMCTCKHX
ypapuonuit ann puauMoconsanimx vNN- i NN «cicToM. [penebpe-
ras » oBnactn /3,3/ posonanaa nanomecnoft YACTBIO MON-IyKNOHION
byuxkuum Ipitita, anTop ol TRPOXUACTHMMNG ypavlainin K cxerTeMe
YpaBHeHHE AN ANYXYACTHUMMN aMimiTyn napexonon mamuay d- NN-
u NA-xanamnamu,

PaGora pemomnuena b JlaBopaTopuit BuMUMCANTONbHON TOXHHKH
¥ aBTomMaTu3auuu OUSIH.

MpenpuHT 06BeAMHEHHOTO MHCTUTYTa ApcPHuX ucchoponanuft, [yBws 1982

Machavariani A.I. 14=p2-306

On the Theory of Coupled #NN-NN Systems

Proceeding from the description of the doutaron and
A isobar as a one-particle state, a version of rolativistic
equations for coupled »NN and NN systems is obtalned. It
is demonstrated that, if one neglects the non-pole term of
the pion-nucleon Green function in the (3.3) rosonance region,
the three-body equations reduce to a sat of cquations for the
two-body amplitudes of transitions batwoen tha nd , NN and
NA channels.

The investigation has been performed at the Laboratory
of Computing Techniquos and Automation, JINR.
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