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I . INTRODUCTION 

The problem of the relativistic generalization of the Fad­
deev equations emerged immediately after the appearance of 
the method of the integral three-body equationsllf.The gene­
ral form of such equations and references to many original 
papers can be found, e.g., in refs.12 •31 .However, a detailed 
analysis of the relativistic three-body equations including 
the effects of particle absorption and emission has only re­
cently been initiated 13 •101 in connection with the studies 
of pion scattering on a deuteron at low and medium energies, 
i.e., in the case where the kinetic energy of the incident 
pion is below the production threshold of the second pion. 
At present this problem is intensively investigated both theo­
retically and experimentally since it can shed light on many 
aspects of ~ion-nuclear, pion-nucleon and nucleon-nucleon in­
teractions 3·11 1 . 

The first attempt to take into account the effect of true 
pion absorption in the elastic collision problem based on the 

1 . . . h b d . d . f 141 b nonre at~v~st~c t ree- o y equat1on was rna e u1 re . , y 
using the model of the bound rrN state in the P 11 wave. The 
consistent formulation of the scattering problem including 
pion absorption on the basis of the three-body equations was 
given in refs. 15 •61 , in which the effective interaction Hamil­
tonians of the rrNN system, with an arbitrary number of par­
ticles in intermediate states, were constructed' using the 
method of Feshbach-Okubo projection operators 1121 and the pr 
lem of overcounting of pions in similar equations has been 
solved. Analogous three-body equations constructed with nor. 
relativistic reduction techniques and Taylor's graphical 
method 1131 have been obtained in ref / 71 and employed to cal 
culate the rrd scattering reaction in the (3.3) resonance 
region. In ref. /8!, in constructing the three-body equations 
to describe the rrd scattering processes, the coupling of the 
1rNN channel to the NN and ""NN channels was explicitly taken 
into account on the basis of the pion-nucleon Hamiltonian 
used in the Chew-Low theory and the role of disconnected diag­
rams that arise from including the three-body forces in equa­
tions for the 77NN system has been explored. The most ~eneral 
and convenient form o .: t:-.e relativistic tbree-body equations 
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for the "NN system with particle absorption and production 
was derived, on the basis of generalized many-body Bethe­
Salpeter equations of the relativistic field theory 113~ in 
papers 19 ,1.01. In these equations, in addition to including the 
true pion absorption, there have been obtained the coupled 
sets of equations for the amplitudes of the NN-"NN and JTd-rrNN 
channels and all the diagrams necessary for preservin~ two­
body and three-body unitarity. In addition, in ref . 19 1 it 
has been demonstrated that such equations are equiva.lent to 
the equations given in ref. 19a/, which were obtained using the 
method of projection operators of Feshbach-Okubo. We note 
that all the above three-body equations were solved numerical­
ly by using the separable or isobar models of two-particle 
interactions, which does not allow one to separate the contri­
butions coming from the pole and non-singular parts of the 
two-particle •t-matrices to the channel amplitudes of interest. 
The problem of the separate inclusion of the pole and non­
singular terms of the two-body t-matrices or the appropriate 
Green functions incorporated in the non-relativistic three­
body equations was investigated in refs .1 14· 161. Such studies, 
however, are very complicated because of the necessity to 
solve integral equations with two variables. The relativ~stic 
quantum field theory offers a different possibility of singl­
ing out the main singularities of the three-body equations. 
This possibility consists of describing, through the single­
particle local field, a composite particle (deuteron or A iso­
bar in our case), a's well as other "elementary" particles 
(nucleons and a pion). As a result of such a treatment of the 
deuteron and the A isobar, the term describiu"g the interme­
diate transition into the single-particle deuteron, A-isobar 
or nucleon state, i.e., the pole term of Green's two-body func 
tion, is separated from the nucleon-nucleon and pion-nucleon 
complete Green function. As will be demonstrated below, this 
separation of single-particle intermediate states provides the 
possibility of calculating individually contributions coming 
from the pole and non-pole terms of the two-body Green func­
tion into the amplitudes of the "d and NN scattering proces­
ses in question. 

The _present paper cons·ists of two parts. The first one de­
als with the formal derivation of relativistic two-body and 
three-body eqtfations. The potentials of these equations are 
written down in a form convenie.nt for further use and the re­
normalization of multiparticle propagators has been carried 
out. In the second part, the three-body equations derived are 
applied to the problem of the rrNN interaction'with pion ab­
sorption and emission included. The final equations take into 
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account the three-body forces completely; in addition, the 
possibility of incorporating the singular terms of three-body 

. 1 181 . d h. h d . . potent~a s ~s propose w ~c oes not requ~re an ~ncrease 
in the dimensionality of the integral equations. In other 

d . f 181 h . d . . d . wor s, ~n contrast to re . , t ere ~s no nee ~n ~ntro uc~ng 

auxiliary and non-observable amplitudes for the purpose of 
regularizing the iteration series of the set of the three-bo-­
dy equations. In the set of equations derived a certain appro­
ximation leads, in the (3.3) resonance region, to singling 
out the subsystem of relativistic two-body equations, which 
permits the calculation in a unified manner of characteris­
tics of the 11d, NN andNA interactions by using the vertex 
functions of the NN-d, Nrr-A and Nrr-N particles. A method 
of constructing the vertex function of the NN-d or A-Nrr par.­
ticles is suggested. This method is based on the previously 
obtained formal relations between the one-body and two-body 
Green functions. 

2. GENERAL RELATIONS 

We shall proceed from the existence of the relativistic 
many-body Green function rmn involving n particles in the 
initial stateftnd rn particles in the final state. In there­
lativistic quantum field theory one can take for such func­
tions the following expression 

T mn 
+ + + 

"'<OJT( !/fa (x1 )!/fa (x2) ... !/Ja (x 'ffp (y1) .... ,Pr-J (y ))10>, (I) 
• 1 2 m m 1 l·'n n 

w~ere T den~tes the tim~ ordering of ~he 1/J ai (x 1) and <Pa. (x J) 
s~ngle-part~cle local flelds of the 1 -th and j-th dr~ssed 
particles (i"'1,2, ... ,m, j=1,2, .. .,n) and !0> isthestatevector 
of the physical vacuum. 

Furthermore, taking into account the fact that the functions 
7 mn describe all possible processes n-+m with infinite mul­
tiplicity of k -particle intermediate states, we present this 
function as a sum of the same Green functions over all k -par­
ticle intermediate states, i.e., 

r mn = 8mn an + am l J{ mk r kn ' 
k 

8 mn an+ l 7 mk J{ kn G n ' 
k 

(2a) 

(2b) 

1
1 m=n. b . • 

where Bmn = 0 mtn~s the known Kronecker sym ol, G m ~s Green s 

function for m free particles, which can be defined as the 
product of the Feynman propagators A F (i) of particles i= l, ... ,m. 
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From relations (2a, b) it is seen that J{ mk describes the 
particle.interactions preset by the original Hamiltonians or 
Lagrangians and leading to the transition k- m. In terms of 
the graphical diagram method of Feynman J{km is describable 
by simplest vertex diagrams, of both connected and discon­
nected type, with k -incoming and m -outcoming lines. For 
example, Fig. Ia shows the vertex diagram "N-N(H2;). whereas 
the simplest disconnected vertex diagram "NN-NN( K 32 ) is 
given in Fig.lb. In both cases the vertex functions are deter­
mined from the original Hamiltonians of the "N interactions, 
for example, for J{2 1=fy 5 r the Hamiltonian Hr == f(fy 5 rrp¢. 
If we incorporate other reducible diagrams into J{ mk , then, 
according to relations (2a,b), these diagrams will arise re­
peatedly in calculating the Green function 'mn and this is 
eliminated from the beginning. 

Equation (2a) can be presented in a more compact form if 
one explicitly singles out one-particle and two-particle sta­
tes and includes the remaining many-par·ticle states in the 
"effective potentials" w~n. i.e., 

,_ 8 2 w2 
'22 - 22'0 2 + G2W21 '12' + 0 2 22"'2"2 (3a) 

T 12, 2 2 
O 1 Wu' '1 'g' + O 1 W 12 r 22 ' (3b) 

T 21. 
2 2 0 2 w21'' 1 '1 + 0 2 w22'' 2 '1 (4a) 

r 1 '1 = 8 1 '1 ° 1 + 0 1' W ~'1" r 1" 1 + 0 1 'W ~' 2 r 21 (4b) 

where primes at subscripts I and 2 denote different one-par­
ticle and two-particle states, and here and below ts supposed 
a summation of all corresponding quantim numbers and variables 
by identical indices of two neighbouring expressions; the w~n 
quantities are given by the following expressions 

w2 
== J{ + 1 1 H 

mn mn k> 2 £>2 mk [(LI.
2 

) -
1

] kf J{£n ' m,n = 1,2 (Sa) 

CLI.2)k£ =8k£ oe-1 - J{ k£, k,£ =3,4, .... (Sb) 
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The superscript over the W~n effective potentials means that 
the Feynman diagrams describing these functions in interme­
diate states include more than t\vo particles, that is they 
can be regarded as two-body irreducible diagrams. 

In calculating Green's functions rmn it is more conveni­
ent to use, instead of Green's functions On for n non-inter­
acting particles, the renormalized propagators ~n.which can 
be expressed as follows 

. n 

~ n = 1 !J 1 Ll. F (i) (6a) 

where = On+ On Fn ~n • 

Ll.' (i) =<OIT(rp+ (x.)rp (Y. ))[0> = §
1 

(i) =r 11 (i) 
F a i 1 a , 1 

(6b) 

iS the Feynman propagator of the i -th dressed particle, F = 
n n 

= II f
1

(i), f
1

(i)=[LI.' (i)]-1 -[L\ (i)]-1 is the self-energy part 
i== 1 F F 

of the propagator, well known in the quantum field theory. 
Clearly this substitution of the propagators will lead to 

changes in the definitions. of function J{ mk s i~ce we have 
included part of the reducible diagrams in the § m functions. 
We impose the condition that the forms of eqs. (2a,b) and the 
function should not change, i.e., 

ru ~ruh r 
):j + .:.. ):J m mk kn n k 

r = 8 mn mn (7) 

Comparing relations (7) and (2a) and using formula (6b) one 
can easily see that J{ mn = h mn + 8 mn F n .In other words, if we 
succeed in calculating the self-energy part of the propagators 
f1 (i) we shall be able to construct function hmk in rela-
tions (7). . 

Then, from relations (7) it is possible to derive sets of 
equations for Green's functions 'mn ·which would be similar 
~o eqs. (3a,b), (4a

2
b) and include renormalized propagators 

~ n. In place of Wmn , we shall have new functions w ~n, which 
are defined by the same formulas (Sa, b) , where }{ mn and G n 
are substituted by functions h and ~ . In this case eqs. 
(4 ) . . mn f n a,b will assume the following arm 

T 21 

0 

~2 w;1 ~1 + ~2 w2~' r 2'1 

iv w2 ru + ru w 2 r 
~ 1 11'~1' ~1 12 21' 

(Sa) 

(8b) 

The condition (8b) is the consequence of our choice of ~ 1 =§ 1 
as initial "free" propagators in relations (7). It means that 
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we have already included in the propagator all possible off­
shell corrections incorporated in the self-energy part r

1
• 

Therefore, it is ~egitimate to assume all the combinations 
of kind (Sb) or § 1 f 1 ~ 1 to be equal to zero although, cle­
arly, f 1 -f,. 0. We shall see below that the equalities (8a, b) 
will prove useful for the further analysis of the three-body 
eq'uations. In particular, condition (8b) will enable us to 
write in a more compact form the ,equations for the rrNN sys­
tem with the three-body forces included. 

In order to derive a set of equations for three interacting 
particles we single out in relations (7) the one-, two- and 
three-particle states from those involving a large number of 
particles by including the latter into the effective poten­
tials w ~n (m, n = 1, 2, 3) which will be. presented by the sum 
of all three-body irreducible Feynman diagrams. For the r 

. f . mn (m,n = 1,2,3) Green funct1ons o 1nterest we have 

3 
rm2 =O ~ +~ Iw r (9) m2 ' 2 ' m mk k2 ' k 

r m3 = 0m3 ~ 3 + ~m I w!k rk3 (I 0) k 

where 

3 [ 3 -1 l w = h + I I h k (~ ) kf h e mn mn k> 3 e> 3 m n (I I a) 

(~ 3 
) kf = 0 kf § r 1 

- h kf • e • k = 4. 5 ... (I 1 b) 

The set of eqs. (9) and (10) describes the three-particle 
interaction with particle absorption and emission included in 
the framework of the quantum field theory. As far as we know, 
such equations were first derived in ref/18/ on the basis of 
the analysis of the Feynman diagrams. Subsequently many auth­
ors, in different formulations and approximations (refs(2,19,201), 
obtained the three-body equations includin~ particle absorp­
tion and emission. The most common methods for deriving such 
equations are that involving the analysis of the Feynman diag­
rams by using the first· (or last) cut lemma 1 131 and the method 
of constructing the effective Hamiltonian by the Feshbach-Oku-
bo projection operators/12/ In refs. 16,6,9,10/ these methods 
have just been used to obtain the three-body equations for 
the rrNN system of particles. One can easily see that if we 
take for Green~s functions rmn the two-time (quasipotential) 
Green function /21/ by assuming r = r f Xot = t 1 or Green~ s 

mn mn y ., t 
• OJ 2 • . f function rmn constructed w1th the effect1ve ttam1lton1ans or 

6 

interactioi). of three particles'9 as .u,ed in refs. 15•6•9a/, or 
the funct~ons rmn from refs:' 7

• '
10 '21 then, despite the 

fact that we shall have ~ifferent prescriptions for construct­
ing the functions h mn , ~ m and w !n , the final structure of 
the two-body and three-body.equations (3), (4), (9) and (10) 
does not change. For concreteness, we recall.that in the quan­
tum field theory Green~s functions rmn and §m are derived 
by formulas (I) and (6a). 

In the present paper we shall use the quantum-mechanical 
description of a composite particle through the one-particle 
local field. For example, according to refs. 116 •171 , one can 
introduce for deuteron the annihilation operator ar(Pd··a'd,t) 
which, at t.-+ ± ""• behaves exactly in the .same manner as the 
annihilation operator for one particle in asymptotic states 
and is constructed by means of the deuteron wave function,and 
the time ordering of one-nucleon local fields. In this treat­
ment, in describing the rrNN system ther:e will arise Green~ s 
functionS T31 and T 13 as the functions Ot the intermediate 
transition to the one-particle deuteron state, whereas the 
rrd and N~ scattering processes will be regarded as the. 2-2 
process, rather than 3-3, as was accepted in refs. 13

'
101 

3. EQUATIONS FOR COUPLED rrNN , rrd , 'NN , N~ SYSTEMS 

We apply the three-body equations (9) and (10) to describe 
the processes occurring in the rrNN system of particles. Ac­
cording to the g'enerally aC'cepted formulation of composite 
particles, at low and medium energies ( T 77 < 300 MeV) the fol-
lowing two-particle state's 2 = I rrd,' NN, N~ I and only 
one three-particle' state 3=rrNN will explicitly occur in the 
initial and final states. Below the two-particle states indi­
cated will be denoted by Greek letters 7J,v,a=1,2,3=lrrd,NN,N~I; 
the three-particle state ii denoted by 0 and finally the pos­
sible single-particle state of the deuteron will be denoted 
by letter d. To simplify t~e further calculation we shall be­
low use the renormalized ~n, w~n functions and assume that 
all the hmn functions entering into eqs. (7) and (lla,b) are 
equal to zero if the particle number m differs from.n by more 
than unity, i.e., 

hmn =0 if \m-n\>1. 

This assumption, according to 
gives 

3 wll, 
2 

w21 

= w1~, = 0 

ws~ = h21 

w2' 
12 

w3 
13 

(12) 

the definition of functions wk, mn 

- w 3 - h - 12 - 12 

= w3 = 0. 31 ( 13) 
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After that, the sets of eqs. (9) and (10) for the processes 
of the rrNN system of interest can be written down as follows 

T 00 ' = O 00 ' § 0 + §0 K 00, T 0 "0, ' (14) 

r'T/V =§.,o.,v + J~ T/ ; K TJU r av + § T/ w ~0 r Ov 

(I Sa) 
=· c.,v + I arp w :o Tov 

a 

T Ov = § I w 3 T 
0 ., o., "'V + §o w io· T O'v ' (15b) 

where ~ =§ N~'§v are Green's functions for the non-interac­
ting par

0
tic1es of the rrNN and v systems (rrd, NN, Nil), 

K T/V = w~v + h T/d § d h dv (16a) 

a71v "'o'T/V §v + § 71 I KTJU'G av, 
a (16_b) 

K 3 ~ 3a s 3 
oo•= woo'+; wo., 71v wvo' "'woo'+ vo • (17a) 

hvd and hdv are the vertex functions of the v pair of par­
ticles and deuteron; w~ , w~0 and wg0 , are the potential 
functions which, according to (lla), have not less than four 
particles in intermediate states between the corresponding. 
combinations of particles. As at the beginning we took into 
account only the rr, N, ll and d particles, by analogy with 
ref. 

19~ it is possible to include int~~ w3 --potentials the 
exchange interactions involving any number of heavy p,w, ••• me­
sons, NN pairs, etc .. 

To derive the final form of the three-body relativistic 
equations with particle absorption and emission included, it 
is important to take into account the disconnected parts of 
the w 3 , , wJ and w~0 , potentials so that the iteration· se­
ries olf sim~far equat~ons should not contain the products of 
the two neighbouring disconnected diagrams of the same type. 
Let us denote the connected and disconnected parts of the w3 

potentials by w c and w0,respectively. From Figs.2,3 and 4 
we see that if w ~v and W~o (see Fig. 2) contain only one or 
two terms, thenw~0 , incorporates not only the terms describ­
ing the nucleon-nucleon VNN (Fig. 3a) and pion-nucleon vrrN 
(Fig.3b,c) interactions in the three-body rrNN space, but al­
so the disconnected parts (Fig.4a) v81 and v8Ts (Fig.4b) of the 
three-body interactions, considered in ref. 1. Note that the 
v and v potentials are describable by the sum of all pos-
sfb~e two~~rticle irreducible diagrams, in the presence of 

8 
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Fig.Z. The disconnected diag-
--- 3 a)§:~: rams of the w vO potential. 

ct.),- . 
---·--~ 

G). __ ~_LJ __ 
---::--

d)- - - rr - - - -: 

.,..---&}~-----~- + -6--

~,'A~+~ 
Fig.3. The disconnected parts 

~ of the w~0 , potential, corres­
ponding to the NN and rrN. 
subsystems. 

dl ---- -o=-......:...-_' __ -
'). \_- - ---=-=------- Fig.4.The disconnected three­

body interactions entering in­
to the w ~0 , potential. 

.... - -------~----'-0-~ 

. 
a third, non-interacting particle (see Fig.3), i.e., vNNand 

2 . . 
v rrN are the w22 , -potentials (Sa) in the three-body nNN 
space. For exampl~, for the vNN potential, if we express 
w:2, (NN),by using ~ set of eqs. (9), through potentials w~11 
(m, n = 1,2,3), we obta~n 

VNN = w~2 , (NN)[Ll; (77)] - 1 , (I Sa) 

[w2~' (NN) + w;N,O g3oo' wo3',NN ][llF (77)]-1' (18b) 

g a-o !il +!ilw3 
oo' - oo' ~ o 11o oo" 

3 • 
go "o' ( 19) 

Let us consider the problem of including the three-body forces 
w0

00 , , v and v . To do so we introduce the following com-
b

. . S 1 f S2 • 
1
. ' 

~nat~ons o potent~a s 

c 
V 1 = V NN + w 00' ' (ZOa) 

V 2 = v rrN 
1 

+ v S 1 ' (20b) 

V 3 = V 11N 
2 
+ V S2 (ZOe) 
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After that formula .(J7a) can be rewritten in the following 
form 

3 

Koo'= I-V.+ vo. 
i = 1 I (17b) 

Using the procedure of constructing the three-body equations 
for transition matrices1221 we obtain that in dividing the K00 , 

potential into four parts according to eq. (17b) equations 
(14) will be equivalent to the following set of equations 

-1 8 - . 
0. 0 ,= 81 + I 8 t (<) 0 + t (<) 0 

1 ' 0 j = 1 !j j ;-J 0 jO' 0 ;-J 0 00' (21a) 

3 
0 00, :: .l t.~ 0 o.0 , 

J= 1 J J (21b) 

where Dfj ~ 1-Bij ; and the 0 ab transition matrices are connected 
with Green's functions r 

00
, in the following way 

r 00 ' = 0 a b g a + g a 0 a h g b a, b = 0, i = 0,1,2,3 (22) 

g ~t<>j+(.<lJVg 
a ·o 'o a a ~o+!-'.iota~o (23) 

In this case, according to the definition of the vNN• vrrN and 
Vj potentials, Green's function gj contains only the non­
pole part of the complete nucleon-nucleon (j = 1) or pion-nucle­
on 0=2,3) Gree·n' s functions. 

In fact, from eqs. (l8a), (20a), and (23) for the g 1 func­
tion we have 

g 1=g:2 - (NN)tlr(77)~ 2 
g 22, (NN)!.\F (7T)"' ~o' g 1' (24) 

where Green's function 
potential, i.e., 

2 
~ 22, is determined by means of the 

g2= 8 <.<> +lilw2 2 
22' 22, d 2 ~2 22" g 2 "2, (25) 

and corresponds to the discontinuous part of the spectrum of 
complete two~body Green's function r 

2
2.,. This can be easily 

seen if eqs. (3a,b), (4a,b) and (8a,b) are used to present 
Green's function r

22
, in the following form 

r =8 (<) +(~ h r +CUw 2 r 
2 2 ' 22' ;:J 2 ..., 2 2 I 12 ' ,:J 2 22 " 2 "2 ' (26a) 

g 2 + g2 h T 
22' 22" 2"1 12' ' (26b) 

g :2 ' + X 21 ~ 1 X 12 (26c) 
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1 . . 
where x2 1. =r2 i ~·In a similar manner one can demonstrate that 

~1 . 
functions g 2 and g 3 contain the. non-pole part g i2 - (rrN) of 
com~lete pion-nucleon Green's function r 22 -(rrN). 

Now, combining eqs. (14). and (lSa, b) one can express 
Green~ s functions rrrv • and r ov through function r00 , and using 
relation (22). we obtain 

r Ov ; g i 0 10 gtrwga 0 av (27a) 

rrrv = GTJV + I-,07)0'w~o (go 8oo•+go0oo'go•)wg,a,Ga'v · (27b) 
a a 

After'that, on the basis of equations (21a,b) and relations 
(27a,b) and using some algebraic transformations it is pos­
sible to deduce (see .Appendix I) the following equations for 
the UTJV and Utv matrices of the transition from the v two­
,particle state to the two-particle 7J or three-particle 0 = rrNN 
state, namely, 

8 -
U = w8 + I w 3 ~ U + I 8 t ~ u 

IV Ov 7J 071 ' 7] 1)V j = l lj j ' 0 jv 
(28a) 

u1"/V = M1"/V + l M7)0'~0 uav + W~o ~ 0,:! tj ~0 u jv 
a J= 1 

(28b) 

where U!v and U 71v transition matrices are connected Hith 
Green's functions r

0 
and r in the following way 

V TJV 

t Ov 

r 
1JV 

g! U tv ~ v (29a) 

8 (<) + ~ u (<) 
1JV;:JTJ 'TJ 7JV;-Jv· 

(29b) 

The potentials MTJV entering into the set of equations (28a,b), 
in addition to K (16a), contain also the single-particle 
exchange interactT~m Z 1JV between the 1J and v pairs of part­
icles (see Fig. 5) and the disconnected diagrams [ w;0 ~ 0 

w0~] D 

which are shown in Fig.6, i.e., 

M 
TJV 

K w 3 i<J 3 
TJV + 1JO tl 0 W Ov (30a) 

=K +Z +[W3~w3JD rw 1JV 7JO ' 0 Ov (30b) 

In Appendix 2 it is demonstrated that the disconnected 
parts M 1JV of the kernel of eq. (28a, b), as wd 1 as the v 

81 
, 

v 82 potentials entering into V 2 , V 8 (20b, c), do not lead 
to the appearance of divergent terms in the iteration series 

J] 



of eq. (28a,b). In this case, essential are relations (8b) 
which, after taking into account conditions (12) and (13), 
will take the ·following form 

§1h12 \21·,, = 0, (31a) 

~1 h12 g:2' h2'1' ~1' = 0 • (3lb) 

____ L ____ s:= 
~ 

\ 
---'b-

_MMMMAMAAAM~ 

/ ,-
/ 

---~ 
" ' 

\. 

----~--

-------~~ 
Fig.S.One-particle exchange poten-
tials. -

,--n--... ...... 

~ 

~-

Fig.6. The disconnected 
parts of the M11v pot~nti­

al entering into w#0§ 0wJlv 
(30a,b). 

By using relations (31a,b) one can demonstrate that all the 
diagrams leading to the renormalization of the already renor­
malized single-particle propagators cancel out in calculating 
the iteration series for the. U1v 'an1 Duv tra,r\.sition matrices. 
Therefore, the disconnected diagrams entering into MUV (30a,b) 
and those occurring due to potentials 'v 81 and v 82 1n the 
iteration series of equations (28a,b) can be omitted from the 
beginning. 

The three-particle equations (28a,b) describing the 77d , NN 
and N~ scattering processes including pion absorption and emis­
sion fully take into account the contributions coming from the 
three-body forces w0~,, v 

81 
, v 

82 
, w ~0 and w~ • It is no-

teworthy that, in contrast to ref. /8<we 17ctid not n'Ze~ to in­
troduce any auxiiiary transition matrices for the pu~pose of 
including the disconnected potentials v81 and v82 . :r"he main 
difference between equations (28a,b) and. similar equatiqns from 
refs. /9,10/ lies in th~ fact that in d~riving eq. (28a,b) the 
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deuteron and ~ isobar were regarded as single-particle states. 
On the one hand, this leads to the appearance of new two-par­
ticle amplitudes and potentials of the interaction of the "d , 
NN and N~ particles. In particular, instead of one 3-2 matrix 
of the 77d-NN transition and three three-particle amplitudes 
3-3 used in refs/9 •101 to describe the 77d scattering proces­
ses, in the set of eqs. (28a,b) three two-particle amplitudes 

77d 
are present which describe the processes "d~ NN ~ and three 

N~ 

Uw transition matrices each of which corresponds to a tran­
sition from the two-particle state v to the three-p'article 
state 77NN = 0. Moreover, i-q our case there have arisen addi­
tional potentials of interaction between the particle pair N~ 
and the off-mass sheil potential of the intermediate transi­
tion from the NN state to the deuteron- single-particle state 
(see the second term of the potential (16a)). On the other 
hand, the treatment of the deuteron and the ~ isobar as 
single-particle states leads to the fact that in the (3.3) 
resonance region it becomes possible to make the following 
approximation. Omitting the three-body forces and neglecting 
the non-pole term of pion-nucleon Green's function, i.e., as­
suming g 2= g 3 = 0, we obtain the following two-body equations 

(1) (1) 
U1JV ~ U 1JV = m1JV + ~ m 1JV ~<TUCTV ' (32) 

(1 

whe're 

m -M + w 3 ru t ru 3 
1JV - 1JV 7]0 t1 0 1 t1 0 w Ov (33a) 

w ~v + h TJd § 1 (.d) h dv <T w ~0 g 1 w Jlv (33b) 

and Green's function g 1 connected with the t-matrix by rela­
tion (23) is defined by formula (24). 

Potentials M17v and m
11

v differ from the complete two-par­
ticle potential, e. g. , from NN potential (when 17 = v = 2 ) in 

that in M22 ,(NN) the term I22 , (NN)=WN~,o ~ 0 wg0 , gg
0

, w;,NN 

entering into the potential w~2 • (NN) (18a,b) is absent and 
in m22 ,(NN) this term is substituted by its part ~~ ~ vNNg w

0
3 N 

We note that the micrpscopic calculation of the two~~o2y nuc- ' N 
leon-nucleon potentials w ~- (NN) or vNN (18a,b) is complica-
ted because the total inctusion of all Intermediate three-par­
ticle 0 :=77NN states in these potentials requires taking into 
account the term r

22
,(NN) which contains three-particle Green's 
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function g~o' (19). Function g~ 0 ,in turn contains, through 
the pot;enti<:!l YNN, <!-lso the function 122 , (NN),i.e.,, the const­
ruction of the complete nucleon-nucleon potential with all 
three-particle rrNN. states included is a nqnlinear problem. 
A similar conclusion concerning the V 17N potentials •can be ar­
rived at if one takes into account the three-particle states 
rrrrN, this property being inherent in the corresponding vNN 
and v rrN potentials from refs. /5,6,7,9,10/,' which seems to be 
characteristic of the potentials constructed in the quantum 
field theory with an infinite number of degrees of freedom. 

Equatiqns (32) .allow us to calculate in a unified manner 
the two-body processes of rrd , NN .and N~ scattering on the 
basis of the simplest vertex functions N-Nrr, ~-Nrr ?nd 
d-NN. In calculating similar processes one can include also 
the heavy meson contribution by including the wgv potentials 
(16a) in the corresponding diagrams. Another difference of 
eqs. (28a/b) and (30) from similar three-body equations from 
refs / 9

•
10 lies in the fact that iq .deriving eqs. (28a, b) 

and (30) we.did not use the separable model of the two-body 
interactions for the NN potentials and this enables us in 
calcul~ting (~0) to employ non-separable, microscopic poten­
tials NN and,·N~. e.g., the NN and N~ potentials constructed 
e.g., in the one-boson exchange model. 

In the low-en~rgy region it is known that the contribution 
from the ~ resonance is s~all nnd other partial waves of the 
rrN interactions are significant. Therefore, one should not 

expect eqs. (30) to describe well the rrd scattering processes. 
To include the non-re~onance partial waves of the rrN interac­
tions in eqs. (28a,b) it is simplest to use the separable mo­
del of two-body interactions. In this case, if the two-term 
separable model123/ is employed for the resonance rrN t-mat­
rices and the common single-term separable model for the re­
maining t-matrices, then the final equations obtained from 
eqs. (28a,b) will coincide with analogous equations from 
refs/9•101 . A difference will lie in the fact that it is not 
difficult to include the separabl~ poten.tials, vs 1 and vs2 IS! 

by using eqs. (28a,b) and it is not necessary at all to use 
the separable model of ~N and N interactions to construct 
the vertex functions d-NN and ~-Nrr. 

In the consistent microscopic calculation of kernels of 
integral equations (28a,b) or (30) it is necessary to set the 
simplest ver'tex functions h 21 and h 12 at least. In practice·, 
the situation however is different. Namely, it is commonly be­
lieved that ,the potentials of two-body interactions are set 
(for example, by solving the inverse scattering problem or in 
the one-boson exchange model for the NN interactions, e.tc. ), 

l4 

; 
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and functions h 21 and h 12 should be found on the basis of these 
potentials. Such a problem is substantiated by the circums­
tance that the vertex functions d-NN cannot be defined like 
the vertex function N-rrN from the known Lagrangians of nuc­
leon-pion system interactions since the deuteron state is for­
med on the basis of the NN-interactions and the vertex func­
tions d-NN should be constructed with the help of the given 
NN potential. 

In order to construct the functions 
body interaction potentials we make use 
taking into account conditions (12) and 
ted in the following form 

-1 2 1 
h21 = (~2 °22' - w22' )r2'1 ~ 1 

h 21 through the two­
of eq. (Sa) which, 
(13), can be presen-

(34a) 

or explicitly, for the NN vertex function in the momentum 
representati~n we have 

d4q 1 
h21 (p1p2 ;Q) = [ -)4 

(2rr 

ct4 A 

~ !8 4 (pt-q1)(p1-mN-2:(p1)) x 
(2rr)4 

xo 4 
(p2- q2 )(p2- m N-l (p2 )) - w2;' (p 1 P 2; q 1 q 2 )I r21 

(34b) 
1 

( q1 q 2; Q) ~ 1 (Q) • 

where ~ 1 (Q) is the renormalized deuteron propagator; 2 is 
the nucleon mass operator; p, q and Q denote the four-momen­
ta of individual nucleons and deuterons. 

Then, bearing in mind the definition of the deuteron wave 
function in the quantum field theory, the deuteron function 
on mass shell Q2 =m 2d and p1 +P2 =Q can be presented in the 
following form 

4 1 0 (p 1 +P2 -Q) rf\/P12) = r 21 (p1 P2; Q) l<l (Q -"'X 21 (pl P2; Q). (35) 
:--1 1 ) 

The two-body irreducible potential w~ , in eqs. (34a,b) can 
be replaced by the complete two-particle 2potential K 22 , 
= w~2 ,+ h 1 § 1 h 2 if the condition (31a) i~ employed. Then it 
becomes clear t~at h 21 is defined by the off-shell behaviour 
of the potential w222, and on the mass and energy surface, 

2 2 • 
when Q =mct and Pt+P2 =q 1 + q2 =Q, we have h 21 (p 1 p2 ;Q) =0 
since the right-hand part of eqs. (34a,b) in this case is the 
Bethe-Salpeter equation (or the Schrodinger equation, or a 
quasipotential two-body equation) for the deuteron wave func­
tion. Thus if we have the nucleon-nucleon potential w~2 , pre­
set, eqs. (34a,b) permit the construction of the vertex func­
tion NN-d. In a similar manner one can construct the vertex 
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functions h21 and h 12 of the L\-Nrr or N-Nrr particle systems 
through the corresponding potentials w ~2 - . 

In conclusion the author expresses his deep gratitude to 
T. I.Kopaleishvili for pe'rmanent interest in the present work 
and numerous stimulating discussions. Thanks are also due to 
I.V.Amirkhanov, V.B.Belyaev, M.Kh.Khankhasayev and A.A.Khela­
shvili for discussions and I.L.Bogolubsky and L.V.Pashkevich 
for their help in preparing this manuscript. 

APPENDIX I 

Let us follow the derivation of eqs. (28a,b) for the tran­
sition matrices 0 10 and 0 00 •from eqs. (21a,b) for the auxilia­
ry matrices r Ov and r

71
v. Using formulas (27a, b) and (29a, b) 

defining the coupling between Green~s functions rov and r
71
v, 

on the one hand, and the OiO , Oo'o, Uw and lJ
71

v matrices, 
on the other, from eqs. (21a,b) we obta1n 

. -1 . 3 3 -
g i Uw § v = g i ~ o go I w 0a G av + g i l . I 8 iJ V · g · U ·v § v + 

a J = 1 J J J (Ap 1-1 a) 

+Iw 3 (§ U ~ +8 ~ -~ ), 
aOa aav v av v av 

. 3 3 . 
§7JU1Jv§v+ 817v §v-§ryv=IGvawaO go C.I VjgjUjv§v>• 

a J=1 (Apl-lb) 
where we have introduced new Green~s function 

§71v= 0 1Jv+ I , 0 1'/a w;o go wga' 0 a'v 
a,a (Apl-2) 

and used the known equalities following from the definition 
of functions Va, ga and ta (17a,b), (20a,b) and (23), na­
mely 

Vigi=ti§O; Vo go = to go = I w ~.., am> w ( o g o 
1'/,V ,., ·,- ' (Apl-3) 

For further calculations we write in a more explicit form the 
t 0 -matrix which will be sought in the following form 

t = I w3 x w3 
0 7],V 0,1'/ 1'/V v, 0 

Then, after using the explicit form of potential V0 
equations for the t 0 -matrix we have 

3 '(i) 3 
x7JV = G7JV + I, 0 nrr (w(/ 0 t~o wo a")x a'v ' 

a,a .,- ' ' 
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(Apl-4) 

from 

(Ap 1-Sa) 

·t 
tl 

~ ... , . 

x 7JV = 8 T/V § v + '§17 I M 7JU x av • 
a 

(Api-Sb) 

where the explicit form of potential M17v is given by for­
mulas (16a) and (30a,b). Then, combining eqs. (Api-S),(Apl-4) 
and (Apl-2) one can easily see that 

X 7JV = § 1'/V ' (Apl-6a) 

(i)-1 ~ 3 I 3 rv _ 0 t1 0 g 0 .:. w Oa G av- woa ~ av - ' 
a a 

(Ap!-6b) 

I G17a w :o g o = 
a 

I § w 3 .-
a 7JU aO ~ o • (Apl-6c) 

Substituting relations (Apl-6a,b,c) in eqs. (Ap!-la,b) it is 
easily to obtain eqs. (28a;b) sought. 

APPENDIX 2 

We consider the disconnected diagrams describing the ker­
nels of the set of integral equations (28a,b) and occurring 
in the calculation of the iteration series of these equations. 
In addition to the disconnected parts w 0~ and t 1 functions 
shown in Figs.2a,b,c and 3a, the disconnected diagrams arise 
also in calculating the t 2 , t 3 , M7JV and wv~ § 0t j kernels 
of integral equations (28a,b). From defining the scattering 
t 2 -matrix (20b) and (23) we have 

{ I Disc. (i) 
t 2 = t rrN + (1 + t rrN t1 0 ) V S 1 

1 1 
(Ap2-la) 

{w2~ ~ Ot21Disc. = w~o1~o ltrrNt + (1 + t"Nt ~o )vs1 I ' (Ap2-2a) 

l 3 (u l Disc. D2 (u { (1 (u ) 1' 
w20 t~o ta = w20 t~o trrN + +trrN ~o vs2 • 

2 2 
(Ap2-2b) 

where the scattering t 77 N1 matrix is constructed on the basis 
of the potential VrrNt (see Fig.3b) and the disconnected 
parts w ~J and w ~02 of the w:0 potential are shown in 
Fig. 2b. Analogous disconnectednes_ses arise in calculating 
the w3~ § 0 t 2 , w3

3
0§ 0 t 3 and w:0 § 0 t 1 kernels of integral equa­

tions (28a,b). Therefore all the conclusions that we shall 
make regarding the disconnectedness given in (Ap2-2a,b) will 
be valid for the re~fining terms w20 ~otj as well. Taking in­
to account that w 20 -h12 "'hN1,N 11 and Vs1 -h21 "'hN1rr,N1• 
and according_ to the definition of Green~s function g~2 = 
=~ 2 +~ 2 t 77N § 2 and following condition (31b) we have 
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!w:o ~Ot2 I Disc. Dl !U t ., 
w 20 H 0 77N 1 (Ap2-3a) 

!w:o ~otsl Disc. w ~g~ at 11N 
2 (Ap2-3b) 

In exactly the same manner, using the conditions (31a,b) it 
is obtained that the v 81 , v 82 potentials 181 shmm in Fig. 4 
do not lead to additional disconnected diagrams in the itera­
tion series of eq. (28a, b). In particular, 

Disc. @ ru 
!t2~o t3 I = (l + t"N

1 
,:Jo)vsl Hot"N

2 
+ 

(Ap2-4) 
+(l+t77N 1 ~o)!vS1!-';0(l+t77N 2 ~o)VS2 }=(l+t77N 2 ~o)VSl§Ot77N 2 ' 

where in the second term of the first equality (Ap2-4) we 
again used formula (31 b). Both components of this equality: are 
shown in Fig.?, where we see that in eq. (Ap2-4) the term that 
~eads to the renormalization of the single-particle nucl~on 
propagator is equal to zero. It is easy to deduce that the re­
maining disconnected terms in t 2 § 0 t 

3 
and w~0 ~ 0 t

1 
vanish in 

calculation of the following iterationb_i.e., !t 2 !-'; 0 t 3~ 0 t2 1 Dlsc'::O, 
I (il cu !Disc. O d I 3 ru ru <: I 1sc. 

0 
· d h · t 3 ;-;~ 0 t ~ Ho t 3 = an wvo H 0 t. Hot 

1 
a.. "' • an t 1 s 

again ~s the consequence of t~e conditions (31a,b). 

-- :::r:s-_-- \. 
' + 

'-. .. Q -- --a-- , -·- -=--- . l -' . 

' .... -~ + ...:5<4.·-- .. _--==-~-- ... 

~.:rhe disconnected diagrams occurring in calculat­
lng t2 !-'; 0 t 3 • The 11N scattering t-matrices and Green's 
functions g~~77N) are indicated by opert and shaded 
circles, respectively. 

Disconnected diagrams appear also in the calculation of the 
M17v kernels of the integral equation (28a,b) (see Fig.6), as 
well as in the combination· w~o !-';o t J wSv of iteration 
terms for the amplitude Dryv· However, substituting equation 
(28a) into (28b) it is possible to demonstrate that these dis­
connected diagrams cancel 
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. 8 . 8 . 3 
uryv = M 'f/11 + I M l1C7~0 Uav + w.,o ~0 I tj !-'; 0 Wov + 

(! j •1 
(Ap2-5) 

3 . 3 . J) 8 . 8 8 3 
+~o~o!. tJl~o I wou §aUov+W17o~o!. tJ~O I B!Jt!~Outv · 

J•1 u-1 J•l 1=1 

The disconnected diagrams in eq. (Ap2-5) occur in the follow­
ing expressions 

! Disc. 0 .
0 

D 
M ryv I = 8 "7V W ryO ;;, 0 W Ov 

3 ru 3 
(u 3 Disc. D D 

I Wryo H 0 j;1 t j H 0 Wov I = 0ryv 0vj w qO § 0 t j § 0 w Ov • 

(Ap2-6a) 

(Ap2-6b) 

After summing these disconnected terms, according to eq.(31b), 
we see that they cancel. The same conclusion can be drawn 
also in including the disconnected terms !w0; !-'; 

71 
M

71
v1Dtscin 

the iteration series for the U1v matrices, substituting eq. 
(28b) into (28a) and using again formulae (Ap2-5) and (Ap2-
6a,b). 
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MMIU211JHUUIU 1\,li, 1!4-32-306 
I( TOOPIIJC CtlnUIIIIhUC n'NN-NN CUCTOM 

1!1!1 OOIIODO onUCiliiHft AOA'I'pOllll II 1\ 119001lpW D DIIAO OAtto­
'I£1CTU'IIIOro COCTOitlllfft rtOJl}''IOII OWtll Ill IIAPIIIliiTOD poni'ITHD~CTCKHX 

ypanuomd\ AJIIl DIU:&IlMUCDIUUUIIIhiX rrNN- II NN -cue TOM. npcueCSpe­
ran n oOnacTn /3, J/ tlcu~uttallOil 11nno.mncnon 'll'lCTbiO nu,on-nytmormotl 
IPYHKLJ,IUI rpnun, un•J•op cnun Tpox"AOTII'IIIblo YPiltlllomtn rt CHCTeMe 

ypanHeHHtl .u,nn ADYX"'IlCTUt.tllbiX llMttmtTY'" nopaxo.u,on Mo~y m~-, NN­
" Ni!-KaHanaMH. 

Pa6oTa DblnOnllella D JlaOopll'rtlplllt tlhi'UICJIII'rOnbiiOt\ TOXUIUCH 
H anToMaTH3a~HH OHRH. 

npenpHHT 06"beAHHeHHoro HHCTIHYTa llACPIIbiX HCCJ10AODIIH11tl, .!l}'t!HO 1982 

Machavariani A. L M-02-J06 
On the Theory of Coupled "NN-NN Systems 

Proceeding from the description of tho doutoron and 
L! isobar as a one-particle state, a version of relativistic 
equa.t:ions for coupled "NN and NN systems ia obtalnod. It 
is demonstrated that, if one neglects tho non-polo term of 
the pion-nucleon Green function in t~e (J.J) rooonance region, 
the three-body equations reduce to a set of equations for the 
two-body amplitudes of transitions batwoon tho rrd , NN and 
Ni! channe 1 s. 
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