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INTRODUCTION 

Many two-phonon collective states have been observed in 
the spherical doubly even nuclei. In 1966-1970 there appeared 
expcri mental indications to the two-phonon states in 154 Gd, 
168Er and 240Pu. It was mentioned in ref. 141 that the lowest 
two-phonon states in deformed nuclei are difficult to obser
ve in comparison with the spherical ones since they lie in 
the energy region with many rotational bands on the two
quasiparticle and one-phonon states. 

In recent years the situation with the two-phonon collec
tive states in deformed nuclei became more complicated. New 
experiments have not confirmed the existence of the two
phonon states in 154oct and 168Er.Based on the analysis of the 
experimental data it has been concluded in ref. ' 57 that the 
two-phonon states are absent in the deformed nuclei. 

According to the generally accepted treatment (see 
refs. ' 6 ·7 ')the one-,two- and three-phonon states should exist 
in the doubly even spherical and deformed nuclei. The influ
enre of the Pauli principle on the excited states in the 
two-phonon components of the wave functions has been studied 
in refs. -'8·9 , 101 . In ref. 191 it has been concluded that 
the collective two-phonon states should not exist in the de
formed doubly even nuclei. It should be noted that A.Bohr 
and B. Mot tel son -' 11 1 try to uphold the existence of the two
phonon states in deformed nuclei. 

The problem of two-phonon collective states became more 
acute in two cases. The first one concerns the two-phonon 
octupole states in the Ra, Th and U isotopes. In doubly 
even Ra, Th and U isotopes there are low-lying states with 
I"K = 1-0. Starting from paper/12/ these states are treated 
as the octupole vibrational states (A0 =301). Based on 
the experimental study of spectra the authors of papers 113· 141 

state that in 224 •226 Ra and 226 • 228 Th there are no o+ 
states with energies close to the twice energies of the 
I"K =1-0 states and containing large octupole two-phonon 
components {301, 3011. Due to non-observation of the two
phonon octupole states the authors of paper 1 14/ have doubts 
about the interpretation of the first K" =0- states as 
one-phonon states. In ref . 1151 a modified macroscopic-micro
scopic method has been used to calculate the potential energy 
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of nuclei in the Ra region. A stable octupole deformation 
has been obtained for a number of nuclei. The lowest K 17 =O
states are inter/treted as being associated with this defor
mation. In ref. HI/ the levels K"=o-, I =I ,3,5 in doubly 
even isotopes of Rn, Ra, Th and U have been analysed. 
These levels demonstrate features of strong Coriolis coupling. 
The existence of strong Coriolis coupling effects is typical 
only for rotational bands based on the one-phonon octupole 
states,but not for bands based oni 17K =1-0 states with stable 
octupole deformation. The a-, {3- and y -transitions to or 
from these I 17 K =1-o states have been analysed in ref/161 
It was shown that there is no additional retardation of these 
transitions; this indicates that there is no significant dif
ference in the shape of the ground and 1-o states. It was 
also concluded that the I "K =1-0 states have no stable octu
pole deformation and are usual octupole vibrational states 
in the Ra, Th and U isotopes. Thus the experimental non
observation of the two-phonon octupole o+ states is in agree
ment with the conclusions of paper /9/. 

The second case concerns l68Er;This nucleus is studied 
most thoroughly experimentally/17/ and therefore it is used 
to test the description of the low-lying states in different 
models. A further study of the levels of 168 Er may turn to 
be deciding for elucidating the situation with the two-phonon 
collective states in deformed nuclei. 

The interacting boson model has'been used 1181 to describe 
the states with positive parity in 168 Er. It was shown that 
the model reproduces correctly the K 17 =0 +and 2 + rotational 
bands below the gap and their decaying properties. It has 
been stated /U/ that an attempt to fit the spectrum of 168Er 
on the basis of the interacting boson model leads to major 
disagreements at almost every point at which it is possible 
to confront the model with experiment. It was pointed out 1111 
that this nucleus is important for the analysis of y -vibra
tions, ( .\~i =221). The two-phonon o+ states of the type 
I 221, 221 } in 168Er with an energy below 2 HeV are non

observed experimentally. The level with K17 =4 + and energy 
of 2.03 MeV is the lowest candidate for the two-phonon state 
of type {221, 221 !. If so, there is a strong anharmonicity 
of y -vibrations. According to ref. 1111 a strong anharmonici
ty of y -vibrations may imply a potential surface with a mi
nimum for y /0. The y -vibrations in 168 Er are analysed in 
ref../19/ in a macroscopic and in a microscopic model with 
special emphasis on anharmonicities of the ~wo-phonon states. 
It should be noted, it is necessary to prove experimentally 
that the K17 =4+2.03 MeV state in 168Er is the two-phonon 
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one. This can be achieved by the Coulomb excitation by heavy 
'ions. At present the experimental data an 168 Er do not con
tradict the conclusion of paper /9/ about the absence of the 
two-phonon collective states in deformed nuclei. 

~n view of the contradictions! concerning the two-phonon 
states in doubly even deformed nuclei, a further theore
tical investigation is needed .. In the present paper the 
two-fho?on states are studied by using the introduced in 
ref. 20 phonon operators depending on the sign of the angu
lar momentum projection into the nuclear symmetry axis. A 
secular equation to determine the energies of nonrotational 
states is obtained, in which the Pauli principle is taken 
into account in the two-phonon compon~nts of the wave functi
ons. The centroid energies of the two-phonon states are cal
culated.for many deformed nuclei. :rhe,position of the three
phonon poles is calculated to elucidate the fragmentation of 
two-phonon states. The ·situation with UI8 Er. and doubly even 
Th and U isotopes is analysed. 

'• 

I. THE MODEL, BASIC EQUATIONS 

The formulae of the quasiparticle-phonon nuclear model 
(see refs. /21,221 ) for doubly even deformed nuclei taking • 
into account the Pauli principle have been obtained in ref. 18( 
A case for the isoscalar and isovector mul t.ipole-mul tipoie 
forces was considered in this paper. It has been shown in 
ref. 1231 

that the isovector part of the rnultipole-rnultipole 
forces siightly influences the excited states of doubly even 
nuclei with ,an energy less than 3 MeV. Therefore, we take 
into account only the isoscalar part of the muJtipole-multi
pole forces. 

Taking into account the RPA secular equations, the Hamil,
tonian ~f the quasiparticle-phonon nuclear mod~l is 

HM = Hv + Hvq , 

+ 
H '= ~ f ( q) a qu a qu v qu 

'(-) v , 

!.. ~ 
4 g=A~i 

g'=A~i' 

1 .\~ -- ~ Q+ Q 
Ko v Y Y u sa g 'u • 

g g' 

y2 ~ 
Hvq =- -4- gu ~ __3.L{(Q+ +Q )(f g (qq'}B(qq'; , _ gu g-u !l-u}+ 

qq ,;v 
g 

+fg(qq'}B(qq'; ~-u) + h.c.! 
We use a new definition of the phonon operator /20/ 

(I) 

(2) 

( 3) 
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Q+ 
ga = 2

1 
l, {!flq~' A+ (qq'; f-LU)-¢ g, A(qq', f-L-U) + 

qq qq 

+ j, g, A+ (qq'; f-LU) - i g ,A(qq';f-L-U)}' 
qq qq 

(4) 

which depends explicitly on the sign of the angular momentum 
projection into the symmetry axis u =~1. 

+ + + 
A (qq'; f-LU)= I 8 '(K K" u'a ,a, ,, 

u , u - 1,uf-L qu q -u 

+ + 
_A+ (qq'; p.u) = I ou'(K+K'),Uf-Laqa'aqu' 

u' 

B(qq'; f-LU)= :£8, , a+,a ,,, 
a, u (K-K ),Uf-L. qu q a 

B (qq'; f-LU) = I 8 '(K K') a'a+ ,a , 
a, u + ,uf-L qu q -a 

(5) 

(6) 

Here a~a is the quasiparticle creation operator, qa are the 
quantum numbers of the single-particle states; g = Af-Li. K ~Af-L) 
is the constant of isoscalar multipole forces, i is the root 
number of the secular equation for orie-phonon states, always 
K?: 0, 11 ;;:: 0; .E"(q) is ~he quasiparticle e~ergy, u ~- = 
= u q vq, ± u , v , v <->, = u u , ± v v , ; u q and v , 
the canoni~al ~ogolubm~qtran~fo'f.matiJn ~oefficients; f g(qq'Y 
and I g (-qq'). are the single-particle matrix elements. The 
explicit form of Yg and the other notation are given in 
refs,/20,21/. 

The excited nonrotational state wave function of a doubly 
even deformed nucleus ~s 

y1+8g g 
'l' (K" u )=I:£ R.n Q+ +I 

1 2
8 pn Q+ Q+ I'P , 

n ° 0 io 1 0 goaog1u1 2 a1 11 1+~11z·uoKOglg2glalg2u2 ° 
g2u2 (7) 

where 'l' 0 is the ground state wave function, n =I, 2, 3, .•• are 
the numbers of the states with given K;. We use the exact com
mutation relations for phonons, given in ref. 1201 and calcula
te 

:£8,, a <IP0 jQ,,Q,,Q+Q+ I'P>= 
au Uf-L+qzil2,aoKo Uf-L+U2/l2,aoKo g2a2 ga ga g2a2 0 

2 
a'u~ (8) 

Ko 
=(o +o )(8 , a , +o , 8 , )+ K (g'g'\gg ). 

ll+/l2,KO ill-!-L2\'KO gg g2g2 gg2 g2g 2 2 

4 

(' 

Ko 
The form ·of the function K (g2g' \ gg 2 ) is presented 
in ref. 

1201 
• It somewhat differs fro?k_ that given in refs!8·lO/ 

It has been shown in ref. 181 'that K 0 (g'2 g'\gg 2 ) are 
small if g2g' ~ gg 2 . Therefore, we shall retain the diago-
nal KKO(g 2 g\ gg 2 ) and quasidiagonal KKO(g

2
g'[gg

2
) 

with g' = A11i' functions. Below we give the formula for the 
case Ko =11+112 (ll =I 0, 112 ~ 0) 

Ko 
K (g2g'\gg2) 

= - 0 I 1¢ g, ljJ g tf: ~2 ljJ g 2 X 
P.+/l2,KO qlq3 ql q2 q4q2 q4q3 

qlq2q3q4 

x[o 8 8 0 + 
Kt-Ks•ll K1-K2,1! K4-K3,Jl2 K4-K2,/l2 

+o 8 o o + 
Ks-Kl'j.l ~2-Kl'j.l K3-K4,f-L2 K2-K4 '112 

+o a a a + K 3-K1 ,/l K2 -Kl'll K4 +K2,p. 2 K4 +K
3

,11 2 

+ 8Kl +Ka•ll 

+ OKl+ Ka rll 

8 0 0 + 
Kl+K2,/l K3-K4,/l2 K2-K4'1le 

8 0 8 + 
K1+K2,/l K's+K4,/l2 K2+K4 •112 

+o 8 o 8 + 
Kl+Ka•ll ~ -K2,/l K4+K3,f-L2 K4 -K2,1l2 

+0 8 8 0 l-
KcKs•ll Kl+~ ,Jl K4 -K3,p.2 K4+K2,/l2 

_ cp g, cp g cp g 2 cp g2 X 

q1q3 qlq2 q4q2 q4q3 (9) 

x[o Ks-~ •ll 8 K2- Kl' ll 

+ 8K1-Ktpll 8Kl-k2,f-L 

+ 8 8 
K3- K1 ,f-L K2- K 1 •ll 

a a + 
K3-K4'112 K2-K4' 11 2 

8 ' 8" + 
K4 - Ka rll2 "'4 - K.z •112 

8 8 + 
K4 + K3,{!2 K4 + K2 rll2 

+8 8 8 8 + 
K3+ Kpll K 2+ K1 , ll K3 -K

4
, 112 K2- K

4
, f-L 

2 

+a. a. a a. + 
Ks+ Kl ,f-L K.z + K 1' ll Ks + K4 ·~ K2 + K 4 , 1!2 

+8K1 +Rgrll 8K1- K2, ll 0 8 + 
K4 +K3,fl2 K4-·K2 'll2 

+oKl-~'11 8~ +K2,/l a a l~ 
K 4- Ks'll2 K 4 + K2, 112 
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In the cases Ko=JL-IL 2, K0 •. o. lA- "'JL 2 , a1 =-a2 and Ko .J 0, 
'll'"'O the functions KKo (g2g'J gg2 ) differ from (9) by 
the Kronecker symbo 1 s. For the case Ko=O, ll = JL 2 =0 the furlc-
tion KKo (g

2
g' 1 gg2 ) coincides 'with that in ref ! 91

• The 
normalization condition in the diagonal for K Ko (g2gl gg 2) 
approximation is 

rr rr 
1 =·<1Jin (Koao) \1Jin(Ko ao)> ... 

n 2 1 n ..2 1 KKo 
(I 0) 

. , ~ (Ri ) + L -(1+8 )(Pg g J I 1+ --· (g2g1\ g1g2)1. 
lo o g

1
g2 2 g1g2 1 2 2 

If the Pauli principle is violated maximally, then 
K Ko (go go 1 g l go ) = 2, thus the component g~g~ is ex-
clude~ from tbe wave function (7). 

Now we calculate the average value HM over the state (7), 
the variational principle is used to determine the 
for the excitation energies 11n and functions Rf

0 

equations 
and Pn 

gtg 2 
n -~ n Ko 

(wg -71n)Ri
0

- L (1+og g) -ug g(g0)PggC1+-
2
1-K (g2g 1 \~g2))=0• 0 g1~g2 1 ,2 1 2 1 2 . 

(I 1) 
n -~ n 

(wg +wg +&vg g -71n>~g -(1+ogg) -~ ug g (g0)Ri'=o. (12) 
1 2 1 2 1 2 1 2 10 . 1 2 o 

Here wg are the one-phonon energies 

~w =_,_.!__, L I ~gf,\11l1is'!!£.?L+,~~1,\2~~_g..£!L..,I 
g1g2 4(1+ol:!.g) is <Atllt>y:¥-y;--. <A21l2),y-y---'"' 

"' 2 K . g 1 tll11 3 K V g2 ~JL2i 3 

(13) 

U (g),.._!_ L 8 <1JI IQ H o+ Q+ .1'1'-'>. ( 4) 
g:F2 o 2,;2' ata2 aillt+a2JL2·a·oKo o "i:Jao vq-g1a1 &,P2 lT I 

A consistent inclusion of tqe P~uli principle leads to the ap-
pearance of the factor (1 + 2-.KK 0 (g2g1 \ g1 &z)) in 

( 11) and the shift of the two-phonon poles ~wg g in ( 12). 
If the Pauli principle is violated maximally, t~~n owing to 
the factor (1 + ~, K (g2g1 \ g1g2)) the corresponding 
terms are excluded automatically in (II). The shift of the 
poles has been investigated in refs. /S, 91. It is the larger, 
the larger is I K(&:lgtl g1g 2 )I and the less are 
Yg

1
YgJ. and Yg2Yg2 . The stronger· is. collectivization of the 

one-phonon states g 1 and g2, the larger is the shift ~wg g . 
The inclusion of the Pauli principle leads to corrections t~ 
the RPA.a~d t~ey turn out to be the larger, thR stronger is 
collect1VHatlOn of the one-phonon state. At K 0 (g2,g'l g,g 2)=0 
=0 all the formulae become those from refs ,17.211. 
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2. CENTROID ENERGIES OF THE TWO-PHONON STATES 

The single-particle energies and wave functions of the 
Saxon-Woods potential with the parameters of ref./22/ have 
been used in the calculation. The single-particle levels 
with principal quantum numbers N =4 + 9 for neutrons and 
N =3 + 9 for protons in the energy interval from -30 to 
+5 MeV have been taken into account. The pairing constants 
GN and Gz are determined from the experimental data on pair
ing energies. We calculate the states with energies less than 
4 MeV; therefore, the phonon space is restricted. Ten on~
phonon roots have been used for each multipolarity with All= 
=20, 22, 30, 31, 32 and 44. The energies and wave functions 
of one-phonon states have been calculated by the RPA method 
and the blocking effect has been taken into account for the 
first two-quasiparticle poles (see ref. 171 ). The constants 
of the multipole-multipole isoscalar interaction K~) have 
been defined by the energies of the firs~ states with K" ~ 
=0+ , 2+, o-,1- , 2-. The calculated B(E.2)- and B(E3)
values turned out to be close to the experimental ones (see 
ref. /10/ ) . . 

It should Qe noted that the RPA calculations with an ef
fective charge of 0,2 MeV give B(E2) -values which are in 
agreement with experiment (see refs. 124 ·251 ). There is no 
such a large difference bet~een the calculat~d B(E~ values 
and the experimental data as in ref./1 9/. In 1965 it has been 
pointed out 1261 that the blokin~ effect should be taken into 
account for ·the first neutron and proton poles. It is im
portant for the calculatio'n of the B(E ,\)-values. The cal-
culated B(E ,\)-values ·and energies also become close to the 
experimental ones if anharmonicity is taken into account. 
So, in solving equations (II) and (12), in order to obtain 
for the first K" =2+ state in 168Er the experimental energy 
value equal to 0,821 MeV, the constant KJ22) should be taken 
such that the energy of the one-phonon state w221 =1.04 MeV 
and B(E2) =4 . 6. 

As a ~~s~lt of the inclusion, of the Pauli principle in the 
two-phonon components of the wave func.tion (7), the energies 
of collective two-phonon states in doubly even deformed nuclei 
increased by 1-3 MeV and reached the excitation region of 
3-5 MeV. At 3-5 MeV the two-phonon collective states in defor
med nuclei are fragmented over many levels. Thus, the calcula
tions with phonons depending on the sign of the projection 
K confirm the conclusions of paper 191. 

The results of calculation for the centroid energies of 
the two-phonon states of type IA 11l 1 i 1, A2JL2 i 2 1 with 
and without the Pauli principle are given in table], It is· 
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Table I 

Centroid energies of the two-phonon states in deformed 
nuclei 

K" 
Two-phonon Energies, MeV 

Nucleus configu- calculated 
ration 

~lllil -\1-12 i2 
with the Pauli without the Pauli 

principle principle 

158Gd o+ 201 201 6.0 3.0 
221 221 4.0 2.6 
301 301 3.6 2.5 
441 441 4.0 4.0 
202 202 4.0 3.9 

2+ 201 221 3.7 2.8 
221 441 3.8 3.3 
301 321 ).8 ).0 

4+ 201 441 3.4 3.3 
221 221 4.5 2.7 

o- 201 301 3.5 2.'7 
221 321 4.7 . 3.1 

160Dy o+ 201 201 5.0 2.6 
221 221 4.0 2.2 
301 301 3.8 3;o 

2+ 201 221 4.0 2.5 
301 321 3.0 2.8 

4+ 221 221 4.5 1.3 

232u o+ 201 201 6.0 2.3 
221 221 4.0 2.1 
301 301 3.7 1.3 
321 321 2.3 2.2 
441 441 2.0 2.0 

2+ 201 221 4.4 1.8 
221 441 2.1 2.0 
301 321 2.4 1.7 

4+ 201 441 5.2 2.0 
221 221 4.1 2.0 
321 321 3.9 2.2 
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seen from the table that the inclusion of the Pauli princip
le increases the energies of the collective two-phonon states 
by 1-3 MeV, and they are, as a rule, above 3 MeV. If both the 
phonons forming the two-phonon state are weakly collectivized, 
the effect of the Pauli principle is small and the energies 
of these two-phonon states are close to the sum of energies 
of phonons. Thus, the centroid energies of the two-phonon 
states composed of weakly collectivized phonons, for instance, 
corresponding to the se.cond roots of the secular equations 
I 202, 202 I turn out to be less than those composed of the 
first roots of the secular equation 1201, 201!. This is ex
emplified in table 1 for the K17 =0+ state in 15Sod. 

The results of calculations with phonons depending on the 
sign of the angular momentum projection differ from the cal
culations of refs. 19•10 / by that the shift o( the two-phonon 
pole for the configuration ! A111 1i 1, A2 1l 2 i 2! depends on 
the value of K0 =f.L 1±112 . In most cases this difference is not 
large, though for some weakly collectivized phonons it turns 
out to be considerable. This is shown in table I. The compa
rison of the centroid energies for 160Dy,' given in table I, 
with the results obtained in/9/ shows that the centroid ener
gies of the two-phonon states calculated taking into account 
the Pauli principle are similar in both the cases. 

Our basic result about the shift of the centroid energies 
of the lowest collective two-phonon states to the energy 
region of 3-5 MeV concerns all doubly even deformed nuclei 
and is independent of the choice of the model parameter. The 
shift of the centroid energies of the two-phonon states is 
the larger, the stronger the collectivization of their pho
nons. The stronger' is collectivized a phonon, the larger 
the corrections to the RPA due to the ground state correla
tions·/27/, the stronger the shifts of the two-phonon poles. 
In 162•164Dy and I 64 ·l66 •168Er the y -vibrational sta
tes are strongly coilectivized and are close to the region 
of applicability of the RPA. Therefore, the shifts of the 
two-phonon poles of trpe ! 22!i 22Il turned out to be somewhat 
overestimated. In the case of 32U, which is in the vicinity 
of the deforrr.ed nuclei region, a certain overestimation of 
the shifts of two-phonon states also occurs, especially for 
the configuration !30I, 30I!. If the shifts of two-phonon 
poles or centroid energies are considerably larger than 
2 Mey, the RPA cannot be used for the description of the 
corresponding one-phonon states. 
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3. ON THE FRAGMENTATION OF COLLECTIVE TWO-PHONON STATES 

Now we turn to the fragmentation of collective two-phonon 
states in ooubly even deformed nuclei. We do not calculate 
the fragmentation of two-phonon states. To calculate it one 
should, first, include three-phonon components into the 
wave function (7), and second, take. into account a large 
number of one-phonon states up to 102 -10 3. In our calcula
tions the two-phonon states turned out to be fragmented when 
one-phonon poles occur near their energies. For instance, in 
158Gd the two-phonon state with K 77 =0-· 1201, 3011 is frag
mented over the following levels: 1. II MeV- 0.6%, 1.73 MeV-
2.9%, 3.53 MeV- 66.4%, 3.7 MeV- 17.3%, 3.72 MeV- 2.2%. ' 
The state with K 77=2+!20l, 2211 is fragmented analogously. 
It should be noted that we have used a small phonon space. 
With increasing number of one-phonon states the fragmentation 
of two-phonon states should become stronger. 

The contribution of two-phonon components to the low-lying 
states with. the dominatin'g one-phonon component will be 
(5-20)%. The components consisting of one collective and the 
other noncollective phonons have,as a rule,the largest value. 
For instance, in 158Gd the contribution of ! 201, 2051 to the 
first K 77 =O+ state with an energy of I. I MeV is 8. 5%, of 
! 201, 443 l to the first state with an energy of 1.2 MeV is 
11.6% and so on. The contribution of the components with two 
collective phonons is not large. For instance, in 158Gd the 

GOntribution of! 221, 22! l to the third K77=0+ state with an 
energy of 1.9 MeV is 2.8%;of {201, 201 I, 2.0%; of 1201, 2211 
to. the ~bird K 77=2+ state with an energy of 2.1 MeV is 7.4%,. 
the contribution of 1221, 2211 to the first K 77 =4+ state is 
I. 1%, to the second one with· an energy of 1.6 MeV 
is I. 3% and so on. ,The contribution of the components, con
sisting_ of two collective phonons, to the states with the 
excitat,ion energy up to 2 MeV does not exceed 10%. 

For a strong fragmentation of two-phonon states a sufficient 
number of three-phonon p9les is needed at the energies of 4-
6 MeV. The inclusion of the Pauli principle in the three-pho
non components of the wave function will shift the three-pho
non poles. To calculate the energies of the three-phonon po
les, the wave function .(7) is added .by the following terms: 

1 ~ 
-- I (1+ 8 g g + 8 g g + 8g. g + 2 8!::3 g 8!::3grx 
6 g373g4a4g5CT 5 3 4 3 5 4 & 4 

(IS) 
n + + + 

x 8 · ·· . K • F · Q . Q . Q . 'l'o·· 
a3~+a41l4~1-'5·ao o g3g4g5 ~CT3 g4CT4 %CT5 
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As in ref.1281 , using the variational principle we get the se~ 
cular ~quation 

n Uglg2(go)Ug~g~-<go) 
I P, ,l(w +w +&u -lJ )8 'o ,-.I --------·-• 

f!..'g'· g1g2 g1 g2 g1g 2 n ~g1 &,g2 io w -l) 
1 2 ,. g 0 n 

ug3g4g5 ug:}g4g5 (16) 
g1g2 g1g2 

I -~---~~------&u~--·1=0, 
&.3 g4g5 wg3 +wg4 +wg5 + g3g4g5 -71 n 

h Ug3g4g5 . .. /28/ . f 
w ere ~g are g1ven 1n refs. · It 1s seen rom eq. 
(16) th~r 2the fragmentation of two-phonon states is defined 
by the one-phonon and three-phonon poles and the correspon-
ding functions Ug1g (!!o) and U~~fig5 The shift of three-
phonon poles due to 2the Pauli principle in the components 
of (IS) is 

Ko ± ll5 Ra±ll4 
1 K (g4t\31lai'\~g4)+K (goAallai'\gsg5) 

l'lw .,._- I I -------------------------+ 
&.3g4g5 4 1' <t\Jils) 1y y --; 

+ K V g3 ,\3/ls i 
Ko-ll5 .lCo±lls 

K (~~114i'\g4g3)+ K (g5 ~114i'\g4g5) (17) +' __________ ...,. ________ . ··+ 

(-\114) -----
K vY, 4 Y>- j). 1• 

K ±11 
4 ~+ 

+ !._~~W.:.lli~..BL+K --~l2~f1l~J~~ 1. 
K(-\;ll5)JY"g5 y,\6/151' ' 

The signs K0 ± 11 are defined in each case by the signs a 3 ,a 4 ,a6 
entering in CT0 K 0 "'Valls+ a411 4 + a~ll&· 

The shifts of three-phonon poles are calculated for the 
K 77 =0+, 2+ and 4+ states in 158 Gd anda68Er. The shifts vary 
from 0. I to 5 MeV and comprise, on the average, I MeV. If 
shifts &ug g g are taken intO" account, the number of 
three-phonJn4pgles decreases in the interval 4-5 MeV by an• 
order of magnitude and in the interval S-6 MeV twice, The re
maining three-phonon poles with the one-phonon poles are suf
ficient for the fragmentation of collective two-phonon states, 
the centroid energies of which are in the region of 3 + 5 MeV. 

4. ANALYSIS OF THE 'J,'WO-PHONON STATES IN 
168

Er AND 228 Th 

Collect-ive t\vo-phonon states with the given K 77 or ,\IJ. 

and the configuration I A11l1 i 1 . .\21! 2 ~ I are specified by 
enharcement of theEA1 transitions to the band of one-phonon 
state IA2Il2i2l, E,\2 transitions to the band of one-
phonon state IA. 111 1i 1 l and EA. hindrance of the transiti
ons to the ground state rotational band of a doubly even nuc-

ll 



leus. As a rule, the collective two-phonon states are formed 
by the first collective phonons with i1 =1, i2 =1. 

The possible existence of the two-phonon states in defor
med nuclei has been analysed in ref. 191. The con~lusion of . 
ref. 151 about the non-observation of two-phonon states in de
formed nuclei was confirmed in ref. 191 Since the two-phonon 
states in 168Er and in the region of the Ra, Th and U isoto
pes are lively discussed, we shall consider in detail the si
tuation with the two-phonon collective states in i68Er and 228Th. 

Our calculations have been made with a small one-phonon 
basis without three-phonon components of the wave functions. 
Such calculations pretend to a correct description of the 
nonrotational states (besides o+ states) up to the excitation 
energy of 2 MeV. As was expected, we obtained the states with 
very overestimated two-phonon components. The results of cal
culations of 168Er are given in table 2. It is seen from 
the table that the first quadrupole and octupol~ one-phonon 
states are described .fairly well. The centroid energies of 
all collective two-phonon states are above 3 MeV. The con
tribution of two-phonon components to the states with an ener
gy less than 2 MeV is not large. The analysis of y -vibratio
nal states in 168Er performed in refs. 11 L 191 assumes that the 
K" =4+ state with an energy of 2.03 MeV is the two-phonon 
vibrational state. According to our calculations the main 
part of the 4+ 1221, 221 l strength is at the energy of 
4.3 MeV. The contribution of the !221, 2211 component to the 
first 4+ state is 1%, it is not large in the 4+ state with 
an energy less than 2.5 MeV. A more accurate calculation of 
the fragmentation may increase the contribution of the com
ponent !221, 2211 to the first 4+ state; however, one can 
hardly expect it to be higher than 10%. 

To discuss the situation with the K"=O+ 1301, 3011 two
phonon sta,tes in the region of the Ra, Th and U isotopes, 
we have chosen 22~h. the calculations of which are given in 
table 3. According to our calculations the centroid energy 
of the o+ 1301, 3011 state is 8.5 HeV. Such a large shift of 
8 MeV cannot be treated seriously. However, it is clear that 
the centroid energies of this state are larger than 4 MeV, 
and the state !301, 301 I is strongly fragmented. Therefore, 
the o+ states with large components 1301, 3011 should not 
exist. The centroid energies of the two-phonon y-vibrational 
states in 228Th are equal to 3.5 MeV. It should be noted that 
the centroid energy of the states composed of one collective 
and one weakly collective phonon like {201, 2231 and !203, 
2211 are less and their contribution to the first two K" =2+ 
states is larger in comparison with the state composed of two 
collective phonons, for instance 1201, 221 I. 

12 

l 
* 

\ 

J 

{j 

Table 2 

Nonrotational collective states in 168
Er 

Energy, MeV 
K" Configurations, % 

exp. calc. 

o+ 1.217 1.2 201 84; 202 1; 1221,221\ 1; 

1.422 1.6 202 93; 201 2; 1221,2213 1; 

1.9 203 96; 201 1 ; 

3.5 {221,2211 79; {221,222~ 2; {221,2231 2; 

3.6 \221,222j 88; i221,221J 2; 

4.2 \201,201} 51; \221,225J 1; 

2+ 0.821 0.9 221 87; \201 ,221} 2; \221 ,441) 1; 

1.848 1.7 222 98; 

1.930 1.9 223 96; 

2.3 224 92; \201,221} 2; 

2.7 225 82; \201,221) 8; \202,221.1 1; 

).3 \201,221) 82, 225 7; 224 1; 

4+ 2.03 1.8 441 83; 443 4: t201,441] 6; 1221,221l 

2.4 443 49; 442 43; 441 2; t221,222l 1; 

2.5 442 55; 443 39; 441 3; 

4.2 \202,441} 89; \202,4423 2; l.221 ,221\ 1; 

4.3 \221,221) 66; t202,441.l 1; 

4.6 1321 '321! 78; 

o- 1. 786 1.74 301 98; 

1.358 1.3 311 99; 

1-936 1.9 312 99; 

2- 1.569 1.7 321 95; \201,321} 2; 

2.0 322 94; 1201 ,322} 2; 

3.3 £221,301J 92; 

f' 

-, 

1 ; 
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Table 3 

Nobrotational collective states in 228 Th 

Energy, xev 
K" Configurations, % 

exp. calc. 

o+ 0.839 0.8 201 85; 204 4; (201 ,204] .4; 

1.41 202 38; 203 28; !201,204) 4; \221,221\ 3; 

1.43 .202 59; 204 17; ! 201,204] 3; I 221 ,221] O. 3; 

1.9 1311,311\ ·as; 303 8; 204 41 

3.4 l221, 221) 3,7; i201,204\ 19; \203,2041 20; 

7.0 !201",201! 50; 
8.5 lj01,301l 60; 

2+ 0.977 1.0 221 88; \201,223) 4; \203,2211 2; 

1.9 222 64; 223 12; I 201 , 22 3 I 1 ; 1 201 , 2211 0.5; 

1.94 222 29; 223 46; !201,222\ 1; !221,441\ 2; 

4.3 l201 '221) 85; 223 1; 1301 ,324; 1; 

4.6 !)01,321\ 88; \.201,225) 1 ; 

4+ 1.3 441 98; 

1.4 442 79; \201,442\ 17; 

2.0 443 93; (201 ,443) 1; 1203,443} 3; 

3.0 \201 ,442; 78; 442 13; ! 203,442_1 2; 1221 ,22f 

3.5 \221,2211 63; 1203,442\ 20; 442 2; 

4.0 \321. 321} 88; 

o- 0.328 0.35 301 98; 
1.) 302 77; 303 4; \201,302] 9; \201,)0)~ 4; 

3.8 \221 ,321} 76; \221 ,324] 8; 20) 2; 

7.8 ~201, )01\ 70; 

0.952 0.95 )11 100; 

2- 1.123 1 .14 321 96; 

1.8 32::! 86; t20.1,323l 10; 

" • . l 
\. 
'I 

1 ; 

I 

l 

:l 
l 
I 
I 

The results of calculation for 168Er and 228Th, given in 
tables 2 and 3, are characteristic in may respects of the 
well deformed nuclei and those lying on the boundary of the 
region of deformed nuclei. These data indicate the absence 
of the low-lying collective two-phonon states. 

CONCLUSION 

Based on the study of the two-phonon states in doubly even 
deformed nuclei within the quasiparticle-phonon nuclear model 
taking into account the Pauli principle in the two-phonon 
components of the excited state wave functions, we can make 
the following conclusions; 

I. The conclusion of ref / 91 about the shift of centroid 
energies of the collective two-phonon states in doubly even 
deformed nuclei by J-3 MeV towards higher energies is confir
med. 

2. The results of calculation with the phonons depending 
on the sign of the angular momentum projection into the sym
metry axis/ 201 differ slightly from the results obtained in 
refs!9•101. The largest difference implies that one and the 
same configuration of !A 1~ 1 i 1 ,A2~ 2 i 2 } the function 
KKo (g1g2!g2 g1 ) and the pole shifts turn out to be dif-
ferent for Ko .. ~t+ ~2 and K0 =II' 1 -~2 1 . For both collective 
phonons this difference is not large. 

3. The shifts of three-phonon poles due to the Pauli prin
ciple in the three-phonon components of the wave functions 
are calculated. It is shown that the shifts take different 
values from 0. I to 5 MeV. Inspite of a considerable decrease 
in the number of three-phonon. poles up to the excitation 
energy of 5 HeV, one may expect a strong fragmentation of 
two-phonon states, the centroid energies of which are at 3-
5 MeV. 

4. The conclusion of paper 191 is confirmed, that the col
lective two-phonon states cannot exist in the deformed nuclei. 
This conclusion is universal. It concerns all the ~eformed 
nuclei and is independent of the choice of the model parame
ter. This is just the difference from the explanations made 
in papers/11,l91, in which nonobservation of the two-phonon 
states in a certain energy interval is related to the speci
fic properties of the nuclei considered. 

5. To elucidate the situation with the two-phonon states, 
it is necessary to search for the collective two-phonon 
states in many deformed nuclei. 

·Is 
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ConOBbeB B. r. ' lliHPHKOBa H .10. nonolKeHHe E4-82-300 
C KOnneKTHBHbiMH p;ByX<!JOHOHflblMH COCTOHHHHMH B p;e<!JopMHpOBaHHbiX 
H,o;pax 

B paMKaX KBa3H'laCTH'IHO-<!JOHOHHOH MOp;enH Hp;pa C orrepaTOpaMH 
<!JOHOHOB, saBHCH~MH OT 3HaKa ITpOeK~HH yrnOBOrO MOMeHTa, Y'ITeH 
ITPHH~HIT IlaynH B ,LJ;BYX<!JOHOHHbiX KOMITOHeHTaX BOnHOBbiX <!JYHK~HH. 

PaCC'IHTaHbi I,eHTpOHp;bl 3HeprHH KOnneKTHBHbiX ,LJ;BYXWOHOHHbiX COCTOH
HHH B tieTnO-<JeTHbiX p;e<!JopMHPOBaHHbiX H,o;pax H ITOKasano, 'ITO Y'leT 
ITpHH~Hrra TiaynH rrpHBO,lJ;HT K HX C,LJ;BHry Ha J-3 M3B B CTOPOHY 6onb
WHX 3Hepr!1H. PaCC'!HTaHbi C,LJ;BHrH Tpex<!JoHOHHbiX ITOniOCOB Hs-sa y'le
Ta IIpHH~HIIa IlaynH B Tpex<!JOHOHHbiX KOMITOHeHTaX BOnHOBbiX <!JYHK~HH. 

Cne,o;yeT OlKH,LJ;aTb CHnbHOH <!JparMeHTa~nH KOmiCKTllBHbiX ,o;nyx¢oHOHHbiX 
COCTOHH.IlH, ~eHTpOH,LJ;bl 3Hepr:HH KOTOpb!X paBHbl 3-5 MsB. IlO,LJ;TBeplKp;eH 
Bb!BO)J;, 'ITO KOnneKTHBHbie ,LJ;BYX<!JOHOHHbie COCTOHHHH He )J;OnlKHbl cy
meCTBOBaTb n Ae<!JopMHponaHHbiX n,o;pax. TipoaHanH3HponaHo rronolKeHne 
n 168 Er 11 H3oTorrax Th n U. 

PaGoTa Dhmomreua n flaGopaTopnn TeopeTn'lecKoJ.i: <!>nsnKn OHniL 

npenpHHT 06beAHHeHHOro HHCTHTyTa RAePH~X HCCfleAOBaHHH. ~y611a 1982 

Soloviev V.G., Shirikova N.Yu. Situation E4-82-300 
with Collective Two-Phonon States in Deformed Nuclei 

Within the quasiparticle-phonon nuclear model with the 
operators of phonons depending on the sign of the angular 
momentum projection, the Pauli principle is taken into account 
in the two-phonon components of the wave functions. The cen
troid energies of the collective two-phonon states in doubly 
even deformed nuclei are calculated. It is shown that the in
clusion of the Pauli principle leads to their shift by 1-
3 MeV towards high energies. The shifts of three-phonon poles 
due to the Pauli principle are calculated in the three-phonon 
components of the wave functions. The collective two-phonon 
states, the centroid energies of which are 3-S MeV, are expec
ted to be strongly fragmented. The conclusion is confirmed that 
the collective two-phonon states should not exist in deformed 
nuclei. The situation in 168 Er and in the Th and U' isotopes 
is analysed. 
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