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I . INTRODUCTION 

In the one-dimensional quantum mechanics one has to 
consider a differential equation of the form 

- d2 
[- dx2 + F(x)}/1 = 0 , F(x) = 2(V(x) -E) • ( 1) 

Here E is the total energy, V(x) is the potential energy. The 
quasiclassical limit of quantum mechanics corresponds to a 
large function F(x): 

F(x) =A 2 f(x), A ... oo. (2) 

It is convenient in this limit to transform~ into 
~ = e -As(z)A(x, A). (3) 

One has 

.J!.:_[e-AS(z) A} = e-As(.\2 (~)2 A_ 
dx 2 dx 

d2S dS d d2 A 
-A ( - + 2- -}A + -- } , 

dx 2 dx dx dx 2 

so eqs. (I), (2) give 

( ~)2 ( = r x). 
dx 

d 2S dS d 1 d2 
(--+2---- -)A(x. A)= 0; 

dx 2 dx dx A dx2 

substituting here 
00 -k 

A(x, .\) = I A k (x) A 
k=O 

we get from eq. (6) 

d
2 S dS d 

(---+ 2- -)A
0 

(x) = 0, 
dx 2 dx dx 

( d2S + 2~ _!_)A d2Ak-t 
k 

, It = 1, 2,. 3, ..... 

u2 dx dx dx2 .---~ .. ~-- ···-------·~-·· 

(4) 

(5) 

(6) 

(7) 

(8} 

I 



I. I. Let the function f(x) be negative within the interval 

a< x < b (9) 

and positive outside. 
The the eigenfunctions of the problem would rapidly oscil­

late as A ... + oo inside the interval (9) and fastly decrease 
outside. 

1.1. 1. Correspondingly, one can take 

a 
S(x) = I yf(u) du, 

X 

for x < a; 
then eq. (8) gives 

~ =--v rex> 
dx 

A () 1 f( )-1/4 
0 X = "' X 

y-dS/dx 

(10) 

(II) 

I. 1.2. In the interval (9) the function S(x) is imaginary: 
X--

S(x) =± iu(x)"' ± i I y- f(u)du (lOa) 
a 

so that eqs. (3), (7) change to: 

1{1 (x, A) = i ( e iAu(x) B k (x) + e -iAu(x) B k (x))A -k 
k= 0 

· (3a) 

1.1.3. We will suppose the function~~ to be regular for 
all real values of x. 

1.2. The approximations (3), (7) and (3a) are valid only 
far enough from the turning point: really, eqs. (8), (II) 

give 

A0(x) (a-x)-114 

-7/4 
A1 (x) - (a- x) , (12) 

A2(x) -(a- x)-13/4 

as x ... a, and expansion (7) is not valid if A (a-x) 
312 « L 

1.2. I. It is easy to construct the approximation of ifl(x,A) 
valid in the vicinity of the turning point, e.g., x ... a (ref:/. 11)~ 
Mathematical Appendix, Sec. b). 

Near the point x=a one has 

f(x)=-C
1

(x-a)+C
2

(x-a)
2

+ .... , C1<0. ' (13) 

2. 

~~~· .\,: 
}~ 

I? 

1 ) 
I '• 

'st 

i 

,; 

Neglecting here all but the first terms and substituting 
the linear function f(x) into eqs. (I), (2), one can get the 
solution in a form of the Airy integral 

- p3 
1{1 (x, A) .. I exp I A [- - + p(x - a )]I dp • (14' 

c 3C1 , 

Here C is the contour jargp I = rr/3. The value of the integr1 
(14) as A ... +.., for x< a is defined by the saddle point 

p- p(x) -v-C 1 (a-x) (I~ 

and for x > a - by the saddle points 

p-p(x)- ±iy-C1 (x-a). (II 

1.2.2. The integral representation (14) allows one to c1 
nect the quasiclassical wave function (3), (7), (10) valid 
for x<a, and the wave function (3a) valid for a< x< b. 

The representation (14), however, is sufficient for the 
connection only in main, zero order inA-1 (k •0 in (7) and 
(3a)). The connection in higher orders in A- 1 requires some 
generalization of the integral representation (14); one ha 
to take into account the nonlinear terms of eq. (13), negl· 
ted in eq. (14). 

1.3. We will construct such a generalization in the for 

l{l(x,A) .. JexpiA[L(p)+ p(x-a)}JK(p,A)dp, ( 
c 

where 
K (p, A).. i K (p)A -n+ 1/2 

n=O n 

1.4. In Sec.2 we exptain the construction of the functi 
L(p) and the localization of the saddle points of the expo 
tial in eq. (17). 

In Sec.3 we explain the construction of the functions 
K

0
(p) (18). 
In our considerations we substantially use the multiple 

differentiation of the composite function formula 

(~) n F(cP(Z)) = n I 
dz 

l <k) n IL., k.. kF (q,(z)) ll (( q,<l) (z) kl 

,-~····• I ) n n = 1 i' 

1!-1 lkl = n . 

n 
k = l k 

I= 1 I 

__ 1_.) 

k 11 



1. 1. Let the function f(x) be negative within the interval 

a< x < b (9) 

d positive outside. 
The the eigenfunctions of the problem would rapidly oscil­

te as A .... + .. inside the interval (9) and fastly decrease 
tside. 

1.1.1. Correspondingly, one can take 
& 

S(x) = f yf(u) du, 
l[ 

r x < a; 
en eq. (8) gives 

~ =-v rex> 
dx 

Ao(x) = 1 = f(x) -1/4 
y-dS/dx 

(10) 

(II) 

1. 1. 2. In the interval (9) the function S(x) is imaginary: 
z --

S(x) =± ia(x) = ± i f y- f(u)du (lOa) 
& 

that eqs. (3), (7) change to: 
00 

iAa(x) -IAa(z) - -k 
r/f(x, ,\) = I. (e Bk (x) + e 8 k (x))A . (3a) 

k= 0 

1.1.3. We will suppose the function ~x) to be regular for 
1 real values of x. 

1.2. The approximations (3), (7) and (3a) are valid only 
enough from the turning point: really, eqs. (8), (II) 

e 

A
0

(x) _ (a-x)-1/4, 

A
1 

(x) _ (a- x)-7/4 , 

A
2

(x) _(a- x)-13/4 

x .... a, and expansion (7) is not valid if ,\(a-x) 312 « L 

(12) 

1.2. I. It is easy to construct the approximation of r/f(x~A);, 
id in the vicinity of the turning point, e.g., x= a (reL,-: 1 )~ 
hematical Appendix, Sec. b). 
Near the point X=a one has 

2 
f(x) = c1 (x- a) + c2 (x- a) + .••• ' cl < 0. ' (13) 

• 

!)/ 

·~· /i 

l 

.( ) 
I;, 

Neglecting here all but the first terms and substituting 
the linear function f(x) into eq». (I), (2), one can get the 
solution in a form of the Airy integral 

- p3 
1/1 (x, A) .. f exp I A [- - + p(x - a )]I dp • ( 14) 

c 3Ct 

Here C is the contour jargp I= rr/3. The value of the integral 
( 14) as A .. + oo for x< a is defined by the saddle point 

p - p (x) • y-C 1 (a- x) 

and for x > a - by the saddle points 

p .. p(x) • ± i y -C1 (x- a). 

(15) 

( 16) 

1.2.2. The integral representation (14) allows one to con­
nect the quasiclassical wave function (3), (7), (IO) valid 
for x<a, and the wave function (3a) valid for a< x< b. 

The representation (14), however, is sufficient for the 
connection only in main, zero order inA-1 (t •0 in (7) and 
(3a)). The connection in higher orders in A-1 requires some 
generalization of the integral representation (14); one has 
to take into account the nonlinear terms of eq. (13), neglec­
ted in eq, {14). 

1.3. We will construct such a generalization in the form 

1/1 (x, A) .. J exp lA [L(p) + p (x- a)]l K (p, A )dp , ( 17) 
c 

where 
K{p,A) .. i K {p),\-D+l/2 

n=O n 
(18) 

1.4. In Sec.2 we explain the const~uction of the function 
L(p) and the localization of the saddfe points of the exponen­
tial in eq. (17). 

In Sec.3 we explain the construction of the functions 
K

0 
{p) (18), 

In our considerations we substantially use the multiple 
differentiation of the composite function formula 

d n 
(-) F (<P(z)) = n I 
dz 

I F Ck) n Cl) ~ '~ .... k (¢(z)) II (( ¢ (z) kt 
n ' n 1= 1 ) 
I i' 

I= 1 lkl = n , 

__ 1_.) 

k 1 I ( 19) 

n 
k = I k 

I= 1 I 
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(the summation runs over all nonnegetive integer values of 
k

1
,k

2
, ••• , kn restricted by the condition 1 ~ 1 iki =n). 

This formula can be easily verified by induction. 

1.5. Unfortunately, I am not able to determine the locali­
zation of the contour C in eq. (17) sufficiently accurately. 
One can only suppose that the integral (17), if A lx-al ... oo, 
is determined by the saddle points, described in sec.2. 

2. THE FUNCTION L(p) 

Here we determine the function L(p). 
Let us require the function (17) to have asymptotics (3), 

(7), (10) as x<a, A-o+oo. 
Suppose the integral (17) at x< a to be determined by the 
~ saddle point p =P(x); then one has 

-S(x) = p (x) (x- a) + L (p(x)) (20) 

and 

x - a + L' (p(x)) = 0 ; (21) 

the function x(p), inverse to p(x), satisfies the equation 

x(p)- a+ L'(p) = 0. (22) 

Differentiating eq. (20) with respect to x gives (with account 
of eq. (21)) · 

S' (x) + p(x) = 0 

or 

S'(x(p)) +P = 0. 

Note that eq. (21) ~ have several roots p(x), but 
has only one root ( for x < a) • 

• 

2.1. Equations (10) and (13) imply 
00 n + 3/2 

S(x) = I Sn(a-x) . 
n =0 

It follows from eqs. (23), (25) that 
00 n+ 112 

p(x) = I Sn(n + 3/2) (a-x) 
n=O 

whence 
00 ' a- x(p) = I a p 2n+2 

n = 0 n 

The latter equation with eqs. (22) and (20) gives 

L(p) = i ~p 2n+3. 
n=O 2n+3 

4 

(23) 

(24) 

eq. (23) 

(25) 

(26) 

(27) 

(28) 

~~ 
1
!!,,;, 
'ill!\ ··.·~['.:,. 

} ' 

:J; 
,wj' 
;)~~~\ 1,' 

~~~ 
~
'·; 

.:~ 
';';" 
lj.i 

'\: 
:I 

''.'\~ 
·lik 

·' /1 
t' 

;~l 

s~. 

tl \'· 
)' 

~· :.1.: 

!, 

.', 

2.2. One has 

d2 
Y = --[p(x-a) + L(p)]i = L"(p(x)) 

dp2 p=p(x) 

dx(p) =---dp 

1 1 = -( dyf(x) -1 
S"(x) dx ) > 0 

dp(x)/dx 

in some interval 

a-8< x<a, 8>0. 

(2 

This result implies the point p = p(x) to be a minimum of 
the exponential in the integral (17) for real p (if a-8< 
so that the contour C has to be parallel to the imaginary 
axis at the point p = p (x). 

2.3. Let us now consider the case x>a. Equation (26) gh 
for x >a two values of p(x): 

p(x) = ± i I S (n + 3/2)(x- a) n+ 
112 

(-) n. ' 
n=O n 

The value of integral (17) for x>a is defined by two saddl 

points (31). 

2.4. Thus we have constructed the function L(p) and h1 
defined the localization of the eq. (17) integrand saddle 

points. 

3. THE FUNCTION K (p, A) 

The function ~(x,A) has to satisfy the equation 

• 

d 2 2 
00 

m T = [- -+A I C m<x- a) ]~ (x, A) .. 0 = 
dx2 m= 1 

.,.A2 f dpeAp(x-a) [-p2 + I em(-..!.. _d_)m]eAL(p) K(p,A} = 
c m=1 A dp 

, oom (/m 
=A2(dpe"p(x-a)[-p2eAL(p)K(p,A)+ I. I C m!-1A)_ x 

m= 1 n = 0 m n! (m - n )! 

X{(~) n /L(p) ][(_A_) m-n K(p, A)]] 
dp dp 



e summation runs over all nonnegetive integer values of 
k k restricted by the condition ~ 1·k = n ) 

' 2' ••• , n i = 1 l • 

s formula can be easily verified by induction. 

1.5. Unfortunately, I am not able to determine the locali­
ion of the contour C in eq. ( 17) sufficiently accurately. 
can only suppose that the integral (17), if ,\ lx- a! -+ oo, 

determined by the saddle points, described in sec.2. 

THE FUNCTION L(p) 

Here we determine the function L(p). 
Let us require the function (17) to have asymptotics (3), 
, (10) as x<a, A-++oo. 
Suppose the integral (17) atx<a to be determined by the 

saddle point p "'P (x); then one has 

-S(x) = p (x) (x - a) + L (p(x)) (20) 

x - a + L '(p(x)) "' 0 ; (21) 
function x(p), inverse to p(x}, satisfies the equation 

(22) 
erentiating eq. (20} with respect to x gives (with account 
q. (21)) 

'(x) + p(x) "' 0 (23) 

'(x(p)) +P"' 0. (24) 

that eq. (21) ~have several roots p(x), but eqi (23) 
only one root ( for x < a) • 

. 1. Equations (10) and (13) imply 
00 

n + 3/2 (x) = I S0 (a-x) 
n =0 

allows from eqs. (23), (25) that 
00 

n+1/2 (x)"' n!-o sn (n + 3/2) (a-x) 

ce 
00 

- x(p) = I a p 2n+2 
n"' 0 n 

latter equation with eqs. (22) and (20) gives 
(p) = I ~p 2n+3. 

n=O 2n+3 

• 

(25) 

(26) 

(27) 

(28) 

''/,~~· 

~~ 
,.~, 

·~~ 
1\•q,' 

' .. l~t;;, 
tf1 
,',,\ 

~~~ 

.l. ,., 
~ 

.·;1' 

i' ,I 

1,:/ 
,ri' 

2.2. One has 

d2 . 
Y = -[p(x-a) + L(p)ll "' L"(p(x)) , _ dx(p) 

dp2 p=p(x) dp-

(29) 
1 _1 _ _ dy'f(x) -1 

S"(x) --( dx ) > 0 dp(x)/dx 

in some interval 

a-8< x<a, 8>0. (30) 
This result implies the point p = p(x) to be a minimum of 

the exponential in the inte~ral (17) for real p (if a-8<x<~. 
so that the contour C has to be parallel to the imaginary 
axis at the point p , p (x). 

2.3. Let us now consider the case x>~Equation (26) gives 
for x >a two values of p(x): 

p(x) = ±i0~0 S
0

(n+ 3/2)(x-a)n+1/2 (-) 0
.' (31) 

The value of integral (17) for x>a is defined by two saddle 
points (31). 

2.4. Thus we have constructed the function L(p) and have 
defined the localization of the eq. (17) integrand saddle 
points. 

3. THE FUNCTION K (p, ,\) 

The function ~(x,..\) has to satisfy the equation 
• 

d 2 
2 

00 
m 

T d- --+A I Cm(x-a) ]~(x,..\) .. 0 = 
dx2 m= 1 

,_.\2 Jdpe.\p(x-a.) [-P2+ i Cm(-.!... _d_)m]eAL(p)K(p,,\}"" 
c m"'1 A dp (32) 

' oo m / m 
=A2Jdpe"P(x-a)[-p2eAL(p)K(p,.\)+ I ~em m!(-1A)_ X 

m=1 n=O n!{m-n)! 

x [(.A_) n e AL(p) ]((.A..) m-n K(p, ,\)]] 
dp dp 

5 



oo m m 
2 2 

= .\ J dp exp {.\ [p(x- a)+ L(p)1 II p K (p,.\) + I. I. c ml (-) m x 
m= 1 n=O (m-n) 1 

X 

D 
I. k -m n 1 L(t)(p) 1!.1 d m-n 

I. .\1 I II(-( ) ) (-) K(p,.\)}; 
11.

1
, 11.

2
, ... ,lr.n I= 1 k t I i I dp 

n 
I. 111.1 .. n 

I= 1 

we have used eq. (19). 
Continuing the equality, introducing notationk0 -m-n, q = 

• k0 + 2k2 + 3k8 + ... nkn and using eq. (13) we obtain 

or 

6 .. 

2 oo m (Jr.o)(p ~) 
0-T=A fdpexp{.\[p(x-a)+L(p)1ll-p2 K(p,.\)+ I I. K "'x 

m=1 k0-o k 0 1 

I. 
ml L '(p) m-q c (-) m 

m q 1 L (1) (p) 11.1 
II (-( ) )I • 

1=2 k11 il xq,lr.2,1r.8' ... ,lr.q 
q .. Jr. +21L (m-q)l.\ ko+lr.2+21r.s+ < 

0 -y + ... qlr. < m "' q-1)kq 

q-

2 2 00 q (q) "'.\ r dp exp {.\ [p (x- a)+ L(p)]J 1-p I( (p, .\ )+ I (-) r (a- L'(p)) X 

q=O 

(ko > q (1) Jr. I 
I I( (p,.hl_ II (-1-( L (p) ) X 

lr.O,Ir.2 .... 1r.q k
0

1.\ q-k 1"' 2 k 11 il 

k0 + \ lk 1=q 

Jr. = 1 k 1 
2 

0- T • .\2 fdp exp[A[p(x-a) + L(p)1 x 
c 

> I ' 

(33) 

xH-p2 +f(a-L'(p))1K(p,A) -t'(a- L'(p))K.'(p,A) + (34) 

+ t" (a- L'(p)) [ K"(p, A) + L"(p) K(p, A) 1 _ 
21A2 21 01 A 

_ f"'(a _ L'(p)}[ ~<"'(p,A) + ~<'(p, A) L"(p) + K(p,A) L"'(p} 1 + 

31A 9 11 21A1 01 31 A2 

+ O(A-9 > I 

Equating the expression in braces to zero allows one to det 
mine the function K(p, .\). With account of eqs. (22), (23) o 
can transform the first term in braces· according to 

[-p 2 + t(a - L'(p))1 K (p,.\) ... 

= [-S' (x(p)) 2 + f(x(p))1 K (p, .\) ; 
(35 

eq. (5), as taken for complex x, x ... x(p), p c;; C, 
ter expression to disappear. 

implies the 

3.1. Substituting the expansion (18) into eq. (34) gives 
the equations defining the functions ~<n(p),n•o,t,2, ••• ' 

-f'(a- L'(p)) K~ (p) + f"(a- L'(p)) L"(p)K 0 (p)/2 = 0; 

-t'(a- L'(p))K~ (p) + f" (a- L' (p))L" (p)K
1 

(p)/2 + 

+ t"(a- L'(p))~<" (p)/2 -
0 

- f"'(a- L'(p)) [K~(p) L"(p}/2 + K 0 (p)L"'(p)/8 1 = 0, 

whence 
.. 112 

~<o (p) ... A 0 [-f'(a,- L'(p))1 

(3 

(3 

(3 

(p) (p) I JP [ f" (a- L '(s)) , (s) t"'(a-L ~(s)) 
1 

ds 
K 1 = KO . K 0 ·- '" - .j 

o 2t'(a-L'(s)) t'(a-L'(s)) K0(s) 

3.2. So, we have constructed the function K(p, .\). 

4. CONCLUDING REMARKS 

Expanding the function (17) by the saddle point metho 
for x<a and x>a allows one to get connected representatio~ 
~(x,A) of the form (3), (7) and (3a). So we have got the s 
lution of the problem, stated in the item 1.2.2. 

The integral representation we have got enables one, e.J 
to calculate quasiclassical energy levels in any desired 01 

in x-1. Note, however, that the first five terms of this e: 
sion have been constructed 12

"
41 without the knowledge of 01 

integral representation. 

4.1. Let us show for illustration t&at eq. (17) gives fc 
mula (II). The main saddle point term of eq. (17) at x <a 



=='A 2 J dp exp ('A [p(x- a)+ L(p)] II p2 
K (p,>.) + 

oo m m 
I. I. C m • ml (-) x 

mm1 n•O (m-n) I 

X 

n 
I. k -m n 1 L(l)(p) k1 d m-n 

I, >.,1 I 0(-(---) )(-) IC(p,'A)J; 
k

1
,k

2
,. •• ,k

0 
1=1 k 11 il dp 

n 
I. lk1 = n 

I= 1 

e have used eq. (19). 
Continuing the equality, introducing notation ko•m-n, q • 

k0 + 2k2 + 3k3 + ••• nkn and using eq. (13) we obtain 

2 oo m (ko)(p 'A) 
O=T =A Jdpexp('A[p(x-a)+L(p)]ll-p2 K(p,'A)+ I I I( ' x 

m=1 k0-o k 0 1 

I. 
xq,k2,k3' ••• ,kq 

ml L '(p) m-q c (-) m 
m q 1 L (I) (p) ki 

n <-< > >I-
1=2 kll 11 q=k +2k_ + (m-q)IA ko+ke+2k

3
+ < 0 1! ••• qk < m ... q-1)kq 

q-
(33) 

2 I 2 oo q <q> =A fdpexp 'A[p(x-a)+ L(p)]ll-p IC(p,A)+ I.(-) r (a-L'(p)) X 

q=O 

X 

(ko) q 
I. I( (p,_& II 

k0,ko .... k k I 'A q-k 1=2 
" q 0 

k0+ l1t 1=q 
2q 

k=I.kl 
2 

0 = T r= >.. 2 (dp exp('A[p(x-a) + L(p)] x 
c 

xH-p 2 +f(a-L'(p))]~<(p,'A) -f'(a- L'(p))~<'(p,A) + 

+ f" (a- L' (p)) [ I( "(p, 'A) L "(p) 
2 +-

21X 21 
K(p, A) ) -

OI'A 

- f"'(a- L'(p))[ ~(p,'A) + 

31 'A 3 
1< '(p, 'A) L "(p) + _~<-=(p..._, A....;.) 

11 21>.. e or 
+ O(A-3 ) I 

• 

(34) 

31A2 

Equating the expression in braces to zero allows one to deter­
mine the function K(p, A). With account of eqs. (22), (23) one 
can transform the first term in braces· according to 

[-p 2 + f(a- L'(p))]K (p,A) = 

... [-8' (x(p)) 2 + f(x(p))] K (p, 'A) ; 
(35) 

eq. (5), as taken for complex x, x = x(p), p r; C, implies the lat-
ter expression to disappear. 

3. I. Substituting the expansion (18) into eq. (34). gives 
the equations defining the functions Kn(p),n=O,I,2, ••• 

-f'(a- L'(p)) K~ (p) + f"(a- L'(p)) L"(p)K
0

(p)/2 = 0; 

-f'(a- L'(p))l<~ (p) + t" (a- L' (p))L" (p)K
1 

(p)/2 + 

+ f"(a - L '(p)) K" (p)/2 -
0 

- r"'(a- L'(p)) [K~(p) L"(p)/2 + K 
0

(p)L"'(p)/8] = 0, 

whence 
.. 112 

Ko (p) ... A 0 [-f'(a,- L'(p))] , 

(36) 

(37) 

(38) 

K
1

(p) = Ko(p)l { [ f"(a-L'(s)) K"(s) _ f"'(a-L'{s)> ••• ]~+A ), 
o 2f'(a-L'(s)) 0 f'(a-L'(s)) K

0
(s) 

3.2. So, we have constructed the fun.ftion K(p, A). 

4. CONCLUDING REMARKS 

Expanding the function (17) by the saddle point method 
for x<a and x>a allows one to get connected representations 
~(x,'A) of the form (3), (7) and (3a). So we have got the so­
lution of the problem, stated in the item 1.2.2. 

The integral representation we have got enables one, e.g., 
to calculate quasiclassical energy levels in any desired order 
in>..-1. Note, however, that the first five terms of this expan­
sion have been constructed 12·•V without the knowledge of our 
integral representation. 

4.1. Let us show for illustration't6at eq. (17) gives for­
mula (Ill). The main saddle poitit term of eq. ( 17) at x <a is 
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1/J (x, A) _ e -AS(s) K 
0 

(p(x)) (L "(p(x))) - ~ 

here K 0(p(x)) ""[-f'(x)r~ according to eqs. (38) and 

(22) and L" (p) ""-2[C(x)] ~ /f'(x) according to eq. (29), so, 
we arrive to eq. (II). 

4.2. Note in conclusion that the integral representation 
we have got allows rather a simple generalization to the case 
of multidimensional quasiclassics; one has only to know the 
function S(x), satisfying the multidimensional eq. (5), and the 
part of the dividing surface, which is a generalization of 
the turning point to the case of multidimensional quasiclas­
sics. 
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E4-82-3acTaBeHKO rr.r. HHTerpanbHOe npeACTaBneHHe 
KBa3HKnacc~eCKOH BOnHOBOH ~YHKUHH B OKpeCTHOCTH TOqKH 
noBopoTa /06o6~eHHe HHTerpana 3HpH/ 

ITonyqeHO HHTerpanbHOe npeACTaBneHHe KBa3HKnacc~eCKOH B 
HOBOH ~YHKUHH OKOnO TOqKH nOBOpOTa, HBnHffi~eeCH OOOO~eHHeM 
H3BeCTHOrO HHTerpana 3HpH /~YHKUHH 3HpH/. ITonyqeHHOe HHTer 
HOe npeACTaBneHHe nOSBOnHeT npOH3BOAHTb CmHBaHHe KBaSHKnac 
qeCKHX BOnHOBbiX ~YHKUHH, SaAaHHbiX no Ooe CTOpOHbl TOqKH nOB 
Ta, c nffi60H ToqHOCTbiD no napaMeTpy KBaSHKnaccHqecKoro pasn 
JKeHH.R:. 

Pa6oTa BblllOnHeHa B rraoopaTOpHH TeopeTHqecKOH ~H3HKH mrn: 

npenpHHT 06~AHHeHHOrO HHCTHTYTa RAePHWX HCGneAOBaHHH, ny6Ha 198~ 

Zastavenko L.G. The Integral Representation E4-82-
of the One-Dimensional Quasiclassical Wave Function 
in a Vicinity of the Turning Point (The Airy Integral 
Generalization) 

We have got the integral representation of the quasicla: 
sical wave function in ~ vicinity of the turning point (th< 
Airy integral generaliza'tion). This representation allows < 

to connect the quasiclassical wave functions, as given on 1 
sides of the turning point with any desired accuracy in th1 
quasiclassical decomposition parameter. 

The investigation has been performed at the Laboratory c 
Theoretical Physics, JlNR. 
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