


1. INTRODUCTION

In the one-dimensional quantum mechanics one has to
consider a differential equatiom of the form

2
[+ FOW =0,  FG)=20V(x) ~E) . )

Here E is the total energy, V(x) is the potential energy. The
quasiclassical limit of quantum mechanics corresponds to a
large function F(x):
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It is convenient in this limit to transformy¢ into
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1.1. Let the function f(%) be negative within the interval
a<x<Db (9)

and positive outside.

The the eigenfunctions of the problem would rapidly oscil-
late as A -+ = inside the interval (9) and fastly decrease
outside.

1.1.1. Correspondingly, one can take

a ——— ds .
=) = [ Vi@du, —— -V I® (10)
X
for x< a;
then eq. (B8) gives
Ay = 1 1) V4. : (11)
V- ds/dx

1.1.2. In the interval (9) the function (%) is imaginary:
X
S(x) =t fo(x) = £1 [y~ f(Wdu (10a)
a
so that eqs. (3), (7) change to:

ban= @B @i eV E o™ G

1.1.3. We will suppose the function f(x) to be regular for
all real values of x.

1.2. The approx1mat1ons (3), (7) and (3a) are valid only
far enough from the .turning point: really, eqs. ®8), (II)
give
By® ~ a-0)"V4,

/
A (X) - (a.-x) -7 4 a2)

3/2

as x-+a, and expansion (7) is not valid if A(a-X) «1,

1.2.1. It is easy to construct the approximation of v (x, §)/
valid in the vicinity of the turning point, e.g., x=2a (ref. 15,
Mathematical Appendix, Sec. b). :

Near the point x=a one has C

2 - -

f(x)=C, (x-2) +C, (x-8) + ., C;<0. . (13)



Neglecting here all but the first terms and substituting
the linear function f(%) into eqs. (1), (2), one can get the
solution in a form of the Airy integral

p 3
Y(x A) = fexplAl- 2 4 px-a)ldp . - (14)
¢ 3C,

Here C is the contour |argp|=n/3. The value of the integral
(14) as A+ 4+ for x<a is defined by the saddle point

P=p(x)=y-C,(a-x) (15)
and for x> a - by the saddle points
P=p(@) = £iy-C,(x-2a). (16)

1.2.2. The integral representation (14) allows one to con-
nect the quasiclassical wave function (3), (7), (10) valid
for x<a,and the wave function (3a) valid for a<x<b,.

The representation (14), however, is sufficient for the
connection only in main, zero order inA~! (k =0 in (7) and
(3a)). The connection in higher orders in A~! requires some
generalization of the integral representation (14); one has
to take into account the nonlinear terms of eq. (13), neglec-
ted in eq. (14).

‘1.3. We will construct such a generalization in the form

¥ (x, A) =cfexpi)s[L(P)+ p(x-a)l} x(p, A)dp , an
where ,
k@M= £ @R (18)
. n=0

l1.4. In Sec.2 we explain the construction of the function
L(p) and the localization of the saddfe points of the exponen-
tial in eq. (17).

In Sec.3 we explain the construction of the functions
k. ® (18).

In our considerations we substant1a11y use the multiple
d1fferent1at10n of the composite function formula

(i)
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n
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(the summation runs over all nonnegetive integer values of

Ky kg, eees Ky restricted by the condition 1:21 ik, =n).

This formula can be easily verified by induction.

1.5. Unfortunately, I am not able to determine the locali-
zation of the contour C in eq. (17) sufficiently accurately.
One can only suppose that the integral (17), if Alx-8| » o,
is determined by the saddle points, described in sec.2.

2. THE FUNCTION L(p)

Here we determine the function L(p).

Let us require the function (17) to have asmtotics 3),
(7), (10) as x<a, A-++ oo,

Suppose the integral (17) at x<a to be determined by the
only  saddle point p=p(x); then one has

-8(x) =p(x)(x-2) + L{EX) (20)
and

x-a+ L(px)) =0 21
the function x(p), inverse to p(x), satisfies the equation

x(p) - a + L*(p) = 0. (22)

Differentiating eq. (20) with respect to x gives (with account
of eq. (21))

87(x) + p(x)
or
S°(x(p)) +p=0. (24)

Note that eq. (21) may have several roots p(x), but eq. (23)
has only one root ( for x< a).

(23)
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2.1. Equations (10) and (13) imply
s = 8,-0"" " (25)

1t follows from egs. (23), (25) that
n+1/2

p(x) = nzo S,(n+ 3/2)(a~-x) (26)
whence -

at-x(p)=n§0a,,p"’"+2 : (27)
The latter equation with egs. (22) and (20) gives

L ) = 3 _i_Lp2D+3 . 2

® n=0 2n4+3 (28)
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2.2, One has

. -L” - X@)
Y= 7 [p(x~a) + L(D)]!p=p(x) = L”({p(x)) = @
—_ (29)
- 1 = 1 ==( Ay )—1> 0
dp(x)/dx S (x) dx

in some interval
a~8< x<a, 86>0. (30)

This result implies the point p =p(X) to be a minimum of
the exponential in the integral (17) for real p (if a -8<x<a),
so that the contour C has to be parallel to the imaginary
axis at the point p=p(x).

2.3. Let us now consider the case x>a. Equation (26) gives
for x>a two values of p(x):

PO = +i T S_(m+3/2)(x-a) 12 ()0 (31)
2=0
The value of integral (17) for x>a is defined by two saddle
points (31).
2.4. Thus we have constructed the function L(p) and have
defined the localization of the eq. (17) integrand saddle
points. ,

3. THE FUNCTION «(p,A)
The function ¥ (x,A) has to satisfy the equation
»
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=A% _fdpexp[)«[p(x-a)+L(p)]l{pzx(p.z\)+ ) g Coh me)
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we have used eq. (19).
Continuing the equality, introducing notation kg=m-n, q =

= ko + 2ky +3kg + ... nk and using eq. (13) we obtain

o0 (ko)
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Equating the expression in braces to zero allows one to deter-
mine the function «(p, A). With account of eqs. (22), (23) one
can transfarm the first term in braces according to

f~p2 4+ t@a-L°@)Ic @A) =
(35)

»

= [=8° @®)? + 1xE))] & @, A) ;

eq. (5), as taken for complex x,x=x(p) peC,

implies the lat-
ter expression to disappear.

3.1. Substituting the expansion (18) into eq. (34) glves
the equations defining the functions « a(P),n=0,1,2,

'@-L'@) kg ® +17(@~-L' @) L"®)x,(@)/2=0;

(36)
-f"(a-L°@)« @ +1” (a-L" @)L" @« @)/2 +
o 37)
+17a = L’ @)y’ @V/2 - | |
-1 @-L'@) [kg@®) L @)/2 +« o@L”(@)/8]=0,
whence .
‘ - ; . - (38

Ko® =Ag t'@-Lem'F, 68

P ) ’, o Yyyys ’
GO =@ [ [ L@@ ey GL) g ds L,

o 2f°(a-L"(8)) ~ t'@-L’(8) «(s)

3.2, So, we have constructed the fungtion «(p,A).
4. CONCLUDING REMARKS

Expanding the function (17) by the saddle point method
for x<a and x>a allows one to get connected representations
Y(x,A) of the form (3), (7) and (3a). So we have got the so-
lution of the problem, stated in the item 1.2.2.

The integral representation we have got enables one, e.g.,
to calculate quasiclassical energy levels in any desired order
in A"l ., Note, however, that the first five terms of this expan-

sion have been constructed '®% without the knowledge of our
integral representation.

4,1. Let us show'for'iilustgation‘tﬁhtfeq. (17) gives for-
mula (I”). The main saddle point term of eq. (17) at x<a is
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YA~ e T® o)) L (py)) - %

here «g(p(x)) =[—f’(X)]—% according to eqs. (38) and

(22) and L* (p) =-2[f(x)] lA/f’(x) according to eq. (29), so,
we arrive to eq. (11).

4.2. Note in conclusion that the integral representation
we have got allows rather a simple generalization to the case
of multidimensional quasiclassics; one has only to know the
function S(x), satisfying the multidimensional eq. (5), and the
part of the dividing surface, which is a generalization of
the turning point to the case of multidimensional quasiclas-
sics.
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