


te INTRODUCTION

In the deformed nuclei the collective vibrational atates
are described by using the phonon operators. The nuclear many-
body problem is aclved in the RPA. The introduced in ref.1/ pho-
nons independent of the sign of the angular momentum projection
infto the symmeiry exis are used. These phonons are extensively
used in the nuclear theory. A fairly good description of the low-
lying collective vibrationsl statea/1'5/ and of the states of
giant reaonsnce-typefs/ in deformed nuclei is obtained in the
one-phonon approximation.

Within the gquasiparticle-phonon nuclear model developed re-
centlle’B/, the calculations are made with the wave functions
containing two-phonon er quasiparticle plug one and two phonons
componénts. In these calculations one should take Pasuli prin-
ciple imto accdunt correctly. The effect of the Pauli principle
in the two-phonon components of the wave functions has been
studied in refs./9’10/. It was shown that the two-phonon colliec-
tive states are stromgly influenced by the Fauli principle. The
use of the phonon operators independent of the sign of the an-
gular momentun projectioh nay lead to incorrect resulta in the
calculations with the wave functions containing two-phomon or
guagiparticle plus two phonons components and when the Pauli
principie is consistently taken into account.

In order to correctly describe the two, three and more

phoncns components and the quesiparticle pius one, two and more



phonons components of the nuclear wave functions, one should
introduce the phonons depending on the sign of the engular mo-
mentum projection inte the symmetry axis. Just this problem is
solved in the present paper. ¥Moreover, the formulae have been
obtained with the new phonons, in which the Pauli prineciple is
consistently teken into account in the two-phonon components

of the excited state wave functions in deformed nuclei.

2. MULTIPOLE-MULTIPOLE INTERACTIONS

The Hamiltonian of the quasiparticle~phonon nuclesr model
ineludes the Saxon-Woods potential which desecribes the average
field of the nucleus and interactions leading to the supercon~
ducting pairing correlations. It éontains glso the multipole-
multipole and epin-multipole - spin-muliipole iscscalar and
isovector forces. For simplicity we skall use only the multie
pole-miltipole isosgcalar forces. It is not difficult to genera-
lize the obiamined equations to the case when the separable spin-
multipole and isovector forces are introduced into the Hamiliwmisn

The multipole-multipole interaction cen be written as
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where are the constants of the isoscalar multipole for-
¢es. The operator of the multipole moment A with projection‘;i

has the form
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here <?‘ 5, I ﬂi%ﬁ?is the single-~particle matrix element of

¥« Rytz) Yy, (89)
the rediel dependence is usually RR('Z)EZ;} or /\73= ":;TV(Z),
where V(‘Z) is the central part of the Saxon-Woods potentiel.
The single-particle states are specified by the set of quantum
numbersg 76 whichk involve the angular momentum projection into
the symmetry axis denoted by K. Everywhere K >0 and f/ >{}. The
states differing by 6{6G=*{) are conjugated with respect to the
time reflection. The operator (2) is rewritten as
a
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where
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Now we perform the canonical Bogolubov transformation

Ogs = Up g * 6 Ug ol (3)

and introduce the dependent om & operators
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and the corresponding Hermitisn-conjugate operators as well as
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Using them, we can rewrite the operator (2') in the form
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operator :Lndependent of 6 has been uased in ref./1’2/. it has

been written in the same way through the ,opergtors
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After the transfermations the multipole-multipole intersc-—

tion is
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the remaining terms being included in Ay .

3, PHONON QFERATORS DEPENDIKG ON THE SIGN OF THE
ANGULAR MOMENTUM PROJECTION
Wow we introduce the phonon absorption operator depending

explicitly on G.
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Tts form is similar to that of the cperator independent of &
(see refs.“’zj}. The wave functions of the one-phonon states
are
+
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where E’; is the phonon vacuum, which is also the ground state

wave function of a doubly even nucleus. Here ; is the mumber



of the one-phonon state, { = 7,2, 3. ,+ in what follows we use the

notation;e }/jc .

The commutation relations are

A

§
Q;51=0,, ,,,,J, Z(‘P e, Mz AN

(a 2.9,

3%
*V}J wi - ! ! )-

’f"g 9",2 ,"92 ;'92

23 iyl ¢ § -yt g

WakEs s ﬁ’z Ss(45-K,) 6" Gsrxz"(:)"ﬂ 59, H¥y 63(’(:""2)6#' Gy (4 "376/—’

AR A R

993 ‘99, 66" 65,6 "9,9, 79,8, 66 65,6 4,65 9,65

{w’ L) d ¥ 324 g

9'9: G3 (M=K, G "C36 9,8, 58s St-x) 6y o556

Pty AT g

%95 ”'?z 6(’(2""’!):6/” 65,'6’ %% ft"s Ofx; LA ”GJ 5 ’:63 #3°G; }
From the relation (12) and if quasiparticles in the ground state

(12

are neglected, i,e., 1f<o(

o2, ’¢G:> =7 , we have
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Thus we have obtained the same orthonormalization condition as
in refs./1’2/.
The Hamiltonian of the quagiparticle~-phonon nuclesr model

for the iaos'calar multipole-multipole interaction is expressed

through the operators of quasiparticles and phonons as follows:



+ x° AN B (14)
Hv-;L—GE(g)d”d?ﬁ %2 i h'hu:?'; Ui’g'z

w‘E

g A 2, /”:’1* T .
{f (?’?z)(%,'f )Jc (gtgz ’9; 9;:52’)} (15)

Rt (-

'{f"?g,p,)( ?;Z *%Z‘)'fzﬂfﬂ%)( ‘f’w*s" z’”)} Q,@m Qaopi
where € (g) is the quasiparticle energy (see ref./1/).

To find the energies 011ﬂ£ and wave functiona of one-phonon
states we calculete the average fﬁ, over the state (11). Based
on the variational principie and taking into account the norma-
lization condition (13), we get a seculer equation for calcula-
ting the one-phonon energiess Frqm th corresponding equations
end condition (13}, we find S‘;’;; q;;/:‘ ’ 5;2: and 5;‘;}: .
The secular equation and wave functions coincide with those ob-
tained in refs./1’2/ with the phonons independent of & . The-
refore, the description of the one-phonon states with the pho-
nons dependent on or independent of 6 is completely equivalent.

We take intc account the seculer equetion for the one-pho-

non energies and transform the term Hv?' as
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the funetion y} is given in ref.la/. This term describes the

quasiparticle-phonon interaction.

-

The nonrotaitional states in nuclei with an odd number of

nucleons are described with the wave functiorn
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The corresponding equetions coincide with the equations in ref.zl,
which have been obtained with the phonons independent of & .

The difference arises when the Pauli principle is teken into
account in the gquasiparticle plus phonon components and when

the quasiparticle plus two phonons components are included in
{17), The rotational bands ghould be calculated with the wave

function (17) taking into account the Coriolis interactiom.

4. BEFFECT OF THE PAULI PRINCIPLE ON THE TWO-~PHONON STATES

The effect of the Pauli principle on the two-phonon states
in doubly even deformed nuclei has been investigated in refs.
,9’10/. It was ahown’jo/ that the inelusion of the Pauli prin-
ciple causes the energy shift of the collective two-phonon ste-
tez towards laiger energies. Since at the energies larger than
3 NeV the two~-phonon states are sirongly fragmented, the two-
phonon collective states should not appear in the deformed nuc—
lei, as it was stated in ref./1%. In view of the importance of
this statement, it is necesssry to meke the calculations with
the phonons dependent on 6 .

The excited state wave function of & doubly even deformed
micleus can be written as & superposition of the one-or two-—

phonon cowmponents
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with g, =K, . While calculating with the Hamiltonien (14) the

energies and coefficients R:(K,) and 1?3

(K ), we deal with ex-

pressions of the type
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The function xmg}:ﬁyfﬁ) calculated tmking into account (12)

is
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The functions LI;, and 5; g, differ from zero at = A,-A; or
plL £ ] 72
M= Kz-j(’. If ome of these possibilities is realized, then
there are the factors J/(,-Kz JHOF lsz KK The functions

9‘-/;"% and %";: differ from zero at = K,+ K; , i.e.,

 there is ome possibility and the factor J, ig omitted.

s+ Ky, M
The normalization condition of the wave function (18) is
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The lest ferm is due to the inclusion of the Pauli principle in
the iwo-phonon componrenis of the wave function (18).

The function K K'{;,' s dhisters tron K (g,9,/7 9,) celoulated

in ref.’9/ with the phonens independent of 5 . The function

:}{*’(aq;;;/;,ﬁ) takes different values at A=/, +/, andA’,-‘/,U,'_;Uz/.

It is responsible for the shift of the two-phonon poles in the

10



seculsar equation given in refs./9'1°/. The energies and wave
functicons of the excited states with new phonons sre calculated
in the same way &s in refs./9‘10/. The numerical calculations
should show how large are the differences in the calculations
with previcuas aend new phonons and in what cases they occur.

Thus, at the present stage of the study of the structure
of deformed nuclei, the mathematical apparatus turned out to be
insufficient. The new phonoﬁs introduced in this paper will ser-
ve as 8 baais for meny calculations of the properties of defor-
med nuclei.

The suthor is grateful to L.A.Melov, V.0.Nesterenko and
S.I.Bastrukov for useful discussions and help.
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