


1. INTRODUCTTION

Systematic experimental and theoretical investigations of
knock-out, stripping and pick-up reactions (e.g., refs. IRy
give information about the possibility of using a simple shell
model, in general, about the quasiparticle approach’i# 1 to
the description of the single-particle nuclear states.

The study of important single—particle characteristics,
such as occupation numbers, deep hole energies and widths is
closely related to this problem.

The comparison between single—particle strength functions
for the deep hele nuclear states and those for the states with
energies near the Fermi energy is of peculiar interest.

A great deal of theoretical investigations, especially
those, based on Brueckner's nuclear matter theory of spectral
functions and widths of rhe hole nuclear states, take into
account the mass-—operator deviations from the Hartree-Fock
values,

An object of interest is, however, how to use the theoreti-
cal results obtained about infinite nuclear matter for descrip-
tion of the finite nuclei’8¢1%, There are several approaches
to this problem. Kohler’4 calculates the Is-single-particle
width in a finite nucleus from the approximation

U = 2W(<k>, E(<k>)), ' (n

where the imaginary part W of the mass-operator on-shell wvalue
is calculated in nuclear matter at density equal to the mean
density <p> felt by the hole in the finite nucleus, and <k>
is the average momentum of the hole. The quantities <p> and
<k> are calculated by means of harmonic oscillator wave func-
tions. It is pointed out in ref,/ 1V, however, that the good
agreement hetween theoretical and empirical values is worsened
when one takes into account renormalization corrections and
the widrhs are calculated more stringently from the spectral
functions /&%

In Ref!'V, the difference Ep-E(k) between the TFermi gnergy
and the quasiparticle energy is adopted as a more relevant
variable "%/ for sdaptation of the nuclear matter results to
finite nuclei. This difference is less model dependent than
<k>» or E(k) and determines the phase space available for the
decay of the quasiparticle state.



The spectral functions and the widths for finite nuclei,
obtained in ref./lv,however, are strongly dependent on the
value of the infinite nuclear matter density p (or the Fermi
momentum.kF) at which the mass-operator is calculated,

A new approach for calculation of spectral functioms, widths
and energies of single-particle states in finite nuclei is
proposed in the present paper. This approach is based on the
pos51b111§y offered in the coherent fluctuation model
(CFM) /18, 1 of direct use of nuclear matter theory results
in calculations of finite nuclei quantities.

Here the single—particle widths do not depend as in ref./4
on introduced characteristic densities felt by the particle
in a considered state but are functionals of the nuclear
ground state density distribution.

In Sec, 2 the spectral functions in the framework of CFM
are introduced. Calculations based on spectral function are
carried out in Sec. 3.

2. SPECTRAL FUNCTIONS IN TERMS OF CFM

In CFM the mixed density matrix p(ff*) is 717/
- et 4 S,
pe?) = [|f(x) | p (.F")dx, (2)
where 0
iy (< p( 2"~ et
pe XY = Bog () — — ®(x——!———2-—-—L
(x)]r -l'l) (3)
‘ 1, y>0
®(y) £ y"'
0, y<0.

Y
In (3) px(r,r”) 1is the density matrix for uniform matter with
fixed mean density

3A
Pe(® = s " (@)

The Fermi momentum is defined by
13 4

2
k g (x) =(~3g——90(x)) = (5)

— s
X

where

.9 1/3
= (—-S—WA) .

The representation (2) corresponds to the peneral statement
of the CFM that the density distribution of the nuclear matter

2



fluctuates nearly the average distribution, keeping spherical
symmetry and uniformity.

The function [f(%)|2 is a weight function for the diffe-
rent uniform distributions in the average demsity distribu-
tion. It is expressed in terms of the nuclear density distri-
bution p()

1 dp (1) .
— EaL 6
po(x) dr lf:x (6)

and can be experimentally determined, for example, from the
elastic electron-nucleus scattering data. .

The corresponding to the mixed density matrix p(1,r)
Wigner distribution function n(k,r is:

3 0 2 -
nfk, 1) = [ dxjf(=}| "O k(%) ~ [k]). N
r
The functloln En(k t) determines the partlcle density in phase
space in the vicinity of the point (f, K).

As far as the interior of the nucleus can be considered as
having propertles ¢leosed to 1nf1n1te nuclear matter ones, we
can estimate n(r .k) at point r=0,

Then

nk) = [dxif(d 1*0(_ (® - K|) (8)
may be cor?mdered as a function, which determlnes occupation
numbers of states with a given momentum k. The occupation

numbers 0,(k) of single-particle states in nuclear matter with
a Fermi mornentum kF(x) are given by:

n, (k) =0k p(x) - [K]). (9)

Keeping in mind the relation between occupation numbers nx(k)
and the spectral function for unlform system 8§ (k w):

0 des

T

n, (k) = f —8 (k) (10)
—00 w
equation (8) can be written in the form:
- h2(x) /2m 2, 2
nk) = [ dxlf(x) ] [ dodlw - (rn)
o o 2m
The following approximation is used to obtain (11):
n® k -
8¢ k, @} =2r8[lw - R . E for k<kgp(x). (12)
m

From (11) follows immediately:



Ep

do’ = 2 k2
nk = f [ ax|{(®) | 278{w '~ Ep—p —5—1,
p+Bp 27 0 k 3(x) (13)
if one uses the substitution
, “
= co B (14)

0¥k (x) /2m
The energy Ep in (13,14) is considered as Fermi energy of
the nucleus and is identified with the separation energy. The
parameter y can be interpreted as the energy of the deepest
level, while u+Ep in (3) - the depth of the potential well.
It is evident from (13) that

k2
~1-8(k p(2) -k) (15)
X

z 2
S&.wiEF)22w£dﬂKxﬂ Sim-EF—ukg()

plays the role of a spectral function for nuclear hole states.

Finally, after integrating on % in (15), the explicit ex-
pression of the spectral function follows:

w -B —
Sk S Vi (16)
m

Sk, 0 <Bp ) = —— It

kyplo~ EF)

3. SINGLE-PARTICLE WIDTHS, CENTROID ENERGIES,
EFFECTIVE MASS

Now we use equation (16) to calculate the spectral function
and the quantities related to it for the hole nuclear states.
The spectral functions for P8Ni, 40Ca,288i obtained by means
of (16) are given in Figs. 1,2 and 3 respectively. The cor-
responding empirical strength functions from’/2/are included
there for comparison.

The function [f(x)|? is calculated from (6) by the use of
the well-known from electron-nuclei scattering experiments
Fermi~type density distribution: '

© 1 L 3A .
PP e RTE T P T R M /R ) an
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The values of parameters R and b are taken from’18458Ni(R#
=4,153 fm; b =0,566 fm), ¥Ca (R=3,556 fm; b =0,578 fm),
288i (R =3,085 fm; b=0,563 fm). The value of parameter g is
chosen to be =30 MeV. '

Since the data do not directly yield the normalized spect-
ral function, we attach to the theoretical curves one norma-
lization coefficient, chosen in such a way that the height of
the 1p-peak coincides with the experimental value.
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Fig,1. Comparison between em—
pirical strength functions
(Ref;/zf) and spectral functi-
ons calculated from Eq. (16}
for ®BNi The ordinate scale

is in arbitrary units.
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Fig.2, Same as Fig.l for 40Ca.

‘ Fig.3. Same as Fig.l for 2831,

The spectral functions (16)
are calculated at such wvalues -
of the momentum k (or Ek+Wp),
for which the positions of the
peak of B(k,w) are in keeping
with the empirical ones. Here
we have to notice that this
procedure is close to the one
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in ref;fsﬁThe spectral function 8(k, w) in reff8f,however, is

- proposed to be calculated for each value of p, while the hole
state width for a finite nucleus has to be determined by inter-—
polation of widths obtained from 8k, w) at p=xp> /Y,

From (15) follows that our approach distinguishes essential-
ly from the proposed in ref.’ and others,

In our case the spectral function for a hole nuclear state
is a superposition of spectral functioms for nuclear matters
with different densities po(x) multiplied by corresponding
weight factor |f(x)|?. Moreover, ome can see that (15) gives a
possibility to determine the interval Ax (or interval of den-
sities Ap ) which takes part in the formation of the peak of
5(k, w) in the interval Aw, in the vicinity Of‘”=“hax(at a fi-
xed momentumk ).

We can note the good agreement between theoretical and
experimental strength distributions for 1s, 1p, 1d, 1f states.

We emphasize that the asymmetry of the curves inm Figs,1-3.
and the increasing widths for deeply bound states are charac—
teristic features and such behaviour of the spectral functi-
ons is inr accordance with the experimental regularities.

The theoretical results give a good description of the
observed in the experimental data large spread of the I1s-
hole strength, more than 40 MeV ’2/.

In the framework of the proposed method, the centroid
energy can be calculated:

Ep
f —2% w8k, w)
WK) = :gL“li ............. . (18}
¥
r d95m, o)
oo 21T

-0

Using now Eq. (16) in (18), one finds:

a’k b2k & (x) .
o2 B i (19)
E(l{) = -—L‘,(_ e = + EF
m a’k
{ dxf7(x)
0

At small values of k
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Fig.4. Centroid energy E(k)
calculated from Eq. (19) for

58 Ni.

he?
E(k) = ' (20)
2m:*
where the quasiparticle ef-
fective mass m*is expressed

by:

o0 2 hzk%(m -1
m%mHMJ“WSLWjEMA -

(21)
L . In Fig.4 the_function E(k) for
1 2 the nucleus "“Niis represen-—
ted graphically. In this case

K[ fri'l m*=0,6 m.

4. SUMMARY

In the present paper an attempt is made to apply the cohe-
rent fluctuation model to the description of the single-par-
ticle nuclear properties. An explicit expression is given for
the spectral function of hole nuclear states. Some single-
particle nuclear characteristics are analyzed on this basis.

In the framework of CFM, these characteristics are functio-
nals of the ground state nucleon density distributiom. The
calculated values of the single-particle quantities are in
agreement with the experimental data. We emphasize that if
the weight function |f(0|? is determined from the data on
elastic electron-nuclei scattering, the analysis is made
without fitted parameters.

We note that there are approaches in which nuclear matter
density p is specified for calculation of each single-partic-
le state spectral function. The success of such approaches
becomes clear from CFM point of view., The density interval
giving basic contribution to the formation of the corresponding
peak of the spectral function can be found in the CFM.

Although the spectral functions 8,(k w)for different den-
sities po(ﬂ are chosen in a maximum simplified form (see
Eq. (12}), it can be pointed out that the decisive factor for
the appearance of realistic properties of the finite nuclei
spectral function S(k, @} is the right account of the f(x)]?®



spectral function S(k, @) is the right account of the weight
1(x) |2 for each density py( ™ participating in the forma-
tion of the ground state nucleon density distribution p(r).
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