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I. INTRODUCTION 

Systematic experimental and theoretical investigations of 
. . d . k . ( f 11-111 ) knock-out, str~pp1ng an p1c -up reactions e.g., res. 

give information about the possibility of using a simple shell 
model, in general, about the quasiparticle approach 1 12·14/ to 
the description of the single-particle nuclear states. 

The study of important single-particle characteristics, 
such as occupation numbers, deep hole energies and widths is 
closely related to this problem. 

The comparison between single-particle strength functions 
for the deep hole nuclear states and those for the states with 
energies near the Fermi energy is of peculiar interest. 

A great deal of theoretical investigations, especially 
those, based on Brueckner's nuclear matter theory of spectral 
functions and widths of the hole nuclear states, take into 
account the mass-operator deviations from the Hartree-Fock 
values. 

An object of interest is, however, how to use the theoreti
cal results obtained about infinite nuclear matter for descrip
tion of the finite nuclei 16• 161. There are several approaches 
to this problem. KOhler/4/ calculates the ls-single-particle 
width in a finite nucleus from the approximation 

r ~2W(<k>, E(<k>)), (I) 

where the imaginary part W of the mass-operator on-shell value 
is calculated in nuclear matter at density equal to the mean 
density <p> felt by the hole in the finite nucleus. and <k> 
is the average momentum of the hole. The quantities <p> and 
<k> are calcu.lated by means of harmonic oscillator wave func
tions. tt is pointed out in re£.1111, however, that the good 
agreement between theoretical and empirical values is worsened 
when one takes into account renormalization corrections and 
the widths are calculated more stringently from the spectral 
functions ·IS,gf., 

In ReC' 111, the difference EF-E(k) between the Fermi energy 
and the quasiparticle energy is adopted as a more relevant 
variable /iO/ for odaptation of the nuclear matter results to 
finite nuclei. This difference is less model dependent than 
<k> or E(k) and determines the phase space available for the 
decay of the quasiparticle state. 
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The spectral functions and the widths for finite nuclei, 
obtained in ref.1111,however, are strongly dependent on the 
value of the infinite nuclear matter density p (or the Fermi 
momentum kF) at which the mass-operator is calculated. 

A new approach for calculation of spectral functions, widths 
and energies of single-particle states in finite nuclei is 
proposed in the present paper. This approach is based on the 
possibilit{; offered in the coherent fluctuatiOn model 
(CFH)' 116 • 1 1 of direct use of nuclear matter theory results 

_ in calculations of finite nuclei quantities. 
Here the single-particle widths do not depend as in ref.141 

on introduced characteristic densities felt by the particle 
in a considered state but are functionals of the nuclear 
ground state density distribution. 

In Sec. 2 the spectral functions in the framework of CFM 
are introduced. Calculations based on spectral function are 
carried out in Sec. 3. 

2. SPECTRAL FUNCTIONS IN TERMS OF CFM 

In CFM the mixed density matrix p(r: r4;.) is /17/.. 

-+7 ""' 2 -+-+ .. p(r,r ) ~ flf(x) I p (r,r )dx, 
0 • 

where 

P, (r,r') ~ 3p 0 (x) 

S(y) ~ 
1, Y:O:O 

0, Y< 0. 
4 4 

4 4 

k:':_r_'_l_ ), 
2 

(2) 

(3) 

In (3) p x<r. r') is the density matrix for uniform matter with 
fixed mean density 

( ) 
3A , 

Pox ~ --8-, 
4rrx 

The Fermi momentum is defined by 
3rr 2 1/3 

kF(x) ~(-2-pO(x)) 

where 
9 1/8 

a= (SnA) 

a 
=-

X 

(4) 

(5) 

The representation (2) corresponds to the general statement 
of the CFM that the density distribution of the nuclear matter 
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fluctuates nearly the average distribution, keeping spherical 
symmetry and uniformity. 

The function lf(x) 12 is a weight function for the diffe-
rent uniform distributions in the average density distribu
tion. It is expressed in terms of the nuclear density d·istri
bution p(r) 1171 

lf(x)l 2 = - _1_ dp(r) I 
p

0
(x) dr r=x 

(6) 

and can be experimentally determined, for example, from the 
elastic electron-nucleus scattering data. 

The corresponding to the mixed density matrix p(t,f~) 
Higner distribution function n(k, i) is: 

~~ 00 2 -} 
n(k,r)= (dxlf(x)l ®(kF(x)-lkl). (7) 

i ?I -} -} 
The function n(k, r) determines the particle density in phase 
space in the vicinity of the point (r: k''). 

As far as the interior of the nucleus can be considered as 
having properties closed to infinite nuclear matter ones, we ~ ~ ~ 
can estimate n(r. k) at point r =0. 
Then 

~ 00 2 ~ 
n(k) = (dxlf(x) I ®(k (x) -lk I) (8) 

0 F 
may be considered as a function, which determines occupation 
numbers 6£ states with a given momentum k. The occupation 
numbers nx(k) of single-particle states in nuclear matter with 
a Fermi momentum k F(x) are given by: 

n,(k) =®(kr(x)- lkl). (9) 

Keeping 
and the 

equation 

n(k) = 

in mind the relation between occupation numbers 
spectral function for uniform system S/k,C~,): 

fF(x) 

I dc.!.s (k, w l 
2rr x 

(8) can be written in the form: 
2 2 I 

oo 2 h kF(x) 2m h2k 2 
I dx!r(xll r dw8(,,- --l. 
o o 2m 

The following approximation is used to obtain (11): 

n (k) 
X 

(I 0) 

( I I ) 

for k <kr(x). (12) 

From (II) follows immediately: 
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n(k) 
(13) 

if one uses the substitution 

w'= /.L •w+E • 
h2k~(x) /2m F 

(14) 

The energy EF in (13, 14) is considered as Fermi energy of 
the nucleus and is identified with the separation energy. The 
parameter /.L can be interpreted as the energy of the deepest 
level, while ~ + EF in (3) - the depth of the potential well. 

It is evident from (13) that 

""' 2 k 2 
S(k,w"'EF)~2" fdxlf(x)l 8[w-EF-~ 2 ].EJ(kF(x)-k) 

o kp (z) 
( 15) 

plays the role of a spectral function for nuclear hole states. 
Finally, after integrating on x in (15), the explicit ex

pression of the spectral function follows: ___ 

1Ta a ;-;;::E F 2 
S(k,w,;EF) = -------lf(k .j_::_------)1 (16) 

kV~(w- EF) I' 

3. SINGLE-PARTICLE WIDTHS, CENTROID ENERGIES, 
EFFECTIVE !JASS 

Now we use equation (16) to calculate the spectral function 
and the quantities related to it for the hole nuclear states. 
The spectral functions for 58 Ni, 40 ca. 28 Si obtained by means 
of (16) are given in Figs. 1,2 and l respectively. The cor
responding empirical strength functions from·121are included 
there for comparison. 

The function lf(x) 12 is calculated from (6) by the use of 
the well-known from electron-nuclei scattering experiments 
Fermi-type density distribution: 

1 
p(r) =Po (r-R)/b 

l+e 
(17) 

The values of parameters R and b are taken from 1181: 58 Ni (R=o 
=4, 153 fm; b =0,566 fm), 4°Ca ( R=3,556 fm; b =0,578 fm), 
28 Si (R =3,085 fm; b =0,563 fm). The value of parameter I' is 
chosen to be -50 MeV. 

Since the data do not directly yield the normalized spect
ral function, we attach to the theoretical curves one norma
lization coefficient, chosen in such a way that the height of 
the lp-peak coincides with the experimental value. 
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Fig. I. Comparison between em
pirical strength functions 
(Ref. 121 ) and spectral functi
ons calculated from Eq. ( 16) 
for 58Ni. the ordinate scale 
is in arbitrary units. 
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Fig. 2. Same as Fig. I for 4°Ca. 

• Fig. 3. Same as Fig. I for 28Si. 

The spectral functions (16) 
are calculated at such values 
of the momentum k (or kyit), 
for which the positions of the 
peak of S(k, w) are in keeping 
with the empirical ones. Here 
we have to notice that this 
procedure is close to the one 
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in ref .. 18~.The spectral function S(k, w) in ref/81
7 however, is 

proposed to be calculated for each value of p, while the hole 
state width for a finite nucleus has to be determined by inter
polation of widths obtained from S(k, w) at p = <p> :1 41 ',. 

From (15) follows that ouA approach distinguishes essential
ly from the proposed in ref.· 81 

and others. 
In our case the spectral function for a hole nucle.ar state 

is a superposition of spectral functions for nuclear matters 
with different densities p

0
(x) multiplied by corresponding 

weight factor lf(x) 12 .. Moreover, one can see that (15) gives a 
possibility to cl.etermine the interval 6.x (or interval of den
sities ~P ) which takes part in the formation of the peak of 
S(k, w) in the interval 6.w, in the vicinity of w=wmax(at a fi
xed momentum k ) . 

We can note the good agreement between theoretical and 
experimental strength distributions for ls. lp, ld, 1f states. 

We emphasize that the asymmetry of the curves in Figs.l-3. 
and the increasing widths for deeply bound states are charac 
teristic features and such behaviour of the spectral functi
ons is in accordance with the experimental regularities. 

The theoretical results give a good description of the 
observed in the experimental data large spread of the ls
hole strength, more than 40 MeV 121 

In the framework of the proposed method, the centroid 
energy can be calculated: 

EF 
dw { -
2
- cuS(k, w) 

-N " W(k) ~ 

Using n01; Eq, (I6) 1n (IS), one finds: 

E(k) 

alk 
2 

fdxf(x)/ 
0 2m 

a/k·---;------
f dxf (x) 
0 

At small values of k 
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4. SUMHARY 

Fig. 4. Centroid energy E(k) 
calculated from Eq. ( 19) for 
58Ni. 

E(k) ~ 
2m* 

(20) 

where the quasiparticle ef
fective mass m *is expressed 
by: 

2 2 
~ 2 h k F(x) -1 

m•~m[ I~ I fdx\f(x)\ I----] 
0 2m 

(21) 
In Fig. 4 the function E(k) for 
the nucleus 58Niis represen
ted graphically. In this case 
m*.,0,6 m. 

In the present paper an attempt is made to apply the cohe
rent fluctuation model to the description of the single-par
ticle nuclear properties. An explicit expression is given for 
the spectral function of hole nuclear states. Some single
particle nuclear characteristics are analyzed on this basis. 

In the framework of CFH, these cha.racteristics are functio
nals of the ground state nucleon density distribution. The 
calculated values of the single-particle quantities are in 
agreement with the experimental data. We emphasize that if 
the weight function I f(x):\ 2 is determined from the data on 
elastic electron-nuclei scattering, the analysis is made 
without fitted parameters. 

We note that there are approaches in which nuclear matter 
densityp is specified for calculation of each single-partic
le state spectral function. The success of such approaches 
becomes clear from CFH point of view. The density interval 
giving basic contribution to the formation of the corresponding 
peak of the spectral function can be found in the CFH. 

Although the spectral functions S,(k,ru)for different den
sities p0(x) are chosen in a maximum simplified foim (see 
Eq. (12)), it can be pointed out that the decisive factor for 
the appearance of realistic properties of the finite nuclei 
spectral function S(k, ru) is the right account of the \f(x)\ 2 



spectral function S(k, (o) is the right account of the weight 
I f(x) 1 2 for each density Po ( x) participating in the forma-
tion of the ground state nucleon density distribution p(r). 
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