

объединенныя

институт
ядерных

исследовании

дубна

$2-82$

$4 / 1-82$
E4-81-677

V.B.Belyaev, V.V.Pupyshev

DESCRIPTION OF THE NUCLEON,
\triangle-PARTICLE INTERACTION
WITH THE LIGHTEST NUCLEI
AT LOW ENERGIES

Submitted to $\boldsymbol{\beta \Phi}$

INTRODUCTION

One of the most interesting problems in the intermediate energy physics is the investigation of processes due to the exchange meson currents in nuclei. In this respect the radiative neutron capture by the few-nucleon systems is highly informative. The cross section of the $n-p$ capture calculated by neglecting the meson currents, exceeds the experimental $\sigma_{\mathrm{np}}=334.2+0.5 \mathrm{mb}$ by $10 \% / 1$. The theory is consistent with experiment if the meson currents are taken into account $/ 2 /$ The radiative capture cross sections $n-d$ and $n-{ }^{3} \mathrm{He}$ are still more sensitive to the meson current contribution.

Indeed, in these cases the single-particle matrix elements: of the electromagnetic operators are very suppressed and proportional (due to selection rules) to the' state weight of the mixed permutation symmetry, which equals $1-2 \%$. In the case of the $n-d$ capture $\sigma_{\text {nd }}=650+50 \mu \mathrm{~b} / 37$, and the contribution of meson currents is more than $50 \% / 4 /$ The $n-{ }^{3} \mathrm{He}$ capture cross section is less than $\sigma_{\mathrm{n}}{ }^{3} \mathrm{He}=27+9 \mu \mathrm{~b}$ /5/, $60+12{ }_{\mu \mathrm{b}} / 6 /$.

At the same time the matrix \bar{x}_{3} elements of the meson current operators between the states $\mathrm{n}^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ with large weights may be nonzero. Therefore, the process $\mathrm{n}+{ }^{3} \mathrm{He} \rightarrow \gamma+{ }^{4} \mathrm{He}$ is unique for elucidating the role of the meson currents in nuclei. Towner and Khanna $/ 7 /$ have evaluated the meson current contribution to the reaction $n+{ }^{3} \mathrm{He} \rightarrow \gamma+{ }^{4} \mathrm{He}$ cross section using the model functions $n^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$. They observed a strong dependence of the contribution on the wave functions $\mathrm{n}^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$.

Thus, one should have the exactly calculated functions of ${ }^{4} \mathrm{He}$ - and $\mathrm{n}^{3} \mathrm{He}$-scattering. The known methods of solving the four-nucleon problem are very laborious. Within the Yakubovsky theory one should solve the systems of two-dimensional (even with the separable $N N$-potential) integral equations $/ 8.9$ /, and the Coulomb interaction cannot still be taken into account. The methods of resonating groups/10/ and K-harmonics $/ 11$ /are not less laborious and their use results in the systems of integro-differential equations.

In our approach the amplitudes of $\mathrm{n}^{3} \mathrm{He}$-scattering satisfy the one-dimensional integral equations, that simplifies essentially the numerical calculations and allows determination of these amplitudes and wave functions under a few model assumptions.

The basic equations are obtained in solving the $\pi \mathrm{d}, \pi^{3} \mathrm{He}$ scattering problems $/ 12 /$. The only approximation, consisting in substitution of the target Hamiltonian by the finite rank operator, turned out to be possible. Section 1 contains the derivation of equations for the amplitudes of elastic scattering by the nucleus for nonidentical particles and the calculation of the scattering lengths $\Lambda \mathrm{d}, \Lambda^{3} \mathrm{H}, \Lambda^{3} \mathrm{He}$ and binding energies. In section 2 the equations for the neutron scattering on the lightest nuclei are derived and the lengths of $\mathrm{Nd}, \mathrm{N}^{3} \mathrm{H}, \mathrm{N}^{3} \mathrm{He}$-scattering are calculated.

1. EQUATIONS FOR THE SCATTERING AMPLITUDES BY THE NuCleUS FOR NONIDENTICAL PARTICLES

Let us consider the method by the example of Λd-scattering; the $\Lambda+N \rightarrow \Sigma+N$ channel will not be taken into account.

Let $H=h_{0}+V_{+h_{c}}$ be the total three-particle Hamiltonian and $V=V_{A d} V_{13}+V_{28}$ the potential of the particle-target interaction. $h_{0}=-\frac{1}{2_{\mu}} \Delta_{\rho}$ is the Hamiltonian of a free of Λ particle motion with respect to the center of mass of the target; h_{c} is the total Hamiltonian of the target. Let us determine $G_{0}(z) \equiv$ $\Rightarrow\left(h_{0}-z\right)^{-1}$ and $G_{\alpha}(z)=\left(h_{0}+h_{c}-z\right)^{-1}$. According to $12 /$ we rewrite the three-particle lippman-Shwinger equation for the transition operator T in the form

$$
\begin{equation*}
T(z)=T^{\circ}(z)+T^{\bullet}(z)\left(G_{0}(z)-G_{c}(z)\right) T(z), \tag{1.1}
\end{equation*}
$$

where $T^{\circ}(z)=V-V G_{0}(z) T^{\circ}(z)$.

We shall assume that particles $1,2,3$ are spinless, and the Hamiltonian h_{c} has the bound state $\left|x_{d}\right\rangle$ and the scattering states $\left|X_{\vec{p}}\right\rangle$

$$
\begin{equation*}
h_{c}=\epsilon_{d}\left|x_{d}><x_{d}\right|+\int \frac{d \vec{p}}{(2 \pi)^{3}} \frac{p^{2}}{n}\left|x_{\vec{p}}><x_{\vec{p}}\right| \tag{1.2}
\end{equation*}
$$

The Λd-scattering amplitude is

$$
\mathrm{f}\left(\overrightarrow{\mathrm{k}}^{\prime}, \overrightarrow{\mathrm{k}}, \mathrm{z}\right)=-\frac{\mu}{2 \pi}\left\langle x_{\mathrm{d}^{\mathrm{k}}}\right| \mathrm{T}(\mathrm{z})\left|x_{\mathrm{d}} \overrightarrow{\mathrm{k}}\right\rangle
$$

where $\left\langle\vec{r} \vec{\rho} \mid x_{d} \vec{k}\right\rangle=x_{d}(\vec{r}) e^{i \vec{k} \vec{\rho}}, \quad k=k, \quad z=\frac{k^{2}}{2_{\mu}}+\epsilon_{d}+i \theta$.
Using (1.2) and (1.1), we get the exact equation

$$
\begin{aligned}
& \left\langle x_{d} \vec{k} \cdot\right| T\left|x_{d} \vec{k}\right\rangle=\left\langle x_{d} \overrightarrow{\mathbf{k}^{\prime}}\right| T \cdot\left|x_{d} \vec{k}\right\rangle+
\end{aligned}
$$

$$
\begin{aligned}
& +\int \frac{\overrightarrow{d x}^{\prime \prime}}{(2 \pi)^{3}} \frac{d \vec{p}}{(2 \pi)^{3}} \frac{p^{2}}{m} \frac{\left.\left\langle\chi_{d^{\prime}} \vec{k}^{\prime}\right| T\left|\vec{p}^{\circ}\right| \vec{p}^{\prime \prime}\right\rangle}{\left(E^{\prime m}-z\right)\left(E^{\prime \prime}-z+\frac{p^{2}}{m}\right)}\left\langle\chi_{\vec{p}} \vec{k}^{\prime \prime}\right| T\left|\chi_{d} \vec{k}\right\rangle,
\end{aligned}
$$

where

$$
E^{\prime \prime}=\frac{\mathbf{k}^{\prime 2}}{2 \mu}
$$

If the kinetic energy with respect to motion Λ-d satisfies inequaiity $\left.E=\left.\frac{k^{2}}{2 \mu} \ll\right|_{\epsilon_{d}} \right\rvert\,$, then the decay amplitudes $<x_{\vec{p}} \overrightarrow{\mathbf{x}}^{\prime}|T| x_{\mathrm{d}} \vec{k}>$ can be neglected in comparison with the elastic amplitude $\left\langle x_{\mathrm{d}} \overrightarrow{\mathrm{k}}^{\prime}\right| \mathbf{T}\left|x_{\mathrm{d}} \overrightarrow{\mathrm{z}}\right\rangle$, and we can get from (1.3) the approximate equation

$$
\begin{align*}
& \left\langle\chi_{d} \vec{k}^{\prime}\right| T\left|x_{d} \vec{k}\right\rangle \approx\left\langle\chi_{d^{\prime}} \vec{k}^{\prime}\right| T^{\circ}\left|x_{d^{\prime}} \vec{k}\right\rangle+ \tag{1.4}\\
& \left.+\epsilon_{d} \int \frac{d{ }^{\prime \prime}}{(2 \pi)^{3}} \frac{\left\langle\chi_{d^{k}} \vec{k}^{\prime}\right| T\left|\chi_{d} \vec{k}^{\prime \prime}\right\rangle}{\left(E^{\prime}-z\right)\left(E^{\prime \prime}-z+\epsilon_{d}\right)}<\chi_{d} \vec{k}^{\prime \prime}|T| x_{d} \vec{k}\right\rangle
\end{align*}
$$

Equation (1.4) is obtained from (1.3) by approximating the target Hamiltonian by the finite rank operator

$$
\begin{equation*}
h_{c} \equiv(1) h_{\mathrm{c}} \equiv \epsilon_{\mathrm{d}}\left|x_{\mathrm{d}}><\chi_{\mathrm{d}}\right| \tag{1.5}
\end{equation*}
$$

that is the basic approximation.
In contrast with the method of strong coupling of channels, we approximate only a part of the total Hamiltonian H. Instead of $\left\langle x_{d}\right| V\left|x_{d}\right\rangle$ there appears the operator $\left\langle x_{d}\right| T^{\circ}\left|x_{d}\right\rangle=$ $=\left\langle x_{d}\right| \frac{V}{1+V G_{0}}\left|x_{d}\right\rangle$ which takes into account all rescattering in the systera. To evaluate an accuracy of approximation (1.5),
 and the separation energies $B N\left(\Lambda^{3} H\right) ; z_{n}-B \Lambda^{\prime}\left(\Lambda^{3}\right)+\epsilon d+i 0$
the pole $\left\langle\chi_{d} \vec{k}^{\prime}\right| T(z)\left|\chi_{d} \vec{k}\right\rangle$. The noniocal potentials

$$
\begin{equation*}
\langle\overrightarrow{\mathrm{k}}| \mathrm{V}_{\Lambda N}|\overrightarrow{\mathrm{k}}\rangle=\lambda \mathrm{g}\left(\mathrm{k}^{\prime}\right) \mathrm{g}(\mathrm{k}), \quad \mathrm{g}(\mathrm{k})=\left(\mathrm{k}^{2}+\beta^{2}\right)^{-1} \tag{1.6}
\end{equation*}
$$

have been used, which act in the states ${ }^{3} S_{1}$ and ${ }^{1} S_{0}$. The potential parameters, corresponding to different lengths a_{s}, a_{t} and effective radii r_{s}, r_{t} of the ΛN-scattering in the singlet and triplet channels have been taken from ref $/ 13 /$ where $2_{a} F_{d}$ and $\left.B N_{N}{ }^{3} \mathrm{H}\right)$ were obtained from the solution of the Faddeev equations.

The deuteron wave function, as in ref/ $13 /$, has been taken in the form

$$
x_{d}(r)=N-\frac{1}{r}\left(e^{-b r}-e^{-\beta r}\right)
$$

where $b=\sqrt{\mathrm{m}\left|\epsilon_{\mathrm{d}}\right|}, \quad \epsilon_{\mathrm{d}}=-2.225 \mathrm{MeV}, \quad \beta=1.4498 \mathrm{fm}^{-1}$.
It turned out that for all 11 sets of parameters $V_{\Lambda N}$, the following inequalities take place:

The best agreement with the experimental values ${ }^{B}{ }_{\Lambda \exp }\left({ }_{\Lambda}^{3} \mathrm{H}\right)=$ $=0.13+0.03 \mathrm{MeV} / 14 /$ is obtained at

$$
\begin{array}{ll}
\mathrm{a}_{\mathrm{s}}=-1.80 \mathrm{fm}, & a_{\mathrm{t}}=-1.60 \mathrm{fm} \tag{1.7}\\
\mathbf{r}_{\mathrm{s}}=2.80 \mathrm{fm}, & \mathbf{r}_{\mathrm{t}}=3.30 \mathrm{fm}
\end{array}
$$

In this case

$$
2_{\mathrm{a}}^{\mathrm{a}_{\mathrm{d}}^{\mathrm{F}}}=12.2 \mathrm{fm}, \quad \mathrm{~B}_{\Lambda}^{\mathrm{F}}\left(\stackrel{3}{\Lambda}_{\mathrm{H}}\right) \quad=0.188 \mathrm{MeV} / 13 /
$$

According to our calculations with (1.7)

$$
{ }^{2} \mathrm{a}_{\Lambda_{\mathrm{d}}}=13.29 \mathrm{fm}, \quad \mathrm{~B}_{\Lambda}\left(\stackrel{3}{\Lambda}_{\mathrm{H}}\right)=0.214 \mathrm{MeV}
$$

As is seen, for this set of parameters the deviation of our results from Faddeev's values is much less than in (1.6a). Equations (1.1), (1.4) can easily be generalized to the fourparticle systems $\Lambda^{3} H$ and $\Lambda^{3} \mathrm{He}$. Assuming, as before, conservation of the total isotope-spin and its third projection, we approximate the target Hamiltonian by the first rank operators

$$
\begin{align*}
& \mathrm{h}_{\mathrm{c}} \cong{ }^{(1)} \mathrm{h}_{\mathrm{c}}{ }^{3_{\mathrm{He}}}=\epsilon_{3_{\mathrm{He}}}\left|x_{3_{\mathrm{He}}}><\chi_{3_{\mathrm{He}}}\right|, \\
& \mathrm{h}_{\mathrm{c}} \cong{ }^{(1)} \mathrm{h}_{\mathrm{c}}{ }^{3_{\mathrm{H}}}=\epsilon_{3_{\mathrm{H}}} \mid \chi_{3_{\mathrm{H}}}><\chi_{3_{\mathrm{H}}} \tag{1.8}
\end{align*}
$$

for $\Lambda^{3} \mathrm{He}$-and $\Lambda^{3} \mathrm{H}$ scattering, respectively. For the potentials (1.6) and (1.7) we have calculated the triplet and singlet lengths A_{t}, A_{s} for the $\Lambda(3 N)$-scattering and separation energy.

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{s}}=4.23 \mathrm{fm}, \quad \mathrm{~A}_{\mathrm{t}}=5.73 \mathrm{fm}, \quad \mathrm{~B} \Lambda_{\mathrm{s}}=2.82 \mathrm{MeV} \text { for }{ }^{4} \mathrm{He} \\
& \mathrm{~A}_{\mathrm{s}}=4.53 \mathrm{fm}, \quad \mathrm{~A}_{\mathrm{t}}=4.45 \mathrm{fm}, \quad \mathrm{~B} \Lambda_{\mathrm{s}}=2.45 \mathrm{MeV} \text { for }{ }^{4} \mathrm{H} . \\
& \text { experimental values of } \mathrm{B}_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}\right) \quad=2.39+0.03 \mathrm{MeV} \text { and } \Lambda_{\text {of }}
\end{aligned}
$$ The experimental values of $\mathrm{B}_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}\right)=2.39+0.03 \mathrm{MeV}$ and ${ }^{\mathrm{H}}{ }^{4}$ of

$\mathrm{B}_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}\right)=2.04+0.04 \mathrm{MeV} / 14$. The wave functions ${ }^{3} \mathrm{He}$ and ${ }^{3} \mathrm{H}$ have been chosen $\overline{i n}$ the form

where $\rho^{2}=\frac{3}{2} \mathrm{r}_{1}^{2}+2 \mathrm{r}_{2}^{2}, \quad{ }^{\kappa} 3_{\mathrm{He}}=0.5745 \cdot \mathrm{fm}^{-1} \kappa_{3_{\mathrm{H}}}=0.635 \mathrm{fm}^{-1}$, that corresponds to the following values of the mean square radii

$$
\begin{aligned}
\sqrt{\overline{\bar{r}_{3_{\mathrm{He}}^{2}}^{2}}} & =1.88 \mathrm{fm}, \quad \sqrt{\overline{r_{3_{\mathrm{H}}^{2}}^{2}}}=1.70 \mathrm{fm}, \\
& =-7.718 \mathrm{MeV}, \quad{ }^{\epsilon_{3_{\mathrm{H}}}}=-8.482 \mathrm{MeV} .
\end{aligned}
$$

$\xi_{ \pm 1 / 2}$ is a fully antisymmetric spin-isospin function of three nucleons in the state with the total spin, isospin $1 / 2$ and third projection of the isotope-spin equal to $\pm 1 / 2$. Note, that in approximating (1.5) and (1.8), we retained only a negative definite part of the target Hamiltonian; therefore B_{Λ}, calculated from (1.4), will always be larger than the separation energies calculated exactly.

Now we proceed to the nucleon-nuclear scattering problem.
2. APPROXIMATE EQUATIONS FOR THE NUCLEON-NUCLEAR SCATTERING AMPLITUDES
Let us consider the low-energy nd-scattering. The total three-nucleon transition operator satisfies an equation analogous to (1.1)

$$
\begin{equation*}
T=T^{\circ}+T^{\circ}\left(G_{0}-G_{c}\right) T \tag{2.1}
\end{equation*}
$$

where

$$
T^{\circ}=V-V G_{0} T^{\circ}, \quad V=V_{n d}=V_{13}+V_{23}, \quad \mu=\frac{2}{3} m .
$$

In and out-states of the nd-scattering can be obtained by antisymmetrizing the functions $\left|x_{d} \vec{k}\right\rangle$

$$
\left|\phi_{\vec{k}}\right\rangle=\sqrt{3} A\left|x_{d} \vec{k}\right\rangle, \quad A=\frac{1}{6}\left(1-P_{12}-P_{13}-P_{23}+P_{12} P_{13}+P_{12} P_{23}\right),
$$

where $P_{i j}$ is the permutation operator of all the coordinates of particles i, j. The nd-scattering amplitude is $/ 18 /$

$$
f(\vec{k} \cdot \vec{k}, z)=-\frac{\mu}{2 \pi}<\phi_{\vec{k}}|\mathrm{~T}| \phi_{\vec{k}}>{ }_{\mathrm{a}}=-\frac{\mu}{2 \pi}<\chi_{\mathrm{d}} \overrightarrow{\mathbf{k}}\left|\mathrm{~T}\left(1-2 \mathrm{P}_{13}\right)\right| x_{\mathrm{d}} \overrightarrow{\mathbf{k}}>.
$$

Thus, one should calculate the matrix element of $\Gamma \equiv \mathrm{T}\left(1-2 P_{13}\right)$ in the bracket of nonantisymmetrized states. From (2.1) we get

$$
\begin{equation*}
\Gamma=\Gamma^{\circ}+T^{\circ}\left(G_{0}-G_{c}\right) \Gamma^{\prime}, \tag{2.2}
\end{equation*}
$$

where $\Gamma^{0}=T^{\circ}\left(1-2 P_{13}\right)$.
Using approximation (1.5) we get from (2.2) approximate equations

$$
\left\langle x_{d} \vec{k}^{\prime}\right| \Gamma\left|x_{d} \vec{k}\right\rangle \approx\left\langle x_{d^{\prime}} \vec{k}^{\prime}\right| \Gamma^{0}\left|x_{d} \vec{k}\right\rangle+
$$

$$
\begin{equation*}
+\epsilon_{d} \int_{(2 \pi)^{-}} \frac{d \vec{k}^{\prime \prime}}{\left(E^{\prime \prime}-z\right)\left(E^{\prime \prime}-z+\epsilon\right)}\left\langle\chi_{d^{\prime}} \vec{k}^{\prime}\right| F\left|x_{d}^{0} \overrightarrow{x^{\prime}}\right\rangle \tag{2.3}
\end{equation*}
$$

Using $V_{N N}=V^{t 0} P^{10}+V^{01} \mathrm{P}^{01}$,
where $P^{s t}$ is the projector onto the state of two nucleons with the total spin (isospin) $s(t)$, and V^{10} and V^{01} in the form (1.6), we have calculated from (2.3) the quartet length of the nd scattering ${ }^{4} \mathrm{a}=5.25 \mathrm{fm}$. The parameters V^{10} and V^{01} have been fixed by the low-energy data of the NN-scattering

$$
\begin{aligned}
\epsilon_{d}=-2.225 \mathrm{MeV}, \quad \mathrm{a}_{\mathrm{s}} & =-23.69 \mathrm{fm}, \quad a_{\mathrm{t}}=2.378 \mathrm{fm}, \\
\mathrm{r}_{\mathrm{t}} & =2.7 \mathrm{fm} .
\end{aligned}
$$

The solution of the Faddeev equations with the same potentials yields

$$
{ }^{4} \mathrm{a}^{\mathrm{F}}=6.28 \mathrm{fm} / 17 / . \quad{ }^{4} \mathrm{a}_{\text {exp }}=6.35+0.02 \mathrm{fm}^{/ 18}
$$

Now we proceed to the $n^{3} \mathrm{He}$-scattering problem.
In the scattering of thermal neutrons in ${ }^{3} \mathrm{He}$, the following processes are possible:

$$
\begin{aligned}
\mathrm{n}+{ }^{3} \mathrm{He} \sigma_{\mathrm{n}+}{ }^{3} \mathrm{He} \rightarrow \mathrm{n}+{ }^{3} \mathrm{He} & =3.3+0.2 \mathrm{~b} / 19 / \\
\mathrm{n}+{ }^{3} \mathrm{He} \rightarrow \mathrm{p}+{ }^{3} \mathrm{H} \quad \sigma_{\mathrm{n}+}{ }^{3} \mathrm{He} \varphi \mathrm{p}+{ }^{3} \mathrm{H} & =5337+8 \mathrm{~b} / 19 / \\
& =27+9 \mu \mathrm{~b} \\
\gamma+{ }^{4} \mathrm{He} \quad \sigma_{\mathrm{n}+{ }^{3} \mathrm{He}+\gamma+{ }^{4} \mathrm{He}} & =60 \pm 12 \mu \mathrm{~b}
\end{aligned}
$$

An essential specific feature of the $n^{4} \mathrm{He}$-scattering is the presence of the opean channel $\mathrm{n}+{ }^{3} \mathrm{He} \rightarrow \mathrm{p}+{ }^{3} \mathrm{H}$. This is the reason that the $\mathrm{n}^{3} \mathrm{He}$-scattering lengths are complex. The four particle transition operator satisfies the equation

$$
\begin{equation*}
\mathrm{T}=\mathrm{T}^{\circ}+\mathrm{T}^{\bullet}\left(\mathrm{G}_{0}-\mathrm{G}_{\mathrm{e}}\right) \mathrm{T}, \tag{2.5}
\end{equation*}
$$

where $T^{0}=V-V_{0} T^{0}, \quad V=\underset{i=1,2,3_{i 4}}{V}$. The $\mathrm{n}^{3} \mathrm{He}$-scattering amplitude is

$$
\mathrm{f}(\overrightarrow{\mathrm{k}} ; \overrightarrow{\mathrm{k}}, \mathrm{z})=-\frac{\mu}{2 \pi}<x_{3_{\mathrm{He}}} \overrightarrow{\mathrm{k}}\left|\mathrm{~T}(\mathrm{z})\left(1-3 \mathrm{P}_{34}\right)\right| x_{3_{\mathrm{He}}} \overrightarrow{\mathrm{k}}>
$$

From (2.5) it follows

$$
\begin{equation*}
\Gamma \equiv \mathrm{T}\left(1-3 \mathrm{P}_{34}\right)=\Gamma^{\circ}+\mathrm{T}^{\circ}\left(\mathrm{G}_{0}-\mathrm{G}_{\mathrm{c}}\right) \Gamma, \tag{2.6}
\end{equation*}
$$

where

$$
\Gamma^{\circ}=\mathrm{T}^{\circ}\left(1-3 \mathrm{P}_{34}\right)
$$

The three-nucleon Hamiltonian with two bound states is approximated as follows:

For the simplicity of calculation we have assumed that the spatial parts of the wave functions ${ }^{3} \mathrm{He}$ and ${ }^{3} \mathrm{H}$ are the same

$$
\begin{equation*}
<1,2,3 \mid \chi_{3_{\mathrm{He}}}>=\mathrm{Ne}^{-\kappa \rho_{\xi_{1 / 2}}<1,2,3 \mid \chi_{3_{\mathrm{H}}}>=\mathrm{Ne}^{-\kappa \rho} \xi_{-1 / 2}{ }^{\kappa=\kappa} 3_{\mathrm{He}} .} \tag{2.8}
\end{equation*}
$$

Let $S(T)$ be the total spin (isospin) of four nucleons, then
where $\mathrm{S}=0,1,\left\langle\overrightarrow{\mathrm{r}}_{1}, \vec{r}_{2} \mid \chi\right\rangle=\mathrm{Ne}{ }^{-\kappa \rho}$.
In approximating (2.7), (2.8) from (2.6), we get equations for the amplitudes $\Gamma_{S T}$
where

$$
R\left(k^{\prime \prime}, z\right)=\frac{1}{2} \epsilon_{3_{H e}}\left(E^{\prime \prime}-z+\epsilon_{3_{H e}}\right)^{-1}+\frac{1}{2} \epsilon_{3_{H}}\left(E^{\prime \prime}-z+\epsilon_{3_{H}}\right)^{-1}
$$

In the reaction $\mathrm{n}+{ }^{3} \mathrm{He} \rightarrow \mathrm{n}+{ }^{3} \mathrm{He} \mathrm{R}\left(\mathrm{k}^{\prime \prime}, \mathrm{z}\right)$ contain δ-functions even at zero energy of relative motion $n-{ }^{3} \mathrm{He},\left(z=\epsilon 3_{3} \mathrm{He}^{+} \mathrm{i} \mathrm{\theta}\right)$ as ${ }^{\epsilon}{ }_{3}{ }_{\mathrm{H}}{ }^{<}{ }^{\epsilon} 3_{\mathrm{He}}$; therefore the $\mathrm{n}^{3} \mathrm{He}$-scattering lengths have imaginary parts.

Equations for the amplitudes $\mathrm{p}+{ }^{3} \mathrm{H} \rightarrow \mathrm{p}+{ }^{3} \mathrm{H}$ are the same as for (2.9). When calculating the p H-scattering lengths, one should assume that $z=\epsilon_{3}+i 0$;in this caseR $\left(k^{\prime \prime}, z\right)$ does not contain δ-function, the $\mathrm{p}^{3} \mathrm{H}$-scattering lengths are real.

Thus, within the approximation (2.7), (2.8), in the elastic $n^{3} \mathrm{He}$-scattering, one is able to take into account the open channel $n+{ }_{3}^{3} \mathrm{He} \rightarrow \mathrm{p}+{ }^{3} \mathrm{H}$ and in the elastic $\mathrm{p}{ }^{3} \mathrm{H}$-scattering the channel $\mathrm{p}+{ }^{3} \mathrm{H} \rightarrow \mathrm{n}+{ }^{3} \mathrm{He}$, the threshold energy of which being ${ }^{\epsilon} 3_{\mathrm{He}}-\epsilon_{3 \mathrm{H}}=0.76 \mathrm{MeV}$.

The elastic $p^{3} \mathrm{He}, \mathrm{n}^{3} \mathrm{H}$-scattering amplitudes are

$$
f^{\mathrm{s}}\left(\vec{k}^{\prime}, \overrightarrow{\mathrm{k}}, z\right)=-\frac{\mu}{2 \pi}\left\langle x \overrightarrow{\mathrm{k}}^{\prime} \cdot \Gamma_{\mathrm{S} 1}(z) \mid \chi^{\vec{k}}\right\rangle
$$

and satisfy equations (2.9), in which

$$
\begin{aligned}
& \mathrm{R}\left(\mathrm{k}{ }^{\prime \prime}, z\right)=\epsilon_{3_{3}}\left(\mathrm{E}^{\left.n-z+\epsilon_{3_{\mathrm{He}}}\right)^{-1}, \quad z=E+\epsilon_{3_{\mathrm{He}}}+\mathrm{i} 0}\right. \\
& \text { for } \mathrm{p}+{ }^{3} \mathrm{He} \rightarrow \mathrm{p}+{ }^{{ }^{3} \mathrm{He}} .
\end{aligned}
$$

$$
R\left(k^{\prime}, z\right)=\epsilon_{3_{H}}\left(E^{\sim} \sim z+\epsilon_{3_{H}}\right)^{-1}, \quad z=E+\epsilon_{3_{H}}+i 0
$$

for $\mathrm{n}+{ }^{3} \mathrm{H} \rightarrow \mathrm{n}+{ }^{3} \mathrm{H}$.
Using $\mathrm{V}_{\mathrm{NN}}(2,4)$ we have calculated the $\mathrm{N}^{3} \mathrm{He}, \mathrm{N}^{3} \mathrm{H}$-scattering lengths. The results given below are compared with the calculations by the Yakubovsky equations ${ }^{8 /}$. with the same $V_{N N}$ and with the calculations by MRG ${ }^{/ 10}$. When solving Yakubovsky equations the wave functions of the states of $3_{H e}$ and 3_{H} have the same energy and differ by the isospin-spin projection only; therefore, the $n^{3} \mathrm{He}$-scattering lengths are real.

Channel lengths
$\mathrm{A}_{\mathrm{ST}}\left(\mathrm{n}^{3} \mathrm{He}\right)(\mathrm{fm})$

Lengths of $n^{3} \mathrm{He}$-scattering

$$
A_{S}\left(n^{3} H e\right)=\frac{1}{2}\left[A_{S 0}\left(n^{3} H e\right)+A_{S_{1}}\left(n^{3} H e\right)\right](f m)
$$

ST	$\mathrm{h}_{\mathrm{c}}{ }^{(2)} \mathrm{h}_{\mathrm{c}}$	/8/	$\mathrm{h}_{\mathrm{c}}{ }^{(2)} \mathrm{h}_{\mathrm{c}} / 8 / \quad$ experiment $/ 20 /$
00	$8.1-11.5$	12.34	$\mathrm{A}_{0} 6.05-\mathrm{i} 0.728 .05$ 6.1+0.6-
10	$2.9+10.1$	3.03	(${ }^{\left(4.4 \overline{4} 48+9 \cdot 10^{-4}\right)}$
01	$4.0+$ i 0.06	3.77	$\mathrm{A}_{1} 4.25+10.0053 .084 .0 \pm 0.2-8$
11	5.6-i 0.09	3.13	$1{ }^{-1}(1.7 \pm 0.8) 10^{-8}$

Lengths of $\mathrm{n}^{3} \mathrm{H}$-scattering

$$
A_{S}\left(n^{3} H\right)=A_{S_{1}}\left(n^{3} H\right)(f m)
$$

	$\mathrm{h}_{\mathrm{c}}{ }^{(1)} \mathrm{h}_{\mathrm{c}}$	$18 /$	$/ 10 /$	experiment	$/ 21 /$
A_{0}	3.8	3.77	3.38	$3.91+0.12$	
$\mathrm{~A}_{1}$	4.9	3.13	3.25	3.60 ± 0.10	

Lengths of $p^{3} H$-scattering : $A_{0}\left(p^{3} H\right)=4.2 \mathrm{fm}, \quad A_{1}\left(p^{3} H\right)=5.1 \mathrm{fm}$, lengths of $p^{3} \mathrm{He}$-scattering $A_{0}\left(p^{3} \mathrm{He}\right)=4.1 \mathrm{fm}, \quad A_{1}\left(p^{3} \mathrm{He}\right)=5.2 \mathrm{fm}$.

So, in the approximation (2.7), (2.8) the real parts of the lengths $A_{S}\left(\mathrm{n}^{3} \mathrm{He}\right)$ are close to the experimental ones. The lengths $A_{S}\left(n^{3} H\right)$ satisfy inequality $: A_{0}\left(n^{3} H\right) \ll A_{1}\left(n^{3} H\right)$, though these lengths, calculated by other methods, satisfy an inverse relation.

The imaginary parts of the $n^{3} \mathrm{He}$-scattering lengths turned out to be sensitive to the choice of $V_{N N}$ and of the functions ${ }^{3}{ }_{3}{ }_{\mathrm{H}}$ and $\times{ }_{3}$ an ${ }_{3}$ in contrast with the real parts. realistic $V_{\mathrm{NN}^{\circ}} \times 3^{3} \mathrm{H}^{6} \times 3_{\mathrm{H}}$ and more correct account Coulomb interation will provide a better agreement of the imaginary parts of the $\mathrm{n}^{3} \mathrm{He}$-scattering lengths with experiment.

CONCLUSION

The approximate equations are used to calculate the amplitudes of the elastic low-energy scattering of particles on the lightest nuclei and allow one to calculate the wave functions of the scattering of thermal neutrons on nuclei ${ }^{3} \mathrm{He}$ within the four-body theory taking into account the Coulomb splitting of energies of ${ }^{3} \mathrm{He}$ and ${ }_{3}{ }^{3} \mathrm{H}$.

The real parts of lengths $A_{S}\left({ }_{3}{ }^{3} \mathrm{He}\right)$ are close to the experimental ones, i.e., the elastic $\mathrm{n}^{3} \mathrm{He}$-scattering is described adequately, and one holds out some hope of an adequate theoretical description of the process $n+{ }^{3} \mathrm{He} \rightarrow \gamma+{ }^{4} \mathrm{He}$ As an input information in our calculations we have used the interaction potential of an incident particle with the target nucleon and the target wave function. Note, that the model nature of the target wave function is used only to find the explicit form of the kernels and inhomogeneous terms of equations. The structure itself of approximate equations is independent of the concrete form of the target wave function. Here we investigate mostly $n^{3} \mathrm{He}$-system. Therefore we shall compare $\left.{ }^{\mathrm{B}} \wedge{ }_{\wedge}{ }_{4}^{4} \mathrm{He}\right)$, $\mathrm{B}_{\Lambda}\left({ }^{4} \mathrm{H}\right)$ with Gibson's, Lehman's results/22/ in the next paper.

The main difficulty of these calculations is rather an accurate calculation of many-dimensional integrals. For this purpose we have used the functions of Haar and many-dimensional Π_{t}-nets $/ 23 /$, that allowed the calculation of the scattering lengths with a relative accuracy not worse than 20% with rather a small quadrature nodes $\left(\sim 2^{13}-2^{15}\right)$.

In conclusion one of the authors (P.V.V.) is very indebted to V.G.Pupysheva for the calculation of Π, -lattices.

References

1. Cox A., Wynchank S., Collie C. Nuc1.Phys., 1965, 74, p. 481.
2. Riska D.C., Brown G.E. Phys.Lett., 1972, 38B, p. 143.
3. Phillips A.C. Nuc1.Phys., 1972, 184A, p. 337.
4. Hadjimichael E. Phys.Rev.Lett., 1973, 31, p. 183.
5. Алфименков В.П. и др. ЯФ, 1980, 31, с. 21.
6. Suffert M., Berthollet R. Nuc1.Phys., 1979, 318A, p. 54.
7. Towner L.S., Khanna F.C. Nucl.Phys., 1981, 356A, p. 445.
8. Kharchenko V.F., Levashov V.P. Nucl. Phys., 1980, 343A, p. 317.
G. Alt F.C., Grassberger P., Sandhas W. Phys.Rev., 1970, C1, p. 85. Sawicki M., Namyslowski J.M. Phys.Lett., 1976, 60В, р. 331. Барышников А.Г., Влохинцев Л.Д., Народецкий И.М. ЯФ, 1977,25, c.1167; Perne R., Sandhas W.Phys.Rev.Lett., 1977, 39, p.788; Tjon J.A. Nuc1.Phys., 1981, 353A, p.47.
9. Szydik P., Werntz C. Phys.Rev., 1965, 138A, p. 866. Heiss P., Hakembroich H.H. Nucl. Phys., 1971, 202A, p. 353.
10. Пермяков В.П. и др. ЯФ, 1971, 14, с. 567.
11. Беляев В.Б., Вжеционко Е. Ят, 1978, 28, с. 392. Веляев В.Б., Вжеционко Е., Рахитский С.А. ЯФ, 1980, 32, с. 1276.
12. Пересыпкин В.В., Петров Н.М. Препринт ИТФ, 75-39Р, Киев, 1975 .
13. Pniewski J., Zieminska D.B кн.: "Каон-ядерное взаимоденствие и гиперядра", труды семимара,Звенигород, "Наука",М., 1979, c. 33.
14. Fierman S., Hanna S.S. Nuc1.Phys., 1975, 251A, p. 1.
15. Гольдбергер М., Ватсон К. Теория столкновений, "Мнр", М., 1967.
16. Sitenko A.G., Kharchenko V.F., Petrov N.M. Phys.Lett., 1966, 21, p. 54.
17. Dilg W., Koester L., Nistler W. Phys.Lett., 1971, 36B, p. 208.
18. Алфименков В.П., Шарапов Э.И. оияи, Р3-80-394, Дубна, 1980.
19. Sears V. F., Khanna F.C. Phys.Lett., 1975, 56B, p. 1. Kitchens T.A., Oversluizen T., Passel L. Phys.Rev.Lett., 1974, 32, p. 791. Alfimenkov V.P. et al. JINR, E3-9784, Dubna, 1976.
20. Seagrave J.D., Berman B.L., Phillips T.W. Phys.Lett., 1980, 91B, p. 200.
21. Gibson B.F., Lehman D.R. Phys.Rev., 1981, 23C, p. 404.
22. Соболь И.М. Многомерные квадрупольные формулы и функции Хаара, "Наука", М., 1969.
