


INTRODUCTION .

One of the most interésting problems in the intermediate
energy physics is the investigation of processes due to the
exchange meson currents in nuclei. In this respect the radia-
tive neutron capture by the fewnucleon systems is highly in-
formative. The cross section of the n-p.capture calculated
by neglecting the meson Spﬁrents, exceeds the experimental
oqp =334.240.5 mb by '10Z71V . The theory is consistent with
experiment if the meson currents are taken into account 2/ The
radiative capture cross sections n—d and n-°He are still more
sensitive to the meson current contribution. .

Indeed, in these cases the single-particle matrix elements:
of the electromagnetic operators are very suppressed and pro-
portional{due to selection rules) to the’ state weight of the
mixed permutation symmetry, which g¢quals 1-27%. In the: case
of the n~d capture ojq =650+50 ub /8/ and the contribution of -
meson’ currents is more than 50%7/%/The n- SHe capture cross -
section is less than o3y, =21:9#b/54 GQiIZﬁbfe/; e

At the same time the matrix elements of the meson current
operators between the states n°He and ‘He with large weights
may be nonzero. Therefore, the process n+ He-+y+ *He is uni-
que for elucidating the role of the meson currents in nuclei.
Towner and Khanna/?/ have evaluated the meson current contri-
bution to the reaction n & eagu-4He.cross section using the
model functions n°He and 4He.They observed a strong dependence
of the contribution on the wave functions nHe and *He.

Thus, one should have the exactly calculated functions of
*He-andnaHe -scattering. The known methods of solving the
four-nucleon problem are very: laborious. Within the Yakubovs-—
ky theory one should solve the systems of two~dimensional
(even with the separable NPE-potential)‘integral“equétionsfsﬁf
and the Coulomb interaction canmnot still be taken into ac—
count, The methods of resonating groupsliO/and K ~harmo—
nics /11/are not less laboricus and their use results in the
systems of integro-differential equations,

In our approach the amplitudes of i *He-scattering satisfy
the one-dimensional integral equations, that simplifies es-
sentially the numerical calculations and allows determination
of these amplitudes and wave functions under a few model as-
sumptions.



The basic equations are obtained in solving the rd, 7 He
scattering problems’1?/, The only approximation, consisting in
substitution of the target Hamiltomian by the finite rank
operator, turned out to be possible. Section 1 contains the
" derivation of equations for the amplitudes of elastic scat-
tering by the nucleus for nonidentical particles and the cal-
culation of the scattering lengths Ad, ASH, AMHe and binding
energies. In section. 2 the equations for the neutron scatte—
ring on the lightest nuclei are derived and the lengths of
Nd, NSH_,N- 3H_e —scattering are calculated.

" 1. EQUATTONS FOR THE SCATITERING AMPLITUDES BY THE
NUCLEUS FOR NONIDENTICAL PARTICLES

Let us consider the method by the example of Ad-scattering;
the A+N -+ 2 + N channel will not be taken into account.

Let Hehg+ Vih, De the total three-particle Hamiltonian and
VeVy eV, #V,, the potential of the particle-target interaction.

}x{}n-g—‘{'Jl A, is the Hamiltonian of a free of A particle motion

with respect to the center of mass of the target; h, is the
total Hamiltonian of the target. Let us determine Gg{(2)=

- afhg~2) " and GgZ=thg+h,—2) ). According to/12/ ye rewrite
the three—particle Lippman-Shwinger equation for the transiti-
on operator T in the form

T(H=T%D) + THD G (D -G (NT(2), . (.1

where T%(5)=V-VGy(2)T%2).

We shall assume that particles 1,2,3 are spinless, and the
Hamiltonian h, has the bound state |y > and the scattering
states 1)’{.}0
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The Ad-scattering amplitude is
b G-l 13 -, -
K, 2) == =< K1 T(@) | XK >,

iy

' ? 2 p . 2 :
where .<l'..(;’l }(dk>lxd(;)e R k™ =k, Zz—I.E._+ €4 +i0.
i 2.

Using (1.2) and (1.1), we get the exact equation
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If the kinetic energy with respect to motion A-dsatisfies
. \ 2 . ., >
inequality E=%—<<]sd|,then the decay amplitudes .<)(3§ ['I|_xdk>

7}

can be neglected in comparison with the elastic amplitude

=, - - -
<xX'IT IxqE> and we can get from (1.3) the approximate
equation

-, * o] -] e
Sx KT xgk> = <y gkTTO x gk >+ (1.4)

&l' <X¢k’t TOI Xdib’> .
(2m3 (E“-2)E "—z+ eg4)

+5df <)(dk"['r§xdk>.

Equation (1.4) is obtained from (1.3) by approximating the
target Hamiltonian by the finite ramk operator

- :
hcz-.: ( )hcz (d|xd>.<xd[ {1.5)

that is the basic approximation.
In contrast with the method of strong coupling of channels,
we approximate only a part of the total Hamiltonian H.Instead

of <x4/ V| x4g> there appears the operator <x gl Toixg> =
v . . . .
=< . which takes intec account all rescattering 1n
Xd' 14VG, i Xa 8

the system. To evaluate an accuracy of approximation (1.5),
we have calculated the doublet Ad-scattering lengths 23.)\;1

and the separation enel:gies BAAHY: 2 g=~BA(AH) +e 4+ 10 1s
the pole <y K |T(2)|x k> . The nonlocal potentials
<KV E>= 2p@E®),  g®=@E"+p2)1 : (1.6)

have been used, which act in the states 3S1 and 1'SD,'I"i'ie poten-—
tial parameters, corresponding to different lengths a,a, and
effective radiirg,r, of the AN-scattering in the singlet
and triplet channels have been taken from ref! 13/ where 2af
and BF\(?‘H) were obtained from the solution of the Faddeev
equations.



The deuteron wave function, as in ref/m/ has been taken
in the form xg@®=N-1 1 (e ~br ._B,

where b=ym fdl , eq =2, 225 MeV, f=1.4498 fm~?,

It turned out that for all 11 sets of parameters V ﬁ.the fol-
lowing inequalities take place ‘
F
A0 B Ag c025 | BAAH) - BA(AH) <08 (1-6a)
—————— LU, ‘- b DR
Bl BR( )
The best agreement with the experimental values BAexP(f{H) =
=0.13+0.03 MeV/14/ ig obtained at : o

a, =1.80 fm, . 8, =-1.60 fm, a.n
=2.80 fm, r, =3.30 fm. ‘
In this case -
2af =12.2 fm, BR(3H )  =0.188 Mev /1%
According to our calculatioms with (1.7) '
%a, =13.29 fm, BA(AH) =0.214 MeV.

As is seen, for this set of parameters the deviation of
our results from Faddeev's values is much less than in (1.6a).
Equations (1.1), (] 4) can easily be generalized to the four-
particle systems A’H and AHe. Assuming, as before, conserva-
tion of the total isotope-spin and its third projection, we
approximate the target Hamiltonian by the first rank operators

s (D oo
b= hc3He'f

[} I X3H6>-<X 3 E ]

3He He

(1.8)

=~ (1) =
h = h, 3, = €3 ixaH >.<X3H

for A%He—and A°H scattering, respectively. For the potentials
(1.8) and (1.7) we have calculated the triplet and singlet
lengths A;,/A; for the A(3N) -gcattering and separation energy
Ag = 4.23 fm, = 5,73 fm, BA; = 2.82 MeV for AHe
= 4,53 fm, 1At= 4.45 fm, Bp, = 2.45 MeV for 4p,

A
The experimental value/s ?f B (AHe) =2.39+0, 03 MeV and of
BAA 4y =2, 04+0.04 MeV 14/ The wave functions °Heand °H have

been chosen in the form

1l 2 <L23ix,, =N 3Heem(“K3H;p)'§1/2 (1.9)
" i f <1.2.3\)(3H >=N3HBXP(—K3HP)'E__1/Q
A ‘3



where p —%r,»rzrg . kg, =0.5745 fm7lxg, =0.635 fu~l, that

corresponds to the follow1ng values of the mean square radii

72 = e =
ViE  =1.88 fm, VI} =1.70 fm, (1.10)

ey, =7.718 MeV, eay =8.482 MeV,

§+1 is a fully antisymmetric spln-lsospln function of three
nucleons in the state with the total spim, isospin 1/2 and.
third progectlon of the isotope—-spin equal to +1}2 Note, that
in approximating (1.5) and (1.8), we retained ‘only a negative
definite part of the target Hamiltonian; therefore’ BA,calcula—
ted from (1.4),.will always be larger than the separation
energies calculated exactly. .

' Now we proceed to the nucleon-nuclear scatterlng problem

2. APPROXIMATE EQUATIONS FOR THE NUCLEON-NUCLEAR
SCATTERING AMPLITUDES

Let us consider the low-energy nd-scattering. The total
three-nucleon transition operator satisfies an equatlon analo—
gous to (1.1) :

T=T°% TG, ~G)T, ' - . S (2.1)
where : L '
TO=V-VGyT°, VaV =V g+Vy,, u=%m .

In and out-states of the nd -scatterxng can be obtained by
ant1symmetrlz1ng the functioms dek>'

lé.i;)a-\fsﬂlxdk), 'A---'(l P 'P +P2F'13 2[’23),
where P, is the permutatlon operator of all the coordinates
of particles i,j. The nd-scattering amplltude is /18/

TERED=-Log gy, 1TI6, 5 = £y R Ta-2R 50 B>

Thus, one should calculate the matrix element of I's T(1- 2P13)
in the bracket of nonantisymmetrized states. From (2.1} we
get

I=T°% T°(G, -G )T, (2.2)
where I'°=T°(1-2P ).
Using approximation (1.5) we get from (2.2} approximate equa-
tions

‘<Xdi{.‘|'r| )(d§>=~s .<xd'ﬁ’!l“°i>(di?>+



g <xak’ T°E )(dk">
‘@)% (E"-2}E " z+¢ )‘

+e X “F 'xd_I{> @)

al

U51ng Vi .—Vum V01P01 L ] ‘ ' (2.4)

where PBtls the projector onto the state of two nucleons with
the total spin (isospin) s(t), and V1% ang VO {5 the form ¢1.6),
we have calculated from (2.3} the quartet length of the nd -
scattering %a=5.25 fm. The parameters VI?and v01 ‘have been
f1xed by the Iow-energy data of the NN~ scattermg ’

¢="2.225 MeV, "’ ‘ ——.23.69 fm, - a;=2,378 fm,-
—2 7 fm, ' '

The solutlon of the Faddeev equations with the same potentlals
yields . _ : L L
$2F 26.28 fm/17/, %8y =6.3540.02 £m/18/..
Now we proceed to the. nsHe-scatterlng— problem.
In the scattering of thermal meutrons in@He, the followmg

processes are posmble

n+ He %+ %o nt SHe =3.3+0, 26/19/
719/
n‘i'al'le - p+3H n+3He-p+3H —533718b /5/
4 =27+9 ub
'y+ He & -

n+3He+y+4He =60+12 ub /6/_

An essential specific feature of the n"He-scattermg is the
presence. of the opean channel n+ 31-!e¢p+ H.This is the reason
that the n°He- scattering lengths are complex. The four partic~
le transition ‘operator sat1sf1es the equation

T=T°+ T*(G,-G )T, 2.5

where TC V-~ VGOrI-o Ve - ¥ 3Y14 . .
The o SHe -scatterlng amplltu e is

. ) I
£k ,ﬁ.z):—éf;—< Xanek | T(2)(1-3P, )| X3H§>
From (2.5) it follows

o (2.6)
I'=T@1-3P,,)=I°+T%G,-G)T, .

where

T°= T°(1-3P,, ).



The three—nucleon Hamiltowian with two bound states is appro-
ximated as follows: o T

@) o oo o
b= b= ‘3ml}(3}1e><x‘*ﬂe ;+§3HLXSH>.<X3H I« (2.7.)
For the simplicity of calculation we have assumed that the
spatial parts of the wave functions 3He and M are the same

<1,2,3| >N . < =Ne ? -
.3; X 3]-]9 e él/é' 1,2,3l X 3H> Ne gw—lfé K. 'K3He - (2.8)
Let §(T) be the total spin (isospin) of four mucleons, then

§ . e g1 r T o N o e
tn—fﬁﬂe—!.n-!- Bie. k .k.?)r:‘— 7 ‘§[<Xk ' PstJz) | )(}:>+<x-k ! 1ST=1(2.)!}A;.‘],

where 8=0,1, - <FpTplx > =Ne *F,

In approximating (2.7), (2.8) from (2.6), we get'equati‘ons
for the amplitudes I'gy - :

el Lxk > m < ROITO 1 Xk >+
‘ ST sri’X

(2.9).
L N DI S S -
+ [ —— oLl <yvk TS ixk™ > <xk L Ty k>,
(217)_3 E”-z ST | 7 ‘ ST
where 7
RN 1 -, 1 . 1 "” —1.
Rk .z)-—z—-eaHe(E —z+¢-3He) o+ 2‘3H(E —zreq, ).

In the reaction n+°Hes n+3He R(k”,z) contain &-functions even
at zero energy of relative motion n-"He, (z=eg,+ 10) as

€ 34 €3He :therefore the n°He-scattering lengths have imagina-
Ty parts. - : , ‘

Equations for the amplitudes p+ 3H-»p+3H are the same as
for (2.9). When calculating the p H-scattering lengths, one
should assume that Z=eg,+i0;in this caseR(k “,z) does not con-
tain & -function, the p%}i—scattering'lengths are real.

Thus, within the approximation (2.7), (2.8), in the elas—
tic noHe ~scattering, one is able to take into account theé
open channel n+ Hesp+’Hand in the elastic p ®H-gcattering the-
channel p+3H-n+_3He, the threshold energy of which being
€3y, — €3y =0.76 MeV. . o o

The elastic pSHe. n31-,1-scattering amplitudes are

" .

tRK,z2) =~ $- <X K7 T, (A]xK >



e

and satisfy equations (2.9), in which -

. ) .
~r - ”.— :_E L]

Rk z) €-3He(E z+(_3He) ) Z=E+ ey + i0

for-p+3He.. P+ 3_He.
. II. : -M —1 S ' s
Rk 2)= €3y (E"~z+ {3}]) . z=E+ €3y +,10

for n+3H-+ n4 E’H .

Using Vyy(2.4) we have calculated the N°He, NH -scattering -
lengths. The results given below are;;o;npared with the cal-
culations by the Yakubovsky equations’® with the same Vyn and
with the calculations: by MRG’!%/When solving Yakubovsky
equations the wave functions of the states of e and

have the same energy and differ by the isospin~spin projec~
tion only; therefore, the n e —scattering lengths are real.

Channel lengths I‘..engthsr of ‘n)sﬂré‘-s_ca;itgriﬁg
; Je,
Bgr (@ He) (fm) Asn aHe)-—-é—[:A.se(n He)+A (0 “He)l(fm)
ST h o~ (2) h, /8/ h c-(e)hc /8/  experiment /20/
00 8.1- il.5 12.34 1A 6.05~ 10.72 8.05 6.1+0.6 - )
10 2.9+i0,1 3.03 i(4.4448+9.10“4)
01 4.0+ 10,06 3.77 |[A;14.25+ 10.005 3.08 4.0+40.2 - ]
11 5.6- i0.09 3.13 ~i(1,7+0,8)10

Lengghs of n’H -scattering
3
Agn H)=Ag @ H) (fm)

{1 : .
he )hc 78/ /10/ expetiment 21/
Ao 3.8 3,77 3.38  3.91+0.12
A 4.9 3.13 3,25 3.60+0.10

Lengths of psﬂ—scattering :Ao(psH) =4,2 fm, :Al(p3H) =5.1 fm,
lengths ofpSHe-"scattering ‘Ao(paﬂe) =4.1 fm, A (p®He)=5.2 fm.

So, in the approximation (2.7), (2.8) the real parts of the
lengths JAs(nsHe) are close to the experimental omes. The lengths
Agn®H) satisfy inequality !Ao(naH).mA {(n3H), though these
lengths, calculated by other methods, satisfy an inverse rela-
tion.



The imaginary parts of the gﬁie*scat;gring lengths turned
out to be sensitive to the choice .of VNNaﬂd of the functioms
X 3n, @nd X gy in contrast with the real parts. .

ﬁﬁ shoulélbe expected that these calculations with more
realistic Vyy:x spex 8y and more correct account Coulomb inte-
ration will provide a better agreement of the imaginary parts
of the n®He-scattering lengths with experiment. :

CONCLUSTON

The approximate equations are used to calculate the ampli-
tudes of the elastic low-energy scattering of particles on
the lightest nuclei and allow one to calculate the wave
functions of the scatterimg of thermal neutrons on nuclei %He
within the four—body theory taking into account the Coulomb
splitting of energies of %He and _°H. B

The real parts of lengths As(n&He) are close to the experi-
mental ones, i.e., the elastic n"He-scattering is described
adequately, and one holds out some hope of an adequate theo-
retical description of the process n+3Heay+ﬁHeAS an input
information in our calculations we have used the interaction
potential of an incident particle with the target nucleon
and the target wave functiom. Note, that the model nature of
the target wave function is used only to find the explicit
form of the kernels and inhomogeneous terms of equations. The
structure itself of approximate equations is independent of
the concrete form of the target wave function. Here we inves-
tigate mostly n'He-system. Therefore we shall compare B}{;HeL
Bﬂ‘ﬁﬂ with Gibson's, Lehman's results/22/in the next paper.

Qhe main difficulty of these calculatioms is rather an ac-
curate calculation of many-dimensional integrals. For this
purpose we have used the functions of Haar and many-dimensional
[, -nets’/2% that allowed the calculation of the scattering
lengths with a relative accuracy not worse than 207 with
rather a small gquadrature nodes (~218_ 215,

In conclusion one of the authors (P.V.V.) is very indebted
to V.G.Pupysheva for the calculation of I, ~lattices.
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