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According to the measurements, the mass number dependence 

of the RMS charge radii can be approximately calculated by 

the empirical expression /1/: 

(I) 

which holds for nuclei with the number of nucleons A near the 

valley of stability. 
For the isotopes of a given element, however, the increase 

of rc (r~ is the experimentally determined RMS radius of the 

proton distribution) with the neutron number N is szstema­

tically less than expected from average trend ( 1) 12" 1 • In ad­

dition, the presence of shell effects in isotope shift data 

has been also suggested 151 and a more pronounced shell effect 

has been shown in work/6/. 
A comprehensive study of experimental RMS charge radii has 

been carried out by Angeli arid Csatl6s /7,8/. These systematics 

show that the deviations from the average A-dependence given 

in formula (1) follow simple trends. For an isotopic sequence 

of an element, the normalized RMS charge radii v c formed as 

(2) 

and plotted as a function of N lie on or close to straight 

lines. The slopes of these lines denoted by az vary sy~tema­

tically as a function of atomic number Z.The products Azaz, 

where Az is the average mass number for the res~ective ele­

ment, show a characteristic sawtooth structure 1 (see Fig.2). 

There are discontinuities in the values of the slopes for 

elements that contain ~ =20, 28, 50, 82, 88, 90 and 126 neut­

rons. The slopes for the normalized RMS charge radii for iso­

tonic sequences show similar behaviour and the discontinuities 

can be found at sequences that contain Z =20, 28, 50, 82 pro­

tons/8/ (see Fig. 3). 

The Hartree-Fock-BCS calculations using the energy density 

formalism and including a BCS treatment of pairing correla­

tions have reproduced only the -20% of the observed shell 

effects in isotopic and isotonic sequences /9/.The calculations 

have. been performed by assuming spherical shapes. The calcula­

ted shell effect is attributed to the electromagnetic spin­

orbit effect 11°1, the contribution to r~ of the moving magnetic 

moments. 
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On the other hand the calculations have reproduced the average trend of RMS-radius to _<I% over the entire periodic table. They reproduce the average behaviour of Azaz having an approximate A115 dependence for rc as estimated in 14~0n the grounds of the calculated Hartree-Fock charge densities, a simple parametrization of the two parameter Fermi function 
Pq(r) =p

0
(l+exp(r-Rq)/aq)-1 

(3) 
has been suggested where the parameters Rqand aqhave the fol­lowing form: 

1/3 Rq (N, Z) = -0.5401 + 1.249A - 0.9532(N-Z)/A, (4) 

aq(N, Z) = 0.4899- 0.1236(N-Z)/A. (5) 
In this paper we present the results of some simple phe­noi:nological model which investigates one of the possible interpretations of the observed trends of the RMS charge radii. We accept the assumption of spherical nuclear shape and the form of density function (3). In this case the shortcoming of the above-mentioned Hartree-Fock calculation lies in its inability to account for the change of stiffness of nuclei with the occupation of the valence shell. We as'sume that this change of stiffness can be attributed to the change of the nuclear surface and can be described by a suitable c·hange of the parameter aq in ~he density function (3). 

For the change of the parameter aq in an isotopic sequence we assume the following very simple scheme. A nucleus con­taining magic number of neutrons has a stiffer surface than other nuclei. For a nucleus which contains N neutron and Nmd ~N ~Nmu'where N muand Nmdare the closest to N magic neutron numbers, we assume a change of a • which depends on the ratio q 
N- N d 

R = m (6) N Nmu-Nmd 
in the following form. At the values R =0 and R =I, as men­tioned above, a has minimal values an! at RN =1 fz, in the middle of the v~lence shell, aq has maximal values. The chan­ge of a q is supposed to be smooth in the interval 0:::; RN.:s;l.The-, se assumptions correspond to the picture that the valence neutrons change step by step the diffusity of surface of the nucleon distribution. · 

For the sake of simplicity we choose sinusoidal form for the assumed surface change and substitute the aq parameter of the density function (3) by a•· q· 
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a• ~a (N, Z) + s·sinR.Ji. (7) 
q q N 

For the s parameter we suppose aN ,Nmddependence. As ·s has 

length dimension we have chosen itmior isotopic sequence with 

atomic number Z as 

8 ~ 8 o[Rn(Nmu ,Z)- Rn (Nmd,Z)] (8) 

where s 0is a free parameter and Rn(N,Z) is the radius of the 

neutron distribution, see ref. ·/9/ 

Neglecting the electromagnetic spin-orbit term, giving 

only 20% of the observed shell effects, and other small 

terms 1111 giving very small corrections to r 2• the calculated 

ratio v ~h has the following form: c 

th ( O<l 4 %/ 
v c ~ r p q (r) r dr) r st • 

()
0 . • d . 

(9) 

where Pq r ~s nonnal1ze to un1ty. 

If the s quantity is small compared to aq then the vtJt ra­

tios for isotopic sequences for a limited range of nuclei lie 

approximately on straight lines according to the experiments. 

For the first shells which contain only a few particles there 

exist data only for two, maximum three neighbouring isotopes 

so the deviations from the straight line cannot be discussed. 

The only exception is the sequence of Ca isotopes from N=40 

to~ =48, but here a systematic deviation from the straight 

line can be observed experimentally. The calculated values 

of v~h show similar behaviour, see Fig. 1. 

Choosing the value of s 0 =-0.07 for Z < 20 and S(f'0.07 for 

Z >20 we can reproduce the sawtooth structure over the whole 

region of Z, see Fig.2. In the range of the strongly deformed 

nuclei we can only reproduce the average decrease of the 

Azaz values. Small discontinuities in the calculated values 

can be explained by the investigated ranges of the given iso­

topes. 
It is interesting that 

is quite small, its value 
Z -range. 

the shell correction 
is about 5-15% of aq 

parameter s 
over the whole 

For the verification of the above model the study of iso­

tonic sequences is a very effective method. If such a surface 

effect exists then we have to reproduce the similar trends 

in the isotonic sequences. If N =const then like in formula 

(7) we can write 

a~"' aq(N, Z) + ssinRz" (10) 

with 

R ~ z 
(I I) 
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Fig. I. The Rl!S charge radii di­
vided by formula (I) for Ca iso­
topes. The experimental data 
are taken from ref:8~the calcu­
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Fig.2. The az slopes ~f norma­
lized RMS radii for isotopic 
sequences multiplled by the ave­
rage mass numbers A z as a func­
tion of atomic numbers. The 
solid lines show the result of 
a weighted least-squares fit to A a values derived from expe­
rfmintal data171.Circles denote 
the calculated values • ...... 
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Fig.3. The aN slopes of normalized RMS radii for iso­

tonic sequences multipied by the average mass numbers 

ANas a function of neutron numbers. The solid lines 

show the result of a weighted least-squares fit to 

A rPN values derived from experimental data lSI. Circles 

denote the calculated values. 

s~s 0[R(N,Z )-R(N,Zd)], 
q mu q m 

(12) 

where Zmuand Zmdare the closest Z magic numbers, Zmu?..Z?:Zmd. 

Having the same values of parameter s 0as above that is s 0= 

=-0. Q) for N ~ 20 and s 0 =0, 07 for N > 20, we have calculated 

the ANa.Nvalues, where aN is the slope, AN is the average mass 

number for the isotonic sequence of neutron number N.The re­

sults are presented in Fig.3. As the figure shows there is 

a satisfactory agreement between the calculated values and 

the experimental trend. 
The picture given by the model seems to be acceptable. The 

magic nuclei have a stiffer surface. With the occupation of 

the valence shell the nuclear surface becomes a little more 

diffuse to the half-occupation and then the surface width dec­

reases with the shell closure. 
Light nuclei (A<40) present a special problem. It is easy 

to imagine that at the opening of the valence shell the surface 
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becomes stiffer by adding an extra nucleon which plays the 
role of glue, see the Li isotopes. But the growth of the 
width of the surface region with the shell closure would- be a 
surprising result. 

This type of interpretation, which accepts the spherical 
shape of nuclei (except in the region _of strongly deformed 
nuclei), calls for t.he inclusion of some kind of polarizing 
interaction between the valence nucleons and the proton dist­ribution in the theo~etical calculations. 

We can say that this very simple model based on the small changes of surface width parameter aq given by formula (7-8) 
provides a good parametrization for explanation of ~he shell 
effects of RMS-radii. But we have to note that a similar model 
based on small changes of the R radius or on deformation ef­
fects depending on the valence ibell occupation might give 
similar good results. Anyway the present model suggests that 
for the explanation of the shell effects merely a quite small 
modification of parametrization (3-5) is required. In this 
case the parametrization (3-5) can provide in a first approxi­
mation a sUitable tool for the investigation of nuclear ef­
fects depending on the surface behaviour of the proton and 
neutron distributions. 

I would like to thank V .A. Karnaukhov and L. I. Lapidus for useful remarks. 
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