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I . INTRODUCTION 

An analysis 111 of different actual models of the a- decay 
process shows that: 1°) the a -transition operator was not 
correctly chosen and 2°) the Pauli principle was not correctly 
considered. 

In the R-matrix approach 121 the a -transition operator 
depends on the channel radius which is to a great extent arti­
ficially introduced and the internal region nuclear states are 
not correctly defined at the matching point. 

In the Feshbach like models /3-?/ an operator obtained in 
the first order perturbation theory was 1.1sed for the a -tran­
s~t1on operator, i.e., a Fermi gas treatment was considered. 

All these models lead to constantly lower values of the 
theoretical a -widths with respect to the experimental data. 

In the above-mentioned models the Pauli principle in the 
a -channel wave function was not correctly taken into account. 
In this paper we show that the correct consideration of the 
Pauli principle leads to a decrease of the theoretical a -
widths unlike the results obtained by some authors IS·lO/. 

Tn the previous paper/1 11 we have proposed, in the fra-
mework of Migdal' s 11

2/ Fermi liquid theory, a new model 
for the a -transition operator with the following properties: 
a) the operator is able to transfer large enough momenta to 
the four nucleons that participate in the a-clusterization 
process; b) the operator has a universal character, determi­
ned by the properties of the nuclear matter (through the den­
sity dependence), i.e., by the s.p. states deep inside the 
Fermi sea; c) the operator reflects the fact that the cluste­
rization is a surface phenomenon; d) the model for the a-tran­
sition operator is practically determined by the irreducible 
amplitude of the a -particle formation in the four particle 
channel Ill/: ~ 

from which the Contribution from s.p. states around the Fer­
mi- sea is excluded; e) the operator.contains a universal con­
stant having a unique value for all the a -transitions. 

Our Fermi liquid model for the a -transition operator ex­
plains the experimental data within less than an order of 
magnitude (less than 100%). 
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In Sec. 2, the correct consideration of the Pauli _principle 
in the a-channel wave function is discussed. In Sec. 3, new 
results within our Fermi liquid model of a -decay are reported, 
concerning the ~-transitions in the lead region. 

2. ANTISYMMETRIZATION IN THE a -CHANNEL STATE 

The .a -decay width is defined as elsewhere 

i0 ~2rr:EI<¢a1T._, 0 I<llAH>I 2 • 
c 

(I) 

where ¢ce. is the many body a -channel wave function, T 4 .~ a 
is the a -transition operator d-escribing the clusterization 
of two protons and two neutrons into the a -particle and 
ll>A+ 4 is the many body wave function describing the initial 
nucleus state. 

The many body a -channel wave function ¢((here and in the 
following we drop the index c for simplicity) is a solution 
of the scattering SchrOdinger equation 

(2) 

with the normalization condition 

<¢ 1¢ ,>~1>(,-,')~<u 11-Kiu, >. (3) 
( ( ( ( 

Here cPa and <I> A are bound states, w.f., totally antisynnnetrized 
and normalized to unity., describing the internal motion of 
the free a -particle and residual nucleus respectively. Q= Q2= 
=Q+ projects onto four s.p. orbitals which do not occur in 
¢A (for ground state <llA, t-he mentioned four orbitals must be 
chosen among orbitals above the Fermi sea, wh~n ¢A is a Sla­
ter determinant). In eq. (2) we have made the standard assump­
tion that H does not depend on energy c. 

The relative motion w. f. uf is normalized according to the 
eq. (3) and is the solution of the equation 

(4) 

where 

<R'1hiR'> ~< d(o(R-R )<b w )[}(I d(o(R'-R l¢ o!JA)> (Sl a·a A a a 
and 

<R[l-KIR''~< C1<o<R-Ra>¢a<llAllll<o<R'-Ral¢a<llAl> ·· 
(6) 

~<a<li'-ii J¢ iGl~><ii' •. ii >¢ >. a · a a a 
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The correct consideration of the Pauli principle in the 
a-channel w.f. means the inclusion of the exchange kernel 
Kin the _eqs. (I) and (3), i.e., 

<¢, \T._.a\4>A+4>-<Qu,¢a4>A\T4~a\<I>A+4> [( ~+2)(N;2 )] 112 

[(
Z

2
+ 2) (N

2
+2)] 1/2 "<(1-K) u, <Pa<P A IT _rw A+<> 

(7) 

At this point it should be mentioned that no theory inclu­
de either the operator Q or 1-K in the a -transition matrix 
element /1·10/. 

Using for ell A a Slater determinant and a Gaussian w. f. 121 

(with the strength {32 -0.47 fm -2 ) for the a -particle we 
can find an explicit expression for the exchange kernal: 

(8) 
- 4Kpn + 2K p nn:t" 2K npp -K ppnn· 

in which p and n stand for protons and neutrons and 
...... -+-+ n ...... 

K <R. R'l- <S(R -R l¢ 1 n P. 1¢ S(R -R'l>. (9) n tt a i= 1 1 a a 
where n stands for the number of the exchanged nucleons and 
p1 projects onto s.p. levels below the Fermi sea. 

As far, no explicit expressions for the K -kernel were 
published and no qualitative analysis concerning its proper­
ties (magnitude, degree of nonlocality, relative importance 
of one-, two-, three- and four-nucleon exchange) has been done. 

In the following we use some approximations to get an ex­
plicit expression of K -kernel. 

First we used the Slater approximation for the nonlocal 
density 

1 ~ ~ 
<x\P[x'>-p(x,x') ;;;_

2 
p(r+)p ,(r_)l>- "• 

Sf. S, S 
(IO) 

4 ~ _., 

r =r-r ; 

~ 3 . 
p , (r ) - -- J (K r ) 

sr. - K·r 1 r - (II) 
F -

in which Kr is the Fermi momentum and j 1 (z) is the first order 
spherical Bessel function. 

For the density p(f ) the step-function is used: + 
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4 1 
p(r) "'-p @(R

0 
-r). 2 0 (12) 

To compute the integral (9) we use the generating function of the oscillator functions <xlnEm>: 

f (x,y;a) = L <xlnlm>a2n+1 <nlmly> 
a nfm 

( a2 )3/2 I 2a 24x 4y 1 + a2 
= exp ---a -rr(l-a2) 1- a2 1-a2 

a 2 2 2 -(x +Y )I 
2 

with I a I < I and with the following properties 

f d3z r (i'.Z';a)f (Z',y;b)=f ci'.y;ab), a a a c 
......... -+ 1 -+-+ fd 3zf (x,z;a) f (z,y;-) =S(x-y), a a a 

c 

(13) 

(14) 

(15) 
where the integration 
ginary axis, and: 

contour is a line parallel to the ima-

9/2 3 -+ - f3 9/2 2 ) n fa (?' i • 0; v' a ) = ( r:;- ) e 
i= 1 v '/1 

2 2 2 
(?'1+?'2+?'3)= 

= ¢ (?' ) = ¢ 
a a a 

{3 2_ a2 
with a= and 

{3 2+ a 2 

4 4 2Vrr {3 9/2 
S(R-Ra)¢a=43( 2 2) 

{3 +a 

4 -+-+-* n f (z,r ;ya) 
s= 1 a s 

Thus 

4 

3 -+ ..... 1 f d z f (2R, 2z; --) * 
a -[a 

4 1 
2R'; --==), va 

( 16) 

( 17) 

(18) 



where 

r ( ........ , 3 3 , -+ -+ ::""\ -+-+ ..,. -+ -P z,z ;a)~Jd rd r fa(z,r;y'a,p(r,r')ra(n~ z',y'a). (19) 

and 

Performing the substitutions: 

-+ -+ .... , z_ ::z- z 

we obtain: 

K (R R') ,;' K(+) (R ) K(-)(R n • n + n -

with 

where 

1 . 1 . 
F(q) ~-erf(flR - 29..) + -erf(flR +29..) -

2 °2(3 2 °2/3 

and 

K
(-) (R~ 2 3 f3 2R~ 3 s -)=(-) e Jd kfk

1
(k)exp(4ikR.J, 

n - " 

where 

(20) 

(21) 

(22) 

(23) 

(24) 

For n ::I (the one nucleon exchange term) the integrals can 
easily be performed: 

K(+) (R )=...!.err[Ml..(R +R )] + (25) 
1 + 2 ~ 0 + 
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1 2{3 1 3 8f3
2 

RoR+ 4 2 2 2 +-erf[-(R -R )1---,j-sh expl--{3 (R +R )I 2 ..j3 o + 2{3 R+ rr 3 3 o + 
and 

K ~-) (R_) ~ 16p0 p sl (4k rR-) exp(-{3 2 R':_). (26) 

K~) has been chosen to be ident~ylly equal to unity for nuclear matter. For heavy nuclei Kn+ will be equal to unity with high precision inside the nucleus. Thus the magnitude 
of the nucleon exchange kernels is contained in K (-), 

The Slater (10) and the step (12) approximationt are 
rather good inside the nucleus/13~ where the fluctuations of the density are much smaller than the density itself. At the surface, however, these approximations do not seem to be so appropriate. Because of the approximative description of the density at the surface, errors will be induced in the 
exchange kernal K, and thus in the normalization of the chan­nel function. But, since we are concerned with volume effects, the errors will be of the order of A-113 (where A is the mass number of the residual nucleus), i.e., of about 20%, only, for heavy nuclei. The fact that the above-used approximations are rather good inside the nucleus is supported also by the high coincidence of our K(ii,fi') for R=O, R'=O with those obtained elsewhere /14,15/ (see, e. g., (A. I) of ref. /14/ ) . 
The calculated K(

0
±) for a+ 208Pb channel are shown in 

figs. 1,2. K decreases with n, but this decrease does not exceed an ord:r of magnitude (fig. 2) unlike the results re­ported in ref /1°1 . This result is explained by, the fact that the volume occupied by the four nucleons (not "dressed" nuc­
leons) in the a-particle or in the nucleus is almost the same. 

The contribution of the (K term in the eq. (4) for small distances, much less than the nuclear radius is less than 
2% of the optical potential with the de~th of the order of 
200 MeV. Indeed, bearing in mind that K:)(R+)""1 for such 
distances, we have: 

K -· K(-) ( ) (27) ru(==r qfuf 

(-) . . f f K(-) ( 23) where K (q) 1.s the Four1er trans arm o see eq. . The calculated K(-) (q) (see eq. 13) is given in fig. 3. From this figure we conclude also that the K-operator has a lot of eigenvalues equal to unity, that correspond to the 
spurious states, which must be eliminated from ur and the 
a -decay width, respectively. From fig. 3 we learn also that the depth of the optical potential should not be much less than 200 HeV, otherwise the characteristic momentum qf will 
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!OtK.._f'_'·----

.6 

.6 

. 2 

2 6 

. Th f . K(+) f F1g. 1. e unct1on . 1 rom 
eq. (25) for a+208pb channel. . ' 

be in the region of spurious 
states. Approximately the men­
tioned spurious states are eli­
minated in the function 
<itjl-·Kju, > (see also eq.7). 
This function becomes equal to 
the <ii[u( >-function at dis­
tances somewhat larger than R0 . 

Thus, if one has in mind 
the application of . the R­
matrix theory to the a -decay 
in the barrier region at the 
matching point (R

0 
= R 0+Ra ~ 

~9 fm for the lead region), the 
K- kernal already vanishes. Therefore at least in the R -mat­

rix approach, one can neglect the ~ffect of the K -operator 
on the a -decay width. 

Kr-J 
n 

Fig. 2. The functions K\;"l 
a+ 208 Pb channel. 

r(fm) 

from eq. (23) for 
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.. ""'"' Fig.3~ The Fourier transform 
of K( ) obtain'T!) from the 
eq. (8) with Kn+ =1. 

as 
The large increase of the 

R-matrix a -decay width re­
ported in/8/ is obtained beca­
use, first, the operator Q 
(or 1- K) in eq. (7) is omit­
ted and, _secondly, because 
some spurious states may oc­
cur in the operator 
(1-K) -l> . 1 lead~ng to a arge 
increase. 

In the integral theories 12 ~ 7/ one may expect a decrease of the theoretical a -decay width (see eq. 7). 
In the Fermi liquid model of a --decay /11/ the situation is different, because we have the possibility, after including the Pauli principle correctly, to fix the universal constant 

K , that stands for the form factor of the vertex 4-nucleons --~>a. 

3. FERMI LIQUID MODEL OF a-DECAY 

The a -decay width has the expression 1111 

2 ~ ap ·r 2 ra = 2•• :!:I fdRu
0 

(R)-g 1 
(R)I , (28) c 0 f aR c 

where Ucc is the radial part of the relative motion wave func­tion given by the Folding Model potential '111 •161 , p is the density of the mother nucleus and 
. "r O(R -R) -+ -+ -+ "i g~r (R) =<<Pa<Ye "''r\Mi I ; B(~)B<~/B(~s)l<l> 'i Mi > (29) 

is the a --c.lusterization amplitud-e 1 111 , 
Using the structure of the initial and final states in the framework of the two-particles (holes) RPA model of refs. 1 17/ the g ~f (29) a -clusterization amplitudes become: 
gil= v2R cL>912-1--c'''r1 F (p)F (n) c (4rr)8/2 .,fiT Ii o o o Ii 'r (30) 

with 

• (31) 
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* { X8I1 8 2 + y :1'2!:)!5 1 (R) :)! 8 2 (R) 

for 210 Po ~ 206Pb, 

for a -transitions between the 
1 + 1 I 

((-) 51 B2 = (-) ) 

natural parity states 
of 210 Bi i.. 206 T! 

(32) 

and 

(33) 

for the a-transitions between a natural parity state and 
1s1+1s I+1 a non-natural paritY. state ((-) 2 = (-) of 

210 Bi -+ 206 Tl, where 

F 
(1)_ 
I -

with 

K, = (2i,. + l)(f 8 . -j s·). 
1 1 1 

X 

(34) 

(35) 

(36) 

The quantit~e~ u, ,ap;aR and g(R) are given in fig. 4 for 
some a -trans"Ltl.ons. As a rule, the last minimum of ~ coinci­
des with the minimum of ap/aR and with the maximum (minimum) 
of g(R) . 
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0 

Table 
The experimental a-kinetic energies (Ea) and a -decay widths 
together with the ratios calculated as in fig. 5 for 210Bi-+206Tl 
and 21°Po-+ 206 Pb. The numbers in the brakets in the 5th column 
are the exponents of 10. 

i,:- --(-;1)··-- A rm ~ r~ rye Nt Ii - II n Eo~.(HeV) r,.,(HeVJ ·~· Bj;,~_ C= r.. D· r,,.• 
210Bi _ 206Tl 

21 Op0 .., 206Pb 

1· ,-(g.s.) 1j 

2. 1-(g.s.) 2j 

4-649 

4.666 

4.906 

4-946 

). 9- ,, 

4· 9- 2j 

5. 9- 12 4-550 

6. 9- 2;; 4.566 

3j 4·413 7. 9-

6. 9- 2-(24) 4.224 
3 

1. o+(g.s.) o+rl.s.J5.30451 
2. o+(g,s.) 2+ 4.525 

7.90(-34) 

5.26(-34) 

1.62(-36) 

2o27(-J6) 

269 

164 

295 

42 

2.06(-JB) 37 

1.96(-37) 620 

1.2)(-JB) 2016 

4.1)(-40) 

3.6(-29) 670017/ 

4-56(-34) 2400017/ 

156 

51 

107 

21 

21 

415 

92 

13417/ 

11417/ 

1.55 

1.26 

7.76 

0.19 

1.1. 

0.20 

0.)1 

0,026 

0.07) 

2.39 

0.4 

17.5'7.(1.6) 

1.68 

1.37 



16 
14 
12 

10 
8 
6 
4 

10 

12 
14 

210Po{O'J-206Pb{O'I 

L•O 
Q •51.4MeV 

rth • 2DN0-29Mev 

r exp • 38 10·29Mev 

16 t------' Vfoldx1Q·1 M<V 

210Po{O'J- 206Pbt2'1 

V2 
[ ·332·1o·34MeV 
th · rexp*4.561034 MeV · 

3 5 

9·107 
i. 

Fig.4. The ut.ap;aR and g functions occuring in the 

integral (28) together with the folding potential for 
210 Po(g.s) ~ 206 Pb(g.s) and 210Po(g.s.) 4 2Ge Pb(2j). 

The a -decay widths calculated in our model together with 

those calculated in the potential model of refs./7,- 181 and 

with the experimental ones ·119 ·211 are given in the table in 

which the universal constant K was considered to be equal to 
K =0.522·10 1 MeV·fm 13. In the fig. 5 are shown the hindrance 
factors, where for favoured a-widths the Geiger-Nuttal expres­
sion was used. 

One can see that our calculated a -decay widths for both 

favoured and unfavoured a-transitions are in agreement with 

the experimental data. The remained discrepances are not large 
and they can be removed either by sophisticating the model 
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tO' 
Hf 

to• 

to• 

to' 

to' 

4. CONCLUSIONS 

Fig.S. The experimental hind­
rance factors together with 
the theoretical ones calcula­
ted as follows: A) model of 
ref. 171 and the s.p. structure 
of the nuclear states; B) model 
of refs. 177 and the structure 
of ref. 117

•181
; C) model and the 

structure of ref. 1111 and 
D) the present calculations 
with the structure of re£.1171 
The favoured a -widths have 
been calculated according to 
the Geiger-Nuttal low. 

(e.g., by including the next 
perturbation term) or/and by 
improving the description of 
the nuclear structure. 

From the detailed analysis of the Pauli kernel (see Sec. 2) we conclude that: 
1°) The correct consideration of the Pauli principle does not change much the R -matrix decay width. Taking into account that .K is a positive definite operator the correction £K from the eq. (3) will rather increase the barrier. (if at such distances K does not vanishes), which lead to a decreases of the R -matrix a -decay width. 

2 ) The K -kernel has many spurious states that has to be eliminated. From fig. 3 we learn that only the states with the momenta q> q ::=4KF (where KF is the Fermi momentum) contri­bute to the a -d~cay width, which lead to some selection among the optical model potentials (i.e., the accepted optical potentials must have the depth ~ 200 MeV). The proposed 18·1°1 
transformation Of= v'-1-K u£ may lead to uncontrolable errors, when calculating the renormalized amplitude of the reduced 
width (1-K)-ilg, because of the effect of the spurious states that 
12 



-\1 may still occur in the (1-K) · operator and because of the 
nonuniqueness of yt='if 

3°) None of the known models /l-?/ for a -trans1t1on opera­
tor can remove the discrepancy between the theoretical and 
the experimental a -decay widths except for our Fermi liquid 
model proposed in ref. '1111 • 
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