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!• Introduc:!:12!! 

In a recent paper, henceforth referred to as I . /l/, it was 
suggested to introduce resonant states as a means of treating 
continuum admixtures in nuclear wave functions. Since the oaloula­
tional problems, oonneoted- with finding the resonance poles and the 
corresponding wave functions have reoentl7 been solved 121, we shall 
here present a number of useful formulae, suited for different 
tnes of struoture calculations. In this wa7, the paper appears 
as a continuation of I. 

We shall first discuss the umerlying mathematical formalism, 
and give a number of relations, which serve . as a completion of 
those given in I and in our earlier papers /J, 4/ . 

Next, we shall give a description of what could be called a 
complex decaying state. By this we mean a state, which contains 
many components of shell model type, i.e.,partiole-hole states or 
several-particle - several-hole states, still containing onl7 compo­
nents with one particle in the continuum and no incoming particles, 

This restriction which is common to all calculations of the 
continuum shell model tne seems necessary for mathematical 
reasons 15/. In the present context, its role is rather obvious, 
since we build our approach on a Mittag-Leffler expansion of the 
single particle Green's funotions, satisf7ing the Lipmann-Schvinger 
equation, whereas a consistent treatment of states with two particles 
in the continuum must start from the Faddeev equations. 

Our states are therefore suited for description of suoh complex 
states, which lie above the threshold for emission of one single 
nucleon only, or where, at least, such an emission is the dominating 
particle decay mode. Such states could, e.g., be giant resonanoe 
states, decaying by emission of neutrons or protons. 

Finally we shall look at the one particle strength functions as 
1s seen, e.g., in elastio scattering of neutrons or protons. The 
calculations of the frag111entation and spreading; shown by suoh 
strength functions oontain a non-statistical as well as a statisti­
cal part. The first one should, at least in principle, be calculable 
from a miorosoopio desoription of nuclear states. Here, however, it is 
obvious that a description of the continuum wave functions is needed. 



We shall discuss an example of strength functions connected 
with the states of odd nuclei. 

~. The expansions in terms of pole functions 

The expansion of arbitrary functions in terms of pole functions 
is, in contrast to the usual expansions, used in many branches of 
physics,not unambiguoua,as is seen from the overcompleteness of this 
basis 

V rt,. (tt > Yf· (? 'J = 2 arrz- ?') i ( 

or from the relation 

Z:: so,·(e) tP,'(?') = 0. 

' /(/ 

(2.1) 

(2.2) 

Unambigous expansions are nevertheless obtained for a limited range 
of 'Z('Z') values,for the scattering wave functions and Green's 
functions using the fact that the 'f:·('l:)'s- correspond to residues 
at the poles of these functions, and that therefore a Mittag-Leffler 
expansion of G in terms of 'l;_•f'l) ~ (?') with the requirement 
that it contains no entire part, is unique. From this an unambigous 
expansion of ·the scattering function 7'(+) is also obtained. This 
was, e.g.,used to obtain the equations I (3.8), I (J.9) 

A different situation is met, when a truncated set of poles is 
used. The two expressions 

f'{t-) # IT II (K) == E:} 'I',, fr) 't,(7') 
n 2Kn {K-Kn) 

(2.J) 

and 
I' (f) N IT II {K) = X:::: !"',,.('l) IP,,,('r') 

n 2Kn (K-K,.) t-
,v , 

-t CL 'P.,(?) V,,(z'.) 
n 2Kn 

= 

(2.4) 

_ :i!: '/;,{i)'/t,{2') (~,,. C{K-t.-.,J) 

- n 2x,, { K- K,,) 

are obviously not equivalent for a finite N-value, although they 
differ by a K-indepem ent term only. 

Here, the second expression, (2.4), obviously ha.a some 
undesirable properties. Thus, e.g.,the usual oonvergenoe of the 

distorted wave Born approxillntion with large energies, whioh is due, 
r~ r0 to the denominator of 1r {K) would not be found with LT# {K) • It 

ought to be mentioned here that only one further problem of 
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ambiguity is oonneoted With obtaining I (J.20), I (J.21) from 
I (J.5), I (J.6). Instead of I (J.7) we oould obviously, based on 
I (J.6), write 

t
11
.{KQ= (K~,- K 1<)-tfo/t'i'//;:12)C/,)(2) (2.5) 

( l/11 1M ependent of K 1 ). 

Then, the third terin in I (J.8) and I (J.9) will be, respeotively .... 
ff- ~<~'I~ f clK 't'll +(K-z) z :t. i!. v-~..1 if/(n~¼ ti:)11 ;,- "' 

h o KA - I< J'' n . (2.6) 

= # <11'/V1 fcl'c' 1 
&,1p(K)J?j1~)U) fe') )j > 

and O<> 

#-~ <'f:.,11 1/"1 1dK'l:{c~)+z fclz't/(n-)Cl,(~'),1> = '' ' i 1 
'' KA- K " 

=j < ~.,J'/v, f cl~/ ~Jap{l1,) 'l; ~')~ fi~,.J >. 
(2.7) 

Here, if the singular integrals are interpreted by ~ "'~,. ,·()~ 
the G of (2.6) am (2.7) is obviously G+p• p , ~ 

Now, When we introduce the Mittag-Leffler expansion of GP 

5-; -= .z::.. 'I,· (',l) 6 J Pe ·r)J J ('?,; • 

/If> l o< K,· ( ~ - S'_. ~·) (2.8) 
l I 

.),·-.: -S,~n (.T..,(,r,,)) 
in these expre•ssions, 11e immediately arrive .at the nondiagonal terms 
of the expressions I (J.19) - I (J.21) with 

/f 'c,) -= j cl~ ~·(,l) (i) <.1;.f2). (2.9) 

To get the diagonal term, we just notioe that from (2.5) 

( K' 1 '-K)~ )~• (;c') '= - faii ~; (K't)(/; 1le) (2.10) 

I • must have. a pole at ~ ,: J:,: • Taking the residuum here, we obviously 
get back the extra diagonal term corresponding to_/3t''A' of I (J.9). 

In this argumentation we have u~ed a)that the integral in(2.5) is 
convergent (and therefore, as usual, that the upper limit oan be put 
equal to R), b) that the pole expansion (2.B) of GP and the similar 
expansion of <-t+rr-~) used in (2.10) aDi I (J.9) determine these 
functions, i.e.,that no entire function of k or k 1 is allowed, even 
when the expansion is truncated. o)· In writting I (J.20) we have 
further assumed that the matrix M has an inv-erse. Looking apart from 
aooidental degeneracies, this assumption is valid only 1f the expan­
sion of the total wave function 1n terms of pole functions 
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is unambigious. A similar problem is met when no source term is 
present, am we have to find an eigenvalue, corresponding to a 
complicated decaying state. 

Now, the interdependence of the pole functions, equation(2.2), 
will of course in principle prevent this uniqueness in the general 
case. 

However, when a final number of poles is used, 1n the expansi­
on of both the Green's function and the single particle scatter­
ing functions, the expansion is in general unique. 

The proof runs as follows, If the expansion 
IV 

/N{'Z) =~~•.~('Z) 

' 
rt~ R) 

(2.11) 

is not, unambiguous, there must exist a linear relation between 
the pole functions 

N 
x:::: r. ~- riJ = o 
l i ~ . 

(Z:. R) , 

Applying now the single particle Hamiltonian to (2.12) we get 

N Ir' 
0 = (Ho +v)x::: Y, "'· = .x:: Y-· x/,,,. i (/J r, ,l , z Tt • 

(2. 12) 

(2.lJ) 

This procedure can be repeated, to get an overdetermination of the 

0 ~ so that only· tr= o,a11 i) is a solution. Look, e.g., at 
N = J 

(2.14) 
ll'.t'r':t'+ (z~ +~~·=o 

,,,- z ~ )(2 
<Jt ,S >t + (.!' Xz 'lz + 03 :1 ~ = 0 

gives 

t2 (K.z ~ - J:/)'fz + ~(Jt_/--t'/)~ =0 (2.15) 

ope rating with { H,, + Y) gives 

( 
2 ?) r { Z lJ Zu o2 X,1 - Kr .t; fz ,... ~ K3 - K, ~ r$ =O 

(2.16) 

from (2.15) and (2.16) we get 

(K_/-K/){X.3z. -K/)t3 ~ =tl 
(2,I7) 

or more general.ly 
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II " n (K ·
2 

- Kf )6t· ft· =O • 
j#i) J ' 

(2.18) 

Now, as we have shown in ref. /J/ (appendix) the possibility of 
coincidence of the poles can in general be ignored, 

This ar€,lment cannot in a convergent way be extended to N - ex, , 

so no contradiction with (2.2) is found. Still, the appearance in 
I (J, 20)1 etc., of the same function, 'f 1 both in the expansion 
of a bound state as 'fv , and in the pole expansion of 'f 6 

as Y'n , seems to cotradict this linear independence. Here, hovrnv-
er, we ~hould remember that lfv nnd ~ go into the calculation 
of the matrix Min different ways as is seen,e.g.,froril the fact that 
even if we write /Ii> =/vA > with l"., = 'fn , we have nevertheless 

<An/ M /An> i: -dv/ 1'1 /An>, etc. 

The overcompleteness must mean that in a concrete calculation, 
the matrix inversion ofdiagonalization will become specially 
difficult, when the number of pole terms becomes large. It was, 
however, shown in ref. / 4/ that in a realistic situation, corres­
ponding to a nuclear physics potential, a relatively small number 
of terms was sufficient in the pole expansion of· Cr,.;. The conver­
gence of the pole expansion can, by use of the Mittag-Leffler 
theorem /J, 4/ b; improved considerably, introducing entire terms in 
G ( and "f fr ). It should be noted that by means of the Kapur-l'eierls 
functions also the entire term can for ~, 'l' 1 ~ I!. be written as 
a sum of separable operators, with a simple polynomial dependence 
of K • 

In I, the theory of shell model-co~tinuum states was developed, 
and the pole functions introduced, using the Mittag-Leffler 
expansion of rf~. This means that the singular integrals in I (J,8) 
and I (J,9) are interpreted in the same way as they are in the 
definition of r;<~I. This leads, as mentioned by moch / 4/ , to a 
particularly simple, linear expression for the scattering matrix by 
means of .what is usually called the f -matrix (Bloch's notation is· 
different). 

However, instead of the g- -matrix scattering theory is'often 
expressed in terms of the K-matrix, which is obtained 1n a similar 
way, only with the singular integrals of the shell-model-continuum 
theory, our I(J.e), I (J.9), interpreted as principal value integrals. 
If this is done, the ~P of our equations (2.6), (2.7) must be 
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/'p . 
~F J the continuum part of the principal value Green's 

function. The pole expansion of ~,:, is easily obtained from that 
of Gf. We may, e.g.,use equation (2.21) of ref. /J/ 

to get 

+ (i = ~ E: Pn {?)'f:,(-z') 
2 n Kz_ ;z-,., 

K fnM '/:,('?-') _,. _.;;:...:.~.C..:.,,-
.t;, ( KZ- K,,2) 

CP == Re ( C..,.) (.K t~a-t') 

"'LE:: 'f/.f-r.)t1.[r'J. 
i! n K11 -K; 

So, for the continuum part we get the simple expression 

GP = ..t.x:: ~re-J w.r.-;., - C ;,t,h)<t.f .. ') == 
p 2 n K 2 -K! ,. K 11-r.,l 

{o(e ,cde,) r~~,,,,,c/ P•l'U) 

= _t I::;' S,. 'f,.{r} '&(r'! 
1 ·c,,,, Ki-K: 

( ate' ,,,4) 

where, as in I, s,,::: -1-:£ for poles in the lower half k-plane, 
S,., :::: ·-1 in the upper. 

(2.r/) 

(2,18~ 

(2.19) 

. p 
The pole expansion of (} must of course essentially have the 

same ooilV'ergenoe propert·ies as those of & ~ • When a truncated set 
p 

of poles is used, the requirement, that G~ should be real leads 
to the natural exigenoy that the truncated set, for eaoh resonance 
pole, must also contain its mirror pole. Note that in this oase 

N ii,! {l} ~ (rt) £ - H is purely imaginary. 
., K,, 

.1~...J?!!!..!'!.!..!!!Z!lliL!ill!~L 

As mentioned above, we can inside the framework of the present 
theory only give a precise description of suoh states, where at 
most one particle is in the oontinuum. Of course, a product of two 
of our states or a sum of suoh produots oan, properly antisymmetri­
zed, be interpreted as a state with two particles in the oontinuum, 
and so on, but suoh products are eigenstates of the Hamiltonian 
only, in the approximation, that· some partiole-partiole ooupling 
terms oan be neglected, 
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So let us look at the continuum shell model equation obtained 
from I (J.8), I (J.9) in the absence of source terms. Here, in order 
to obtain a decaying state, we must interpret the singular integrals 
as in the definition of ~.,. and we obtain 

!J~ ==0, (J,l) 

where /1 and £1. are given by I (J.21) and I (J,19), respecti-
vely. 

Alternatively, we oan in the random phase approximation get the 
same expression, with .f!f.. given by I (4,lJ), I (4. 14) and M 
given by I (4.16), I (4.17) • e = 

Starting with the first approach, we see that solutions of 
(J,l) are possible, if 

~ef{(J(E))=Q. (J.2) 
The solutions obviously have the form given by I (J,2) and I (J,4) 

i "t > == ..::C' ~ / ,1 > .,. # FI r1, i.>i (I) I I) > I 
(J.J) 

where C;. is given in tems of the ,l's by I (J.7), I (J.19). To 
discuss the structure of these equations, let us look at the 
example of only one bound state and one resonance in one channel. 
Now (J,2) is writ;en 

.CA/~ /A>-(,l~elo-~) <A/'VJl'l'> 

<i/'/,./11 "> <t. M 1z-> +2K,·~a •xtJ 

<A/vt/i > 

<l/~//> 

<7/vdA> <,j~/'t'> < 'l/~Ji >-Zk; (Jsic,) 

=0-

(J.4) 

For the sake of simplicity, let us assume the diagonal elements and 
the pole-pole coupling terms of Vt to be zero. Then we have 

v."2 v,2 
t f 

+ 
2K,.""(K/+,d 2K,• (K,· - x) 

=: ( E/1 - eA - I, l) • (J.5) 

It is 
state 

seen that a purely imaginary k-value corresponding to a bound 
solution is generally possible, since in the interval o < ~ < = 

- -· . go both sides of the equation are real, and the iert--nana s1ae wll.1 
(

v.~ 
from l?e ..L ) to O , but the right-hand side from E. - e 

./Ir.• ,. , . :i 

I?<: ( VL ) '7 0 , :Ji:! - K • 
to ;. c,o 

I 
where t=- ~ <' 0 ~ zx,,z 1 " -
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Fo:nnally, a solution with a?< O may in general also exist, it 
should, however, be discarded, since in obtaining (J.1) we used, 
among other relations, I (J.15), whioh excludes ,JtJ < o. It is 
also seen that for a large class of parameters the other roots must 
be complex ( J real roots must be a rare exception). So, as we 
should expeot, oomplex energies, corresponding to mixed resonances 
must result from eq. (J.4), or the general eq. (J.2). For weak 
couplings we may, in the neighbourhood of a single particle resonance 

, write (J.5) with 

,~~-~ 

v,z ~i,..z -- ..,,. 
Z.t;· ,( 2K,• ''/ I,· t- //) 

z ~ - e',1 -1..2 , 

¼"'.z 
.,( ::: 

2.t:.-(x ... e,1-c) 

The corresponding 1. Order wave function 

/rf~ ".(,._ /A> + .li:/~,_A-;. r «;· /t, -1 > 

is, up to normalization obtained as 

"f~' ~ ¼ 12 /11"> -,..;~J> 
.f;._-e,1 - ,· 

v1hich is fonnally identical to the usual 1. Order perturbation 
expression. 

In the Random Phase APproximation, a similar eigenvalue 
problem, although more complicated, is found. 

Here, only instead of the elimination of E, E ==- J(J.,. e,-1 

above, we have in the different diagonal matrix elements of M 

( see I (4.17)) to eliminate E, -E and, say, K;i- by 
/; 2 , 

~- = +/ 1e.d•.2+ K,1+ • 

(J.6) 

(J.7) 

(J.3) 

Whereas the complex scattering states, as solutions of an 
inhomogeneous equation, are normalized by the ohoioe of the inhomo­
geneous te:nn, the ooeffioients in the equation for the complex 
decaying state should be normalized according to the usual 
conventions. 

So we have, for 

Ir-,,. = ::r:::: .(/1 I A> + IT£. :E:. 1a'.k' /{r) I KA> 
/\ )I }' ,\ 

(J.9) 
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<.. 'f/i--;,, = E:: 1.1,i / 2 
T IT.5 z:::J 1o1, I~ {l)Jz.~ L 

A I )) ]' (J.10) 

now, as above 
p l -1.f I rl, /r) ) h>,(0 =- (J,-,. -/) <YZ 11, t('? t/1,f?:). 

l(J.11) 

So the integrals in (J.10) can be written 

I:: f r1, (JA ~ - /l)-1.{J: Z - /z)-1. • (J.12) 

f 
/1-) . i + ¥ j-

• d'l 1'J. { I, -z) 0, tz,J J al'l' ~ (I~) ll,1 I?) 

~ 

K:z _ ~z 
f t1l (o~-ilJ-L- (l/z.- PJ-1)• 

f·r , ,... ?' 

iJ. J d~.f~' ~ {~ z) ~ (/.,') ~ h) w',i (z') 

or 

L 77 ft , /" ,. ,,. - , ~ , \ 
I= '1,,,,.z! I/ 2 JJ cir ✓..- ( G-l'(.1:,i,~~1

)- G,... (K;.,-z-,-i')/ =-

L JT ti' al: d IL/_ L - .L \.. (J.l.3) " r~- 1z 2 JJ -z z l (2((.K.A-s,-I,-) 2(•(-1/°~~-I;)) 
,I /I 

" 'f,•(?.) 1.fe·{z') ll; ('c) ll/ (z') =-

~ 77 1/1 + I/° ~ 
= I.. 2 /),l,Z 2 .x;::: ., .(· p ' I . ptl l /3z-; hA 
~ - ,r.\ ~ 2K,· ~;- ~·-t,·)(-,r,1 -sl ,) 

1.. 
= --r- iA 

f .f -!I-
.!! .E:; d~--< Z-l ~-~ • 2,i 

Since {- = - "· II- , this expression is purely real, as 1ong as 
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we still retain the rule, that if the expansion contains 1, it 
must al so contain f • 

The normalization of the corresponding states, obtained in the 
Random Phase Approximation is g:l.ven by 

F (!-<A,./ z_ /~_ /z) ""ff Ffi/i (/~J/)/i!- /~_(I)/:}• 

where BJi:.t can be expressed as above, using the i,u 
given in I (4.11). 

(:3.14) 

We shall here discuss particle strength function calculations, 
using the pole expansion, for a particular example, which contains, 
however, in principle the main problems, met in the general case. 

. , The example concerns an odd nucleus. We shall here look at the 
approximate description, relevant, when many particles are outside 
a closed shell. The even system, obtained by removing the odd partic­
le, is in an approximate eigenstate of a Hamiltonian, which besides 
the shell modal potential contains a short range pa.rtiole-partiole 
inter~otion and some interactions of larger range. The correlations 
introduced by the short range interaction are of the pairing type, 
and they are treated by introducing the Bogolubov transformation 

.l(.J)r "'ti/ Q',,.U} ,,_. Y,J a-(1), 

.< (v) -1- -= llv <Y'"/1) - V.i O' (v) • 

Here the continuum states must be completely unoccupied in the 
even core, so we must have 

Vv == O (0 ~..t:) J E,; > o. 

(4.l) 

(4.2) 

This means that these states do not enter in the description on 
equal footing with the bound states, but since Yv , so far above 
the, Fer.ni level must anyhow be very small, the pairing picture 
1s not noticeably modified. 

. The long range interaotions are treated:ln the Random Phase 
Approximation. This means that from pairs of the quasi-particle 
operator1, ol{.J), etc.,given above, new colleotive boson-like 
operators are constructed by the transformation 

IO 

( 
\ 

\ 
!1 I' 

,1 
r I, 
,I 
( 

I 
) 

I 
~t 

\:' 

.J 

'a~,' _..-,/r + ') 1'- ll 7 ,-J, ).i Jy,r 1} At' ) ( ) 
J.r j~t; ~;.. N .-;,-~, {" /.I;/" ~~vJ/rll'J d-lj f <{,·:.,, (-.1'),{,-,.. (v J.J t"fvJ/'tvJ · 

4
• .J 

properly generalized to the continuum as in I (4 • .5). Since, by the 
assumption (4.2), the quasi-particle creation operators (4.1) for 
continuum states are identical to particle creation operators, the 
even system with continuum admixtures is in principle treated in the 
same way as in the case without pairing, considered in I. 

The equations to determine the wave function will have the same 
form as I (4.l.J) - I (4.17). We shall, however, here introduce the 
frequently used approximation of separability of the particle-hole 
forces. This means that in I (4.16), we get 

!, 

< J'I I+/ V, / ,1 ,' > E ~,H 1V1 /Vt/,µ:;> =, F 1-71 •-5,;; . ,.. 
I - " <11 +/Vil A-;:, a r/' 1v1 ·,c;.,7 

<11+) Vditlr> .;. 15,il · F.·,r 
. -1'-

< ,1 t JV,_//)-> -== '-5,ii"~·,f 1 

(4.4) 

etc. Further, since we want in (4 • .J) to express the collective bosons 
by the quasi-particle operators, the matrix elements in the RPA 
equations must be replaced by 

<✓r' h 1 IYt li~iv > = (4 • .5) 
• I. (,<) 1--) 

< /14'/v''/'4 II" /,7-;,, w,,.,'./v' ~,., 1v 

{~) 
ll oat,/ \I'. +ll Y, 
lt ✓R. - ;;,. 'b ;/2 'I~ 

and the energ:l.es ~- by the quasi-particle energ:l.es 

E -Ii( 2 z I .{{vJ - ".;NJ - E1) + .a1 tvJ 

(4.6) 

( A.JM = 0 /'oz 'ftr;; ,- O) 

The wave functions of the odd system are now (written for discrete 
components) given as 

/ .,. {, ~ -1-i] A 
/ 'f ?;-M = f7 ( O'OVf .(711 {v) + /ij; .,( ,- {\/)q' )_,.. TH ~IIJ' + 

(4.7) 
~ [./+ !) r, ~t, +,z 7 l ),t,.l,tl) 

+>,<1 )
2

1, / 1•/J LQ),I', • ~,l"ziIM1 f/1 Q/INJ' /fo >' 
{1 

II 



/)+t 
where the Y' S are the phonon oreation operators, defined above,-
with {+, 'fj oorresponding to [x,Y/ and {x, Yj of I (4 • .5), normali­
zed by 

. ., . .,, 
.--. ( t t ' ( ) - O.• ., ;-; r,,, 1-,,, - Y,,, ½f' - ~ l • 

(4.8) 

Here, the ooefficients could ?e determin~d by the equation corres­
ponding to I (4.17). Since 'rt~' and ct,;, will be proportional 
to u;;,,as is seen from (4.2), (4 • .5), only one particle may be 
in the continuum. 

We can, however, in a realistio situation have one incoming 
particle, only.- ~ 

If (4.17) really represented a complete antisymmetric solution 
with a Hamiltonian, which was symmetric in all particles outside 
a closed shell, it would be irrelevant whether this incoming 
particle was represented by the.odd particle creation operator 
or by a term in the two-quasipartiole operators. 

We shall in the following assume that incoming particles 
are only represented by a+; however, we shall follow earlier 
treatments /7/ in assuming that the presenoe of the odd particle,, 
(as well as the phonon-phonon coupling) does not influecne the 
structure of the phonon states. This means that the phonons oan 
in the oontinuum at most have an outgoing partiole, and that they 
must therefore be f~und by solving an eigenvalue problem, which is 
the one which corresponds to the eigemalue equation of the last 
ohf,\pter (.3. 2), with the proper changes ( u, \I factors and quasi-
particle energies ·instead of £11 . ) 

z>ef( /1) ==O 

(4.9) 

<f/Mfr-;,, = ~r1i1r ✓ -
(4.10) 

(t E -Ej) df'( ~j'A -

- 2 i-z- (I;. - s, /7:) ~.f>( J,i,,,1,: , 

where t".; and t~ - correspond to the 't and 'f part of the 
eigenvectors, respectively, and ~r1vl f;,, is short for the matrix 
elements of (4.5), whereas 
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L/z 
~ :~" e.!:/v-J +E/,.,J., K/= (E-,f/,7,)) • 

The equations for the odd system are now reduced to the same 
type as those met in the continuum shell model, treated in I, 
chapter .3, with the proper changes, i.e.,that the states 
/It> =//",i 11:4 :> 1 etc., I (.3.J), are replaoed by the components 
of (4. 7) 

+ ) · r r ,,,, J "" /II>,.,., = uiu/v ·;; >., IA 7iN "/. ✓✓- '-f,;~ 71.., /o /' 

T 
I ,<1 'J). o >,1'-1 = u,1-t t, > 

0 

/k,J"'o>J'H "Lo/ a~,, J,11-1'1'i ,>, et..:. 
The introduction of the oorresponding pole states, /i ~> 
is straightforward following the methods of I, chapter 4. 

(4.11) 

The interaction, \'.t of I (.3.1) is replaced by the quasiparticle­
phonon interaction, llyl'~ which,e.g.,can be taken 111 as 

I ..,- r,,f / A-/" 7 ) -2vi1 
~- 4' ,.\µ + (-) Ci Ji-r- ~ 

(-) -.;:--, .) V: 
X L__, /. h~l--, 
l ,/2 ' ,, IL Iv Jo,' 

• 2' 

'2' == {,,,) ,.o) 

/-} 

r ✓ -1- I - }1 -t A (!. 
L '~~ ll -Ml /I~ • 

V .,,. VU, - V V, • 
/,/, efl H /, ,fl 

(4.12) 

,I 
Here /J,.,/., is the reduced single-particle matrix 11.ement of the 
multipole operators ~;i >;,,... ; the normalization J' ,/ 
is given in Ref. 7 • 

For many applications the continuum admixtures in the phonon 
may be neglected, and their energies found as real numbers in the 
usual random phase approximation. In the general case, however, we 
see that the introduction of decaying (damped)_ phonons, as above , 
means that •the corresponding energies, e,1 of the equation 
corresponding to I (.3.4) are complex. 

Even when all continuum admixtures are ·neglected, the calcula­
tions leading to a wave function of the type (4.7) are often 
replaced by looking for the so-oalled strength function, i.e.,for 
the admixtures of a certain component in the solutions. Further, the 
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exact strength function is often replaced by an average strength 
function, which gives the averaged content of a component in 
eigenfunctions in an energy interval. 

Since the eigenenergies will often lie very dense, the strength 
function will often correspond to the physical measurements. An 

extension of this method to the oase, when continuum admixtures 
are taken into account is straightforward. In some oases this will 
even lead to somewhat simpler calculations, as we shall see in the 
following. 

Let us suppose that the component in which we are interested is 
the one, which 1n our model is described by a single particle 
creation operator, acting on the even vacuum (the first component 
in (4.7) ). This corresponds, e.g.,to a stripping experiment with 
the even vacuum as target state. 

If this component belongs to the discrete part of the wave 
function, as will be the oase,if the total energy is smaller than the 
lowest particle emission threshold, the calculation of the 
strength function must fbllow the usual scheme. This means that the 
square of the coefficients, which would in principle result from a 
matrix diagonalization, must be averaged with someweight function, 
say, 

/a(z)/-= E.~('Z - E-c-) <)'on, 
?' 

(4.l.'.3) 

where z- denotes a solution of the eigenvalue problem of the odd 
system, E, the corresponding eigenvalue. Here, S is conventi­
only chosen in the Lorentz fo:rm, 

O(.x) - .. L ~-
..:, - ./i7 )(z-1- <11/1 

(4.14) 

The sum in (4.l.'.3) can be turned into an integral of an 
expression, which has poles at the eigenvalues E z- • The resol-
vent 

R. -:a (z - H) -.r (4.15) 
has this property and in some simple examples (see,e.g.,8 ), 
even the residues will be given directly by the resolvent. It is a 
necessary condition for this type of calculation to be feasible, 
that the / J'l: I z are given, for real E z- , in a way. w_hioh can be 
analytically continued in some region of the E plane. 

, . .d 
Now, also .f'(Z-< ') has poles at z ~ Z ± t. 2 -

and the average is, by contour integration, obtained from the 
residues in these points. The character of this calculation is not 

changed, even if some of the poles are complex. 
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If the average distance between eigenvalues of the system with 
quasi-particle-phonon coupling is much smaller than between the 
quasi-particle energies in the absence of coupling, and if A 
is between these, the result of the averaging can be expressed 
by saying that the (analytic) expression for /a/ 2 has p~les, 
whose real part is near to the quaaipartiole energies and with an 
imaginary inrt, 0 which is proportional to the average of the 
square of the coupling /7,S/. • 

Some,e.g., stripping-cross section will contain a Lorentz 
factor 

/--
/7 

{.£- c-;,.r7~J )2 -1--u(r/2 )2 

1:;r1eJ ~Ev (ft./CYs,;:,) 
~z r ~ j'/7 ~ t'.i ? (x density of levels in coupling). 

(4.16) 

(4.17) 

Stripping, leading to a sufficiently narrow single particle 
resonance state, distributed over a number of complex states, may 
in principle. be described in the same way as above. The resonance 
functions were suooessfully used in the description of stripping 
in the simpl.e oase where the coupling to other states oan be 
neglected l 9I 

It ought to be mentioned that around threshold for particle 
emission, the analytic energy dependence of the amplitudes, needed 
1n the procedure described above, is not fulfilled. This leads to 
praotioal difficulties only for the oase of neutrons ins-states, 
and only in the neighbourhood of the threshold. 

If the sil'.lgle particle reaonanoe is, as will often be the 
oase, sufficiently wide, no further averaging is needed in the 
oaloulation of the strength function. The same is seen in the 
elastic scattering. Here, the fo:rmalism of I, chapter .'.3 is again 
applicable. We shall again assume that the even oore system is 
described in terms of eigenstates in the RPA~eaning, but with 
energies which oan be complex. Let the only component which oan have 
incoming particles be the one which corresponds to the ground 
state of the even system. Now, in the wave function (4.7) the summa­
tions over ii are in the continuum replaced by integrals over 
I{ , so we get a set of components · 

'i;, 7 "" f <IK (00~ {KJ/.,.: (x) + 
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+ E Cl ,l i x:)j:- .,. ~) /) t" f- J + 
lil_j .j .f ( /'" £' '-f -~ .TM (4.18) 

+ L/ /.1:6:) f (; + '1 {? t-tz J ,1 Cl:,£, i,11 ~)) 
ii, (, 4,lz ./ AV", ),,Hz 'IM J/1 Ji Jj' (. 'J 1; ;,, 

where 

arr{x:).,.. ArJ(K-KrJ: 'r(K). (4.19) 

We may as before write 

1/K') 'C ( 7 i_/ 2)-1. 7 ltl<)ftcr' (4.20) 

( f channel index) 
where 

... 
It (t.J,. ~//"R) z~· {x:- 1<,) 

t,· {1t,) I( 
(4.21) 

.ii I In solving the equations for the o ·s or, equivalently, the /f :r we 
a.re led to equations which a.re formally identical to I (J.8), I(J.9). 
We may now, a.a in I, use the r;~ definition of the singular integrals. 
In this way, we would come directly to the if matrix of the 
scattering. This is in many ways the simplest method. However, it 
may also have some advantages to use real quantities. This means that 
the singular integrals must be interpreted in terms of principal 
values. This method leads, as pointed out by Bloch instead of the 
T matrix, to the a.na.logous K-matrix. Since this approach is 

frequently used, we shall stick to that, the changes needed to 
replace it by the [/" matrix approach being simple. Note, that we 
are in our notation following Bloch. The matrix, here called K, is 
related to the usual K-matrix, see (4.JO), (4.Jl) below. 

The main point is that when the principal value definition of 
the singular integrals is introduced, I (J.11) is replaced by 

r;/-:: S; ~-~ft) 

..<J - .c;· ~ (4. 22) 

This means that the PP-elements in the M-matrix of I (J.21) are 
replaced 1:ir 
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<_).,,.,I /1 I 1,'A >- "~,J 'I' It;: I l A --;,, - .r.· {;e~ - f •/ ) !",_~·, d,i,i 1, 

~-; "" ,Oc4 s,/ {i/- x/). 

(4.23) 

(4.24) 

Now, we are interested in elastio scattering, i.e.,in the residue 
Po in Blochs notation of the coefficient -4 {,c) 

at its pole KA 
This is just what in I, chapter J, is called 

£:: A, f'~ (-4) (4.25) 
~· ~ 0 <1' "" • 

It may at this point be advantageous to introduce a common 
notation for all components, whether they belong to resonance poles 
or not. So for a olass of /} values 

II> ~ /1,· J > (A,./1.d)• (4.26) 

Then, from the last equation of I (J.21), together with I (J.20) 
we have, with the substitution (4.2J) 

j3 11. "2 _(,,o {K ~ - J::;,'• ) ./Ao (4.27) 

.ci.; :z E ~ I\ {.111 ~ A/\ ) p 
I\ D 

where we have introduced 

til-;: t: ~(A) J K;,. :.- [,(,1) I ~ - /11A11 • 

Now, eliminating the first right-hand term by means of I ( 20) we 
get 

/? .., L. (- V A I" 2 _· V: I M -I \I I ) 11> 
r11. ,1 11•"• A',t" -1.v A1A 11 yll"Ao "O (4.28) 

(This is, strictly speaking, an elimimtion only if ~.,i.' ~ 0 
which may, however, safely be assumed ( see, e.g.,ref. 2)). The 
a.nal.ogy between (4.28) and Bloch's equations (2.42)-(2.46) should 
be noted. 

The two-step elimination method of Bloch would s~em to be the 
most reasonable thing to use, if the wave functions at the different 
steps were very different. 

However, our bound state wave functions in chapter I.J 
and resonance wave !Unctions as given by I (J.J) have the same 
structure. Therefore a one-step.elimination, treating oontinuum 
couplings on the same footing as those in the discrete pa.rt of the 
wave function, seems reasinable. 
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A comparison with m.och•s equations (2.47), (2.58) now 
shows, that if we write (4.28) as 

fA 0 ';;;. ~ J'ft\o (4. 29) 

(where equations for other components could hc:ve been obtained 
analogously, and t~: c restriction to A,, ,.._ ~i\o is not necessary) then 
the scattering matrix is obtained as 

5. = e L't: S e-•0 
-· , 

f ... ;'-'-t'IIJ{ 

:t-l1i!i_ 

' 

(4.JO) 

(4.Jl) 

Still (4.28) contains terms, corresponding to all couplings, 
caused by the residual interactions, including the us_ually neglected 
ones. 

The qualitative picture, which results from (4.28) can again 
coIIV'eniently be obtained by looking at the averaging of ·the cross 
section. This can be done by contour integration or in other 
words by introducing an imaginary part in the energy { i LlE ) 
or momentum { idK) equal to the corresponding experimental width. 
For the average cross section, we have 

<. v{E) '?
4 

~ 2 (J - Ile < S{L) ;4 ) 

where the contribution to <.S ;,4 from ,d 110 is obtained from 
-1. ~ 

:I: A = ( I! (K ~ i AK ) ) y c! • 
Note, however, that when the momentum is in the neighborhood 
of a single particle resonance K; , which is wider than ,1K 

the imaginary part of t'he diagonal elements will be dominated by 
this I,.. (t;) and AK may be neglected. The cross sections, 
corresponding to this single particle resonance must of course again 
be obtained by an energy (momentum) integration over an interval, 
corresponding to the width /B/ (or a little larger), so J,..(1c.·) 
will in this case completely replace f ,1 J( 

momentum width. · 
, the experiment';ll 

~~!2.!l 
We have here in some details looked at the possibilities of 

using the pole expansion method of I in nuclear physics problems, 
particularly concerning the construction of complex, decaying sta­
t'es and strength functions. 
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In the usual calculation, a number of further simplifying 
assumptions are introduced, in order to accommodate the diagonaliza­
tion or inversion of what corresponds to our matriX !J • 

Similar assumption can immediately be introduced in the reso­
nance function method. What we have in mind is, e.g.,the assumption 
of constant matrix elements in RPA or pairing calculations, or 
similar simplifications in the particle-phonon matrix elements. It 
should still be kept in mind, however, that when the basis is 
extended, the effective interactions used in a truncated basis must 
be changed, in order to obtain realistic results. 

Here, again the general principle of using interactions,whioh 
reproduces the energy spectra or parts of them as well as possible, 
may be followed, then looking for the possible improvement in other 
measurable ~uantities with the extension of the baais. The most 
nearlying quantity is here the particle decay width as is seen in 

elastic scattering or (~ 1 n) and { i)P) processes. This is immediate­
ly obtained from the calculations, sketched above, which obviously 
take into account, in the terminology of9 e.g.,ref. / 5/ both /11 
and f'I. 

Concrete numerical calcu1.ations are under preparation; 
they will be piblished elsewhere. 

The authors acknowledge usefull aiscussions with V.G.Soloviev, 
A.I.Vdovin and A.Vitturi. 
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6aHr E., rapeee ¢.A., Epwoe C.H. Pe30HaHCHble COCTORHHR 
B CTPYKTYPHblX Bb14HCileHHRX (npOA011)t(eHHe) 

E4-81"'.415 

O5cymAaeTCR BO3MO)t(HOCTb HCnO11b3OBaHHR MeTOAa·pa311O)t(eHHR no nOil~CHblM 
¢YHK4HRM /cor11aCHO TeopeMe MHTTar-Jle¢Hepa/ A11R onHCaHHR RAePHblX COCTORHHH, 
Ile)t(a~HX 8 HenpepblBHOM cneKTpe, paccMaTpHea~TCR HeKOTOpble MaTeMaTH4eCKHe CBOHCT-
ea pa311O)t(eHHH no pe30HaHCH~M ¢YHK4HRM, npHBOARTCR ¢OPMY11bl A11R Bb14HC11eHHR . 
OAHO4aCTH4HblX CH11OBb1X ¢YHK4HH. Oco5oe BHHMaHHe YAeI1ReTCR OnHCaHH~ C11O)t(H~X, 
pacnaAa~~HXCR COCTORHHH, KOMnOHeHTbl KOTPpblX COAep)t(aT He 6011ee OAHOH ·YaCTH4bl 
e KOHTHHyyMe. Pa3BHTblH MeTOA oYeHb npocT e npaKTH4eCKHx pacYeTax, TaK KaK 

'e pe3y11bTaTe no11yYaeTCR CHCTeMa a11re6paH4eCKHX ypaBHeHHH, no ¢opMe noYTH 
coenaAa~~HX C ypaBHeHHRMH 06O1104e4HOH MOAeilH. 

Pa6oTa BblnOI1HeHa 'e Jla6opaTOpHH Teopern4eCKOH ¢H3HKH O11.fll1. 

i' 

Coo6~eHHe 06'beAHHeHHOrO H~CTHTyTa RAePHblX, HCCileAOBaHHH. ; AY(iHa 1981 

Bang J.M., Gareev F~A., Ershov's.N.•R~sonant'States 
in Structure Calculations (Co.ntinued) 

'.E4-:81-'415 

Some app Ii cat i~ns of the expansion method for. d~scr i pt ion o·f continuum­
nuc I ear states are discussed •. Some mathematical:properties of resonance expan"'. 
s ion ·are considered.; Formu Jae·· are given for ca lcu lat ion of one. particle· · 
strength function; Description of.the.complex decaying states containing' 
only components with one particle .in the continuum. are given. The method 
is very simple since it 1.eads to a· system of algebraic equations. 

The 'investigati~n has been performed at the Laboratory of Theoretical 
Physics, JINR. . . 
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