

сообщвиия объединенного института ядериых исследованй
 дубна

$4574 / 2-81$

1/9-81
E4-81-415
J.M.Bang,* F.A.Gareev, S.N.Ershov

RESONANT STATES

IN STRUCTURE CALCULATIONS

(Continued)

[^0]
1. Introduction

In a reoent paper, henoeforth referred to as I. $/ 1 /$, it was suggested to introduos resonant states as a means of treating oontinuum admixtures in nuolear ware funotions. 8inoe the caloulational prohlems, ooneoted with finding the resonance poles and the corresponding wave funotions have reoently been solved $/ 2 /$, we shall
here present a number of useful formulae, suited for different tJpes of struoture oaloulations. In this way, the paper appears as a oontinuation of I.

We shall first disouss the underlying mathematical formalism, and give a number of relations, whioh serve as a oompletion of those given in I and in our earlier papers $/ 3,4$ /.

Next, we shall give a desoription of what oould be oalled a oomplex deoaying state. By this we mean a state, whioh oontains many oomponents of shell model type, i.e., partiole-hole states or several-partiole - several-hole states, till oontaining only oomponents with one partiole in the oontinumm and no inooming partioles.

This restriotion which is oommon to all caloulstions of the oontinuum shell model type seems nooessary for mathematioal reasons $/ 5 /$. In the present oontext, its role is rather obvious, sinoe we build our approach on a Mittag-Leffler expansion of the single partiole Green's funotions, satisfying the Iipmann-Sohvinger equation, whereas a oonsistent treatment of states with two partioles in the oontinuru must start from the Faddeev equations.

Our states are ther efore suited for desoription of suoh oomplex states, whioh lie above the threshold for emission of one single nuoleon only, or where, at least, suoh an emission is the dominating particls deoas mode. Suoh states oould, e.g., be giant resonanoe states, deoaying by emission of neutrons or protons.

Finally we shall look at the one partiole strength functions as is seen, e.g., in elastio sosttering of neutrons or protons. The oalculations of the fragmentation and spreading; shown by suoh strength funotions oontain a non-statistical as well as a statistioal part. The first one should, at least in prinoiple, be oaloulable from a miorosoopio desoription of nuolear states. Here; however, it is obvious that a desoription of the oontinum wave functions is needed.

We shall discuss an example of strength functions connected with the states of odd nuclet.

2._The expansions in terms_of pole funotions

The expansion of arbitrary functions in terms of pole functions is, in contrast to the usual expansions, used in many branches of physics, not unambiguous, as is seen from the overcompleteness of this basis

$$
\begin{equation*}
\sum_{i} \varphi_{i}\left(r^{\prime}\right) \varphi_{i}\left(r^{\prime}\right)=2 \delta\left(z-z^{\prime}\right) \tag{2.1}
\end{equation*}
$$

or from the relation

$$
\begin{equation*}
\sum_{i} \frac{\varphi_{i}(r) \varphi_{i}(\tau)}{K_{i}}=0 \tag{2.2}
\end{equation*}
$$

Unambigous expansions are nevertheless obtained for a limited range of $z\left(\tau^{\prime}\right)$ values, for the scattering wave funotions and Green's funotions using the fact that the $Y_{i}(r) \mathcal{S}$ correspond to residues at the poles of these functions, and that therefore a Mittag-Leffler expansion of G in terms of $\varphi_{i}(z) \varphi_{i}\left(z^{\prime}\right)$ with the requirement that it contains no entire part, is unique. From this an unambigous expansion of the scattering function $\psi^{(+)}$is also obtained. This was, e.g., used to obtain the equations I (3.8), I (3.9).

A different situation is met, when a truncated set of poles is used. The two expressions

$$
\begin{equation*}
G_{N}^{(t)}(k)=\sum_{n}^{N} \frac{\varphi_{n}(r) \varphi_{n}\left(r^{\prime}\right)}{2 K_{n}\left(K-K_{n}\right)} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{align*}
G_{N}^{(t)}(x) & =\sum_{n}^{N} \frac{\varphi_{n}(\tau) \varphi_{n}\left(\tau^{\prime}\right)}{2 k_{n}\left(x-x_{n}\right)}+ \tag{2.4}\\
& +c \sum_{n}^{N} \frac{\varphi_{n}(z) \varphi_{n}\left(\imath^{\prime}\right)}{2 x_{n}}= \\
& =\sum_{n}^{N} \frac{\varphi_{n}(z) \varphi_{n}(2 v)\left(1+c\left(x-k_{n}\right)\right)}{2 k_{n}\left(x-k_{n}\right)}
\end{align*}
$$

are obviously not equivalent for a finite N-value, although they differ by a K-independ ent term only.

Here, the second expression, (2.4), obviously has some undesirable properties. Thus, e.g., the usual convergence of the distorted wave Born approximation whth large energies, which is due to the denominator of $G^{(x)}(x)$ would not be found with $G_{N}^{(x)}(x)$. It ought to be mentioned here that only one further problem of
ambiguity is oonnected with obtaining I (3.20), I (3.21) from
I (3.5), I (3.6). Instead of I (3.7) we oould obviously, based on I (3.6), write

$$
\begin{equation*}
\left.b_{\lambda^{\prime}}\left(x^{\prime}\right)=\left(x_{\lambda^{\prime}}^{2}-x^{\prime 2}\right)^{-1} \int d\right\rangle \psi_{\lambda}^{+}\left(x^{\prime} z\right) c_{\lambda}(z) \tag{2.5}
\end{equation*}
$$

(C / λ ind ependent of K^{\prime}).
Then, the third terin in $I(3.8)$ and $I(3.9)$ will be, respeotively

$$
\begin{align*}
& \frac{2}{\pi} \sum_{\lambda}<\Lambda^{\prime} / V, \int_{0}^{\infty} d k \gamma_{\lambda}+(x z) \frac{1}{x_{\lambda}^{2}-k^{2}} \int d r^{\prime} \gamma_{\lambda}^{+}\left(x z^{\prime}\right) \omega_{\lambda}\left(r^{\prime}\right) \lambda>= \tag{2.6}\\
& =\frac{2}{\pi}<\Lambda^{\prime} / Y_{1} \int d r^{\prime} G_{\lambda p}\left(x_{\lambda}, z_{\lambda} z^{\prime}\right) \omega_{\lambda}\left(R^{\prime}\right) \lambda>
\end{align*}
$$

and $\left.\frac{2}{\eta} \sum_{\lambda}<\varphi_{C^{\prime}} \lambda^{\prime} / x_{1} \int_{0}^{\infty} d \kappa \psi_{\lambda}^{+}(x z) \frac{1}{\kappa_{\lambda}^{2}-x^{2}} \int d z^{\prime} \psi_{\lambda}^{\prime}\left(\alpha \varepsilon^{\prime}\right) u_{\lambda}\left(r^{\prime}\right) \lambda\right\rangle=$

$$
\begin{equation*}
=\frac{2}{\pi}\left\langle\varphi_{i}, \lambda^{\prime} / V_{1} \int d z^{\prime} G_{\lambda \rho}\left(b_{\lambda}, z^{\prime} z^{\prime}\right) \varphi_{\lambda}\left(z^{\prime}\right) \lambda\right\rangle \tag{2.7}
\end{equation*}
$$

Here, if the singular integrals are interpreted by $K_{\lambda}=K_{\lambda}+i O_{1}$ the G_{p} of (2.6) and (2.7) is obriously G_{p}^{+}

Now, when we introduce the Mittag-Lef ${ }^{p}$ er expansion of G_{p}^{+}

$$
\begin{align*}
G_{\lambda \mu} & =\sum_{i} \frac{\varphi_{i}(\lambda)(z) \varphi_{i}(\lambda)(\eta)}{2 x_{i}\left(x_{\lambda}-S_{i} x_{i}\right)} \tag{2.8}\\
S_{i} & =-\operatorname{sign}\left(\operatorname{Jon}\left(x_{i}\right)\right)
\end{align*}
$$

in these expressions, we immediately arrive at the nondiagonsl terms of the expressions $I(3.19)-I(3.21)$ with

$$
\begin{equation*}
\mathcal{B}_{\tau \lambda}=\int \alpha r \varphi_{i}(\lambda)(2) U_{\lambda}(2) \tag{2.9}
\end{equation*}
$$

To get the diagonal term, we just notioe that from (2.5)

$$
\begin{equation*}
\left(k^{\prime 2}-x_{\lambda^{\prime}}^{2}\right) b_{\lambda} \cdot\left(x^{\prime}\right)=-\int d z \gamma_{\lambda^{\prime}}^{+}\left(x^{\prime} v\right) c_{\lambda^{\prime}}(\varepsilon) \tag{2.10}
\end{equation*}
$$

must have a pole at $K^{\prime}=K_{;}$. Taking the residuun here, we obriously get baok the extra diagonal term corresponding to $\beta_{c^{\prime \prime}}^{\prime \prime}$ of I (3.9).

In this argumentation we have used a) that the integral in(2.5) is convergent (and therefore, as usual, that the upper limit oan be put equal to F), b) that the pale expansion (2.8) of $G p$ and the similar expansion of $\tau^{+}\left(\gamma^{6}\right)$ used in (2.10) and $I(3.9)$ determine these funotions, i.e., that no entire function of k or k is allowed, even When the expansion is truncated . 0) In writting I (3.20) we have further assumed that the matrix M has an inverse. Looking apart from acoidental degeneracies, this assumption is valid only if the expansion of the total wave function in terms of pole functions
is unambigious. A similar problem is met when no source term is present, and we have to find an eigenvalue, oorresponding to a complicated decaying state.

Now, the interdependenoe of the pole functions, equati on (2.2), will of oourse in prinoiple prevent this uniqueness in the general oase.

However, when a final number of poles is used, in the expansion of both the Green's funotion and the single partiole soattering functions, the expansion is in general unique.

The proof runs as follows. If the expansion

$$
\begin{equation*}
f_{N}(z)=\sum_{i}^{N} \alpha_{i} P_{i}(z) \quad(\tau \leqslant R) \tag{2.11}
\end{equation*}
$$

is not unambiguous, there must exist a linear relation between the pole funotions

$$
\begin{equation*}
\sum_{i}^{N} \gamma_{i} \varphi_{i}(z)=0 \quad(z \leqslant R) \tag{2.12}
\end{equation*}
$$

Applying now the single particle Hamiltonian to (2.12) we get

$$
\begin{equation*}
O=\left(H_{0}+V\right) \sum_{i}^{N} \gamma_{i} \varphi_{i}=\sum_{i}^{N} \gamma_{i} k_{i}^{2} \varphi_{i} \tag{2.13}
\end{equation*}
$$

This prooedure can be repeated, to get an overdetermination of the $\gamma^{\prime} s$ so that only $\gamma_{i}=0$, all i, is a solution. Look, e.g., at $N=3$

$$
\begin{align*}
& \gamma_{1} \varphi_{1}+\gamma_{2} \varphi_{2}+\gamma_{3} \varphi_{3}=0 \tag{2.14}
\end{align*}
$$

gives

$$
\begin{equation*}
\gamma_{2}\left(x_{2}^{2}-x_{1}^{2}\right) \varphi_{2}+\gamma_{3}\left(x_{3}^{2}-x_{1}^{2}\right) \varphi_{3}=0 \tag{2.15}
\end{equation*}
$$

ope rating with $\left(H_{0}+\gamma\right)$ gives

$$
\begin{equation*}
\gamma_{2}\left(x_{2}^{2}-{k_{1}^{2}}_{2} \kappa_{2}^{2} \varphi_{2}+\gamma_{3}\left(k_{3}^{2}-k_{1}^{2}\right) k_{3}^{2} \varphi_{3}=0\right. \tag{2.16}
\end{equation*}
$$

from (2.15) and (2.16) we get

$$
\begin{equation*}
\left(k_{3}^{2}-k_{1}^{2}\right)\left(x_{3}^{2}-k_{2}^{2}\right) \gamma_{3} \varphi_{3}=0 \tag{2.I7}
\end{equation*}
$$

$$
\begin{equation*}
\prod_{j(z i)}^{N}\left(x_{i}^{2}-x_{j}^{2}\right) \gamma_{i} \varphi_{i}=0 \tag{2.18}
\end{equation*}
$$

Now, as we have shown in ref. /3/ (appendix) the possibility of coinoidence of the poles oan in general be ignored.

This argument cannot in a convergent way be extended to $N \rightarrow \infty$, so no contradiction with (2.2) is found. Still, the appearance in $I(3.20)$, etc., of the same function, φ, both in the expansion of a bound state as φ_{V}, and in the pole expansion of ψ^{G}
as φ_{n}, seems to ootradict this Inear independenoe. Here, however, ve should remember that φ_{ν} and φ_{n} go into the calculation of the matrix M in different ways as is seen, e.g.,from the fact that even if we write $|\lambda\rangle \equiv / V \lambda\rangle$ with $\varphi_{\nu}=\varphi_{n}$, we have nevertheless

$$
\left\langle\lambda_{n}\right| M\left|\lambda_{n}\right\rangle \neq\langle\lambda v| M\left|\lambda_{n}\right\rangle
$$

The overcompleteness must mean that in a concrete calculation, the matrix inversion of diagonalization will become specially difficult, when the number of pole terms becomes large. It was, however, shown in ref. /4/ that in a realistio situation, corresponding to a nuclear physics potential, a relatively small number of terms was sufficient in the pole expansion of $G^{(+)}$. The convergence of the pole expansion can, by use of the Mittag-Leffler theorem /3,4/ be tmproved considerably, introducing entire terms in G (and ψ^{6}). It should be noted that by means of the Kapur-Peierls functions also the entire term oan for $\quad \tau, r^{\prime} \leqslant R \quad$ be written as a sum of separable operators, with a simple polynomial dependence of K 。

In I, the the ory of shell model-continuum states was developed, and the pole funotions introduoed, using the Mittag-Leffler expansion of $G^{(+)}$. This means that the singular integrals in I (3.8) and I (3.9) are interpreted in the same way as they are in the definition of $G^{(t)}$. This leads, as mentioned by Bloch $/ 4 /$, to a partioularly simple, linear expression for the scattering matrix by means of what is usually oalled the \mathcal{J}-matrix (Bloch's notation is different).

However, instead of the T matrix scattering theory is often expressed in terms of the K-matrix, whioh is obtained in a similar way, only with the singular integrals of the shell-model-oontinum theory, our I(3.8), I (3.9), interpreted as principal value integrals. If this is done, the G_{p} of our equations (2.6), (2.7) must be
G_{P}^{p}, the oontinuum part of the prinoipal value Green's function. The pole expansion of G^{P} is easily obtained from that of G^{+}. We may, e.g., use equation (2.21) of ref. $13 /$

$$
\begin{equation*}
G^{+}=\frac{1}{2} \sum_{n} \frac{\varphi_{n}(2) \varphi_{n}\left(r^{\prime}\right)}{x^{2}-x_{n}^{2}}+\frac{x}{x_{n}} \frac{\varphi_{n}(z) \varphi_{n}(\gamma)}{\left(k^{2}-x_{n}^{2}\right)} \tag{2.17}
\end{equation*}
$$

to get

$$
\begin{align*}
G^{P} & =\operatorname{Re}\left(G^{*}\right)(x \text { real }) \tag{2.18}\\
& =\frac{1}{2} \sum_{n} \frac{\varphi_{n}(2) y_{n}\left(R^{\prime}\right)}{x^{2}-x_{n}^{2}} .
\end{align*}
$$

So, for the continuum part we get the simple expression

$$
\begin{aligned}
& G_{p}^{p}=\frac{1}{2} \sum_{\text {(oce poles) }} \frac{\varphi_{n}(z) \varphi_{n}(z)}{K^{2}-K_{n}^{2}}-\sum_{\text {(bound stores) }} \frac{\varphi_{n}(z) \varphi_{n}\left(z^{\prime}\right)}{\alpha^{2}-K_{n}^{2}}= \\
& =\frac{1}{2} \sum_{n} \frac{s_{n} \varphi_{n}(r) \varphi_{n}\left(z^{\prime}\right)}{k^{2}-x_{n}^{2}}, \\
& \text { (all poles) }
\end{aligned}
$$

where, as in I, $S_{n}=+1$ for poles in the lower half $k-p l a n e$, $S_{n}=-1$ in the upper.

The pole expansion of G^{P} must of oourse essentially have the same oonvergenoe properties as those of G^{+}. When a truncated set of poles is used, the requirement, that G_{N}^{P} should be real leads to the natural exigenoy that the trunoated set, for eaoh resonanoe pole, must also oontain its mirror pole. Note that in this oase $\sum_{n}^{N} \frac{p_{n}(z) \varphi_{n}(z U)}{K_{n}}$ is purely 1 maginary.

3. Complex deoaying states

As mentioned above, we oan inside the framework of the present theory only give a preoise desoription of such states, where at most one particie is in the oontinuum. Of oourse, a product of two of our states or a sum of suoh produots can, properly antisymmetrized, be interpreted as a state with two particles in the oontinuum, and so on, but suoh products are eigenstates of the Hamiltonian only, in the approximation, that some particle-particle ooupling terms oan be negleoted.

So let us look at the continuum shell model equation obtained from I (3.8), I (3.9) in the absence of souroe terms. Here, in order to obtain a deoaying state, we must interpret the singular integrals as in the definition of G^{+}and we obtain

$$
\begin{equation*}
M \underline{\alpha}=0 \tag{3.1}
\end{equation*}
$$

Where M and α are given by $I(3.21)$ and $I(3.19)$, respectively.

Alternatively, we can in the random phase approximation get the same expression, with \propto given by $I(4.13), I(4.14)$ and M given by I (4.16), I (4.17).

Starting with the first approaoh, we see that solutions of (3.1) are possible, if

$$
\begin{equation*}
\operatorname{Det}(M(\Sigma))=0 \tag{3.2}
\end{equation*}
$$

The solutions obviously have the form given by I (3.2) and I (3.4)

$$
\begin{equation*}
\left|\psi>=\sum \alpha_{A}\right| \Lambda>+\frac{2}{\pi} \sum_{\lambda} \int d k b_{\lambda}(l) / k \lambda> \tag{3.3}
\end{equation*}
$$

where b_{λ} is given in terms of the α 's by I (3.7), I (3.19). To discuss the struoture of these equations, let us look at the example of only one bound state and one resonance in one channel. Now (3.2) is written

$$
\left|\begin{array}{ccc}
\left\langle\Lambda / V_{1} / \Lambda\right\rangle-\left(k^{2}+e_{\lambda}-E_{\Lambda}\right) & \left\langle\Lambda / V_{1} \mid \tau\right\rangle & \left\langle\Lambda / V_{1} / i\right\rangle \tag{3.4}\\
\left\langle i / V_{1} \mid \Lambda\right\rangle & \left\langle i / V_{1} \mid \tau\right\rangle+2{x_{i}^{*}}^{*}\left(k+x_{i}^{*}\right) & \left\langle i / V_{1} / i\right\rangle \\
\left\langle\tau / V_{1} / \Lambda\right\rangle & \left\langle\tau / V_{1} / \tau\right\rangle & \left\langle\tau / V_{1} \mid i\right\rangle-2 x_{i}\left(k-x_{i}\right)
\end{array}\right|=0
$$

For the sake of simplicity, let us assume the diagonal elements and the pole-pole ooupling terms of V_{1} to be zero. Then we have

$$
\begin{equation*}
\frac{v_{1}^{* 2}}{2 x_{i}^{*}\left(x_{i}^{*}+k\right)}+\frac{v_{1}^{2}}{2 x_{i}\left(x_{i}-k\right)}=\left(E_{n}-e_{\lambda}-k^{2}\right) \tag{3.5}
\end{equation*}
$$

It is seen that a purely imaginary k-value corresponding to a bound state solution is generally possible, since in the interval $0<\infty<\infty$ both sides of the equation are real, and the left-hand side will go from $\operatorname{Re}\left(\frac{V_{1}^{2}}{2 x_{i}^{2}}\right)$ to 0 , but the right-hand side from $E_{A}-e$ to $+\infty$, where $E-e<0, \operatorname{Re}\left(\frac{V_{1}^{2}}{\partial X_{i}^{2}}\right)>0, i x=K$.

Formally, a solution with $\nsim<0$ may in general also exist, it should, however, be disoarded, since in obtaining (3.1) we used, among other relations, I (3.15), which excludes $\mathscr{\infty} 0$. It is also seen that for a large class of parameters the other roots must be complex (3 real roots must be a rare exoeption). So, as we should expeot, oomplex energies, oorresponding to mixed resonances must result from eq. (3.4), or the general eq. (3.2). For weak couplings we may, in the neighbourhood of a single particle resonance vrite (3.5) with

$$
\begin{align*}
k & =x_{i}+\alpha \\
-\frac{V_{i}^{2}}{2 K_{i} \alpha} & +\frac{V_{1}^{2}}{2 x_{i}^{*}\left(l_{i}+\ell_{i}^{*}\right)}=E_{A}-e_{\lambda}-k_{i}^{2} \tag{3.6}\\
\alpha & \approx \frac{V_{1}^{* 2}}{2 x_{i}\left(x_{i}+e_{\lambda}-E\right)}
\end{align*}
$$

The corresponding 1. Order wave function

$$
\begin{equation*}
|\psi\rangle=\alpha_{A}|\lambda\rangle+\alpha_{\tau} / Y_{i} \lambda>+\alpha_{i} / \varphi_{\tau} \lambda> \tag{3.7}
\end{equation*}
$$

is, up to normalization obtained as

$$
\begin{equation*}
\psi^{(1)} \approx \frac{V_{1}}{E_{A}-e_{\lambda}-R_{i}^{2}} / \Lambda>+\mid \varphi_{i} \lambda> \tag{3.3}
\end{equation*}
$$

which is formally identical to the usual l. Order perturbation expression.

In the Random Phase Approximation, a similar eigenvalue problem, although more oomplicated, is found.

Here, only instead of the elimination of $\mathrm{E}, \mathrm{E}=\kappa_{\lambda}^{2}+e_{\lambda}$ above, we have in the different diagonal matrix elements of M (see I (4.17)) to eliminate $F,-5$ and, say, K_{λ} - by

$$
\kappa_{\lambda^{-}}=+i \sqrt{1 e_{\lambda} / \cdot 2+k_{\lambda^{+}}^{2}}
$$

Whereas the complex soattering states, as solutions of an inhomogeneous equation, are normalized by the ohoioe of the inhomogenecus term, the coeffioients in the equation for the complex deoaying state should be normalized acoording to the usual correntions.

So we have, for

$$
\begin{equation*}
\langle\psi \mid \psi\rangle=\sum_{1} / \alpha_{A} /^{2}+\frac{2}{\pi} \sum_{\lambda} \int d k /\left.b_{\lambda}(l)\right|^{2}=1 \tag{3,10}
\end{equation*}
$$

now, as above

$$
\begin{equation*}
b_{\lambda}(k)=\left(k_{\lambda}^{2}-k\right)^{-1} \int d \tau \psi_{\lambda}^{(+)}(k, \tau) v_{\lambda}(r) \tag{3.11}
\end{equation*}
$$

So the integrals in (3.10) can be written

$$
\begin{align*}
I & =\int d k\left(k_{\lambda}^{2}-k^{2}\right)^{-2}\left(k_{\lambda}^{* 2}-k^{2}\right)^{-1} \tag{3.12}\\
& =\int d r \gamma_{\lambda}^{(A)}(k, z) \psi_{\lambda}(z) \int d z \gamma_{\lambda}^{+*}(k z) u_{\lambda}^{*}(z)= \\
& =\frac{1}{k_{\lambda}^{* 2}-k_{\lambda}^{2}} \int d k\left(\left(k_{\lambda}^{2}-k^{2}\right)^{-2}-\left(k_{\lambda}^{* z}-k^{2}\right)^{-1}\right) \\
& * \iint d r d r^{\prime} \gamma_{\lambda}^{*}(k, z) \gamma_{\lambda}^{+*}\left(k^{\prime}\right) u_{\lambda}(r) u_{\lambda}^{*}\left(z^{\prime}\right)
\end{align*}
$$

or

$$
\begin{aligned}
I & =\frac{1}{k_{\lambda}^{* 2}-k_{\lambda}^{2}} \frac{\pi}{2} \iint d z d z^{\prime}\left(G_{p}^{*}\left(k_{\lambda}, z, z^{\prime}\right)-G_{p}^{-}\left(k_{\lambda}^{*}, z, z^{\prime}\right)\right)= \\
& =\frac{1}{k_{\lambda}^{+2}-k_{\lambda}^{2}} \frac{\pi}{2} \iint d z \alpha^{\prime} \sum_{i}\left(\frac{1}{2 k_{i}\left(k_{\lambda}-s_{i} k_{i}\right)}-\frac{1}{2 k_{i}\left(-k_{\lambda}^{*}-s_{i} k_{i}\right)}\right) * \\
& \times \varphi_{G}(z) \varphi_{i}\left(z^{\prime}\right) u_{\lambda}(z) u_{\lambda}^{*}\left(z^{\prime}\right)=
\end{aligned}
$$

$$
=\frac{1}{k_{\lambda}^{2}-k_{\lambda}^{22}} \frac{\pi}{2} \sum_{i} \frac{k_{\lambda}+k_{\lambda}^{*}}{2 k_{i}\left(k_{\lambda}-s_{i} k_{i}\right)\left(-k_{\lambda}^{*}-s_{i} k_{i}\right)} \beta_{\tau \lambda} \beta_{i \lambda}^{*}=
$$

$$
=\frac{1}{b_{\lambda}^{*}-k_{\lambda}} \frac{\pi}{2} \sum_{i} 2 x_{i} \alpha_{i \lambda}^{+} \alpha_{i \lambda}^{+} *
$$

since $f_{i}=-\ell_{i}^{*}$, this expression is purely real, as long as
we still retain the rule, that if the expansion contains i, it must also oontain i.

The normalization of the corresponding states, obtained in the Random Phase Approximation is given by

$$
\begin{equation*}
\sum_{1}\left(\left|\alpha_{A+}\right|^{2}-\left|\alpha_{1}\right|^{2}\right)+\frac{2}{\nabla} \sum_{\lambda} \int d k\left(\left|b_{\lambda+}(b)\right|^{2}-\left|b_{\lambda}-(k)\right|^{2}\right) \tag{3.14}
\end{equation*}
$$

where $\mathfrak{b}_{\lambda t}$ can be expressed as above, using the $k_{\lambda t}$ given in I (4.11).

4. Qugsi-partioles_ strength functions

We shall here discuss partiole strength funotion caloulations, using the pole expansion, for a particular example, whioh contains, however, in prinoiple the main problems, met in the general case.

The example ooncerns an odd nucleus. We shall here look at the approximate desoription, relevant, when many partioles are outside a closed shell. The even system, obtained by removing the odd partiole, is in an approximate eigenstate of a Hamiltonian, which besides the shell model potential contains a short range partiole-partiole interation and some interaotions of larger range. The oorrelations introduoed by the short range interaotion are of the pairing type, and they are treated by introduoing the Bogolubor transformation

$$
\begin{align*}
& \alpha(\nu)^{+}=u_{\nu} \alpha^{+}(\nu)+v_{\nu} \alpha(\tilde{\nu}) \tag{4.1}\\
& \alpha(\tilde{\nu})^{+}=u_{\nu} \alpha^{+}(\nu)-v_{\nu} \alpha(\nu) .
\end{align*}
$$

Here the oontinuum states must be oompletely unoooupied in the even oore, so we must have

$$
\begin{equation*}
V_{v}=0 \quad\left(U_{\nu}=1\right), \varepsilon_{\nu}>0 . \tag{4.2}
\end{equation*}
$$

This means that these states do not enter in the desoription on equal footing with the bound states, but since V_{V}, so far above the Fermi leval must anyhow be very small, the pairing pioture is not notioeabiy modified.

The long range interaotions are treated in the Random Phase Approximation. This means that from pairs of the quasi-partiole operators, $\alpha(\nu)$, etc., given above, new oolleotive boson-like operators are oonstruoted by the transformation

$$
\begin{equation*}
\left.\bar{Q}_{\lambda_{\mu}}^{+i}=\sum_{j(v) j^{\prime}\left(v^{\prime}\right)}\left(\alpha_{j m}^{+}(v) \alpha_{\alpha^{\prime \prime} m}^{+}\left(v^{\prime}\right)\right]_{\lambda \mu} \gamma_{j(v) j^{\prime}(v)^{\prime}}^{\lambda_{i}}+(-1)^{\lambda-\mu}\left[\alpha_{j_{m}}\left(v^{\prime}\right) \alpha_{j m}(v)\right] \varphi_{\gamma^{\prime}(v) j^{\prime}\left(v^{\prime}\right)}^{\lambda_{i}}\right) \tag{4.3}
\end{equation*}
$$

properiy generalized to the oontinuum as in I (4.5). Sinoe, by the assumption (4.2), the quasi-partiale oreation operators (4.1) for continuum states are identioal to partiole oreation operators, the oven system with oontinuum adraixtures is in principle treated in the same way as in the case without pairing, oonsidered in I.

The equations to determine the wave funotion will have the same form as I (4.13) - I (4.17). We shall, however, here introduoe the frequently used approximation of separability of the partiole-hole foroes. This means that in I (4.16), we get

$$
\begin{align*}
& \left\langle\Lambda^{\prime}+\right| V_{1}|\Lambda+\rangle \equiv\left\langle\mu^{\prime} \bar{V}^{\prime}\right| V_{1}|\mu \bar{\nu}\rangle \equiv F_{\mu} \bar{\nu}^{\prime} \cdot F_{\mu \nu} \tag{4.4}\\
& \left\langle\Lambda^{\prime}+\right| V_{1}|\lambda\rangle \equiv F_{\mu} \cdot \nabla^{\prime} \cdot F_{\mu \nu}^{*} \\
& \langle\Lambda+| V_{1}|i \lambda+\rangle \equiv F_{\mu \nu} \cdot F_{i j} \\
& \langle\Lambda+| V_{1}|i \lambda\rangle \equiv F_{\mu \nu} \cdot F_{i \bar{\lambda}}^{*},
\end{align*}
$$

eto. Further, sinoe we want in (4.3) to express the oollective bosons by the quasi-partiole operators, the matrix elements in the RPA equations must be replaoed by

$$
\begin{align*}
& \left\langle j \mu^{\prime} j \bar{v}^{\prime}\right| V_{1}|j \mu j \bar{j}\rangle= \tag{4.5}
\end{align*}
$$

$$
\begin{aligned}
& u_{f^{(t)}}^{(i)} \equiv u_{f_{2}} v_{f_{1}}+u_{f_{2}} v_{d 2}
\end{aligned}
$$

and the energies ε_{j} by the quasi-particle enargies

$$
\begin{gather*}
E_{f(\nu)}=\sqrt{\left(\varepsilon_{d(\nu)}-\varepsilon_{F \cdot}\right)^{2}+\Delta_{f(\nu)}^{2}} . \tag{4.6}\\
\left(\Delta_{d}(\nu)=0 \text { foz } \varepsilon_{f(\nu)}>0\right)
\end{gather*}
$$

The wave fumotions of the odd system are now (written for disorete oomponents) given as

$$
\begin{align*}
& |\psi\rangle_{J M}=\sum_{\nu}\left(a_{o \nu_{\rho}} \alpha_{J M}^{+}(\nu)+\sum_{\lambda i j v}\left[\alpha_{r m}^{+}(\nu) Q_{\lambda \mu}^{+i}\right]_{J M} a_{j V \rho}^{\lambda}+\right. \tag{4.7}
\end{align*}
$$

Where the $Q^{+\prime} S$ are the phonon oreation operators, defined above, with $\{\psi, \varphi\}$ oorresponding to $\{X, Y\}$ and $\{X, Y\}$ of $I(4.5)$, normalized by

$$
\begin{equation*}
\sum_{g g^{\prime}}\left(\gamma_{g 9^{\prime}}^{i} \psi_{g g^{\prime}}^{i}-\varphi_{g g^{\prime}}^{i} \varphi_{g g^{\prime}}^{i^{\prime}}\right)=\delta_{i i^{\prime}} \tag{4.8}
\end{equation*}
$$

Here, the ooefficients could be determined by the equation corresponding to $I(4.17)$. Since $\psi_{99^{\prime}}^{i}$ and $\varphi_{9 q^{\prime}}^{i}$ will be proportional to $U_{19^{\prime}, \text { as }}^{1+1}$ seen from $(4.2),(4.5)$, only one partiale may be in the oontinuum.

We oan, howerer, in a realistio situation have one inooming partiole, only.

If (4.17) really represented a complete antisymmetric solution with a Hamiltonian, which was symetric in all particles outside a closed shell, it would be irrelevant whether this incoming partiole was represented by the odd particle oreation operator or by a term in the two-quasipartiole operators.

We shall in the following assume that incoming particles are only represented by a^{+}; however; we shall follow earlier treatments /7/ in assuming that the presenoe of the odd particle (as well as the phonon-phonon coupling) does not influecne the structure of the phonon states. This means that the phonons oan in the oontinuum at most have an outgoing partiole, and that they must therefore be found by solving an eigenvalue problem, whioh is the one which oorresponds to the eigenvalue equation of the last ohapter (3.2), with the proper ohanges (U, V factors and quasiparticie energies instead of ε_{ν})

$$
\begin{gather*}
\operatorname{Det}(\underline{\underline{N}})=0 \tag{4.9}\\
\langle\rho| M|\eta\rangle=\langle\rho| \widetilde{v}_{1}|\eta\rangle- \tag{4.10}\\
-\left(t F-F_{\lambda}\right) \delta_{\rho \eta} \delta_{\rho \Lambda}- \\
-2 k_{r}\left(k_{\lambda}-s_{i} k_{r}\right) \delta_{\rho \eta} \delta_{\rho, \lambda_{i}},
\end{gather*}
$$

Where $t=f$ and $t=-$ oorrespond to the ψ and φ part of the eigenvectors, respeotively, and $\langle\eta \mid \tilde{V} / \rho\rangle 1 s$ short for the matrix elements of (4.5), whereas

$$
E_{1}=E_{\mu \nu}=E_{j}(\mu)+E_{j}(\omega), \kappa_{\lambda}^{+}=\left(E-E_{i, \lambda}\right)^{1 / 2}
$$

The equati ons for the odd system are now reduced to the same type as those met in the continum shell model treated in I, ohapter 3, with the proper changes, 1.e., that the states $|A\rangle=/ \Gamma_{\lambda} \bar{J}_{\lambda}>$, etc., I (3.3), are replaced by the components of (4.7)

$$
\begin{align*}
& \left.\left.|\Lambda\rangle_{J M}=\alpha_{J M}^{+}(v) \cdot \stackrel{\sim}{0}\right\rangle, \quad \| \Lambda Z_{J M}=\left[\alpha_{j}^{+} \dot{\psi}_{\forall 1}^{+}\right]_{J M} \psi_{0}^{*}\right\rangle \tag{4.11}\\
& |K, \lambda=0\rangle_{\text {JM }}=u_{\text {JM }}^{+} \psi_{0}= \\
& l k, \lambda \neq 0\rangle_{J M}=\left[a_{d}^{t} Q_{\alpha_{2}}^{+}\right]_{J M} \gamma_{\Delta}>, \quad \text { et.. }
\end{align*}
$$

The introduotion of the oorresponding pole states, $/ i \lambda>$ is straightforward following the methods of I, chapter 4.

The interaotion, V_{1} of $I(3.1)$ is replaced by the quasiparticlephonon interaotion, Hgph whioh, e.g., can be taken /7/ as

$$
\begin{align*}
& -\frac{1}{2 \sqrt{2}}, \sum_{\lambda \mu i}\left(Q_{\lambda \mu}^{+i}+(-)^{\lambda-\mu} Q_{\lambda-\mu}^{\tau}\right) x \\
& \times \sum_{d_{L} d_{2}} \mathcal{f}_{d_{1} d_{2}}^{\lambda} \frac{V_{1 \gamma_{2}}^{(-)}}{\sqrt{y_{\tau}^{\lambda_{i}^{2}}}}\left[\alpha_{\alpha_{4} m_{y}}^{+} \alpha_{d_{2}-m_{2}}^{-} J_{\lambda_{-\mu}}+\right.\text { h. c. } \\
& \tau=(H, p) \\
& V_{d_{12}}^{(-)}=U_{d_{1} d_{2}}-V_{d_{1}} V_{d_{2}} . \tag{4.12}
\end{align*}
$$

Here $\mathcal{F} \hat{d L d_{2}}$ is the reduced single-partiole matrix element of the multipole operators $z^{\lambda} Y_{\lambda \mu}$; the normalization y_{τ}^{λ} $1 s$ given in Ref. 7 .

For many applications the oontinuum admixtures in the phonon mas be neglected, and their energies found as real numbers in the usual random phase approximation. In the general case, however, we see that the introduotion of deaajing (damped) phonons, as above, means that the oorresponding energies, e_{λ} of the equation oorresponding to I (3.4) are oomplex.

Even when all oontinum admixtures are negleoted, the calcula.tions leading to a wave function of the type (4.7) are often replaced by looking for the somoalled strength function, i.e., for the admixtures of a certain component in the solutions. Further, the
exaot strength function is often replaced by an average strength function, whioh gives the averaged content of a component in eigenfunctions in an energy interval.

Since the eigenenergies will often lie very dense, the strength function will often correspond to the physioal measurements. An extension of this method to the case, when oontinuum admixtures are taken into account is straightforward. In some cases this will even lead to somewhat simpler caloulations, as we shall see in the following.

Let us suppose that the component in whioh we are interested is the one, which in our model is described by a single particle creation operator, acting on the even vacuum (the first component in (4.7)). This oorresponds, e.g., to a stripping experiment with the even vacuum as target state.

If this component belongs to the diacrete part of the wave function, as will be the oase, if the total energy is smaller than the lowest partiole emission threshold, the calculation of the strength function must follow the usual soheme. This means that the square of the coefficients, which would in principle result from a matrix diagonalization, must be averaged with aomeweight function, sey,

$$
\begin{equation*}
|\alpha(z)|^{2}=\sum_{\tau} \rho\left(z-\varepsilon_{\tau}\right) \alpha_{00 \tau} \tag{4.13}
\end{equation*}
$$

where τ denotes a solation of the eigenvalue problem of the odd system, E_{τ} the oorresponding eigenvalue. Here, ρ is conventionly chosen in the Lorentz form,

$$
\begin{equation*}
\rho(x)=\frac{1}{2 \pi} \frac{\Delta}{x^{2}+\Delta^{2} / 4} \tag{4.14}
\end{equation*}
$$

The sum in (4.13) can be turned into an integral of an expression, which has poles at the eigenvalues E_{Z}. The resolvent

$$
\begin{equation*}
R=(Z-H)^{-1} \tag{4.15}
\end{equation*}
$$

has this property and in some simple examples (see,e.g., 8), even the residues will be given direotly by the resolvent. It is a necessary condition for this type of calculation to be feasible, that the $/ \mathcal{J}_{z} /{ }^{2}$ are given, for real E_{τ}, in a way which can be analytioally oontinued in some region of the E plane.

Now, also $\rho\left(z-z^{\prime}\right)$ has poles at $z^{\prime}=z \pm i \frac{4}{2}$
and the average is, by oontour integration, obtained from the residues in these points. The character of this calculation is not changed, even if some of the poles are oomplex.

If the average diatanoe between eigenvalues of the system with quasi-particle-phonon ooupling is much smaller than between the quasi-partiole energies in the absenoe of coupling, and if Δ is between these, the result of the averaging oan be expressed by saying that the (analytic) expression for $|\alpha|^{2}$ has poles, whose real part is near to the quasipartiole energies and with an imaginary part, $1 / 2$ whioh is proportional to the average of the square of the ooupling $/ 7,8 /$.

Some, e.g., stripping oross seotion will oontain a Lorentz faotor

$$
\begin{gather*}
f \sim \frac{1 /}{\left(E-E_{p(z e)}\right)^{2}+(\Gamma / 2)^{2}} \tag{4.16}\\
E_{p(z e)} \sim E_{V} \quad(\text { quosip }) \\
\Gamma \sim 2 \pi\left\langle{\widetilde{V_{1}}}^{2}\right\rangle \quad(x \text { density of levels in ooupling }) . \tag{4.17}
\end{gather*}
$$

Stripping, leading to a suffioiently narrow single particle resonance state, distributed over a number of oomplex states, may in prinoiple be described in the same way as above. The resonanoe funotions wer'e sucoessfully used in the desoription of stripping in the simple case where the coupling to other states can be negleoted $/ 9 /$.

It ought to be mentioned that around threshold for partiole emission, the analytio energy dependence of the amplitudes, needed in the procedure desoribed above, is not fulfilled. This leads to practioal difficulties only for the case of noutrons in S-states, and only in the neighbourhood of the threshold.

If the single particle resonanoe 1s, as will often be the oase, sufficiently wide, no further averaging is needed in the caloulation of the strength function. The same is seen in the elastio scattering. Here, the formalism of I, chapter 3 is again applicable. We shall again assume that the even oore system is desoribed in terms of eigenstates in the RPA-meaning, but with energies whioh can be complex. Let the only component whiah can have incoming particles be the one phioh corresponds to the ground state of the even system. Now, in the wave funotion (4.7) the surmations over V are in the oontinuum repiaced by integrals over K, so we get a set of components

$$
\psi_{p}>=\int d k\left(a_{o \rho}(k) \alpha_{\delta M}^{+}(k)+\right.
$$

$+\sum_{\lambda i j} \alpha_{j \rho}^{i}(x)\left[\alpha_{j m}^{i}(x) Q_{i \mu}^{i+}\right]_{J H}+$

$$
\left.+\sum_{\lambda_{1} \leftharpoonup \lambda_{2} L_{2}}\left[\alpha_{j m}^{+}(x)\left[Q_{\lambda_{1 \mu}, M_{1}}^{+} Q_{\lambda_{2} \mu_{2}}^{+c_{2}}\right]_{E M^{\prime}}\right]_{J M} \alpha_{d \bar{I} J_{j}}^{\lambda_{1} c_{1} \lambda_{2}}(x)\right) \psi_{0}>,
$$

where

$$
\begin{equation*}
a_{\xi}(x)=A_{\xi} \delta\left(x-x_{\xi}\right)+B_{\rho}(x) \tag{4.19}
\end{equation*}
$$

We may as before write

$$
\begin{equation*}
f_{\xi}\left(k^{\prime}\right)=\left(\kappa_{\xi}^{2}-\kappa^{\prime 2}\right)^{-2} \sum_{i} f_{i}\left(k_{\}}^{\prime}\right) \beta_{c \xi^{\prime}}, \tag{4.20}
\end{equation*}
$$

(ξ channel 1ndex)
whe re

$$
\begin{equation*}
f_{i}^{*}(k)=\frac{\varphi_{i}(R) x}{h_{e}^{+}(x R) 2 k_{i}\left(x-k_{i}\right)} \tag{4.21}
\end{equation*}
$$

In solving the equations for the b^{\prime} 's or, equivalently, the β 's we are led to equations which are formally identical to I (3.8), $I(3.9)$. We may now, as in I, use the G^{+}definition of the singular integrals. In this way, we would come direotly to the $\sqrt{ }$ matrix of the scattering. This is in many ways the s1mplest method. However, it may also have some advantages to use real quantities. This means that the singular integrals must be interpreted in terms of principal values. This method leads, as pointed out by Bloch instead of the $\sqrt{ }$ matrix, to the analogous K-matrix. Since this approach is frequently used, we shall stick to that, the changes needed to replace it by the $\sqrt{ }$ matrix approach being s1mple. Note, that we are in our notation following Bloch. The matrix, here called K, is related to the usual K-matrix, see (4.30), (4.31) below.

The main point is that when the principal value definition of the singular integrals is introduced, $I(3.11)$ is replaced by

$$
\begin{equation*}
F_{\lambda i}^{p}=\frac{s_{i} \varphi_{i}^{*}(2)}{K_{i}^{2}-\mathscr{K}_{i}^{2}} \tag{4.22}
\end{equation*}
$$

This means that the PP-elements in the M-matrix of I (3.21) are replaced by

$$
\begin{align*}
& \left\langle\lambda_{i}^{\prime} i^{\prime}\right| N|i \lambda\rangle=\left\langle\lambda i^{\prime} / V_{L} \mid i \lambda\right\rangle-s_{i}\left(x_{\lambda}^{\prime}-x_{i}^{2}\right) \delta_{C i^{\prime}} \delta_{\lambda \lambda^{\prime}}, \tag{4.23}\\
& \alpha_{i \lambda}^{P}=\beta_{i \lambda} s_{i} /\left(x_{\lambda}^{2}-x_{i}^{2}\right) . \tag{4.24}
\end{align*}
$$

Now, we are interested in elastio scattering, 1.e., in the residue β_{0} in Blochs notation of the ooefficient $b_{0}(k)$ at its pole K_{λ}.

This is just what in I, chapter 3, is called

$$
\begin{equation*}
\sum_{i} A_{i 0} f_{i 0}^{*} \quad\left(=B_{0}\right) \tag{4.25}
\end{equation*}
$$

It may at this point be advantageous to introduoe a oommon notation for all oomponents, whethef they belong to resonanoe poles or not. So for a olass of Λ values

$$
\begin{equation*}
\Lambda>\equiv|i \lambda\rangle \quad\left(\lambda>\Lambda_{\Delta}\right) \tag{4.26}
\end{equation*}
$$

Then, from the last equation of I (3.21), together with I (3.20) we have, with the substitution (4.23)

$$
\begin{align*}
\beta_{\Lambda_{0}} & =S_{A_{0}}\left(x_{\Lambda}^{2}-K_{\lambda_{0}}^{2}\right) \alpha_{A_{0}}= \tag{4.27}\\
& =\sum_{\Lambda} V_{A_{0} \Lambda}\left(\alpha_{\Lambda}-\tilde{A_{1}}\right)
\end{align*}
$$

where we have introduced

$$
x_{\lambda}=k_{\lambda(1)}, x_{\Lambda}=x_{i(1)}, \tilde{A_{\Lambda}}-f_{\Lambda} A_{1}
$$

Now, eliminating the first right-hand term by means of I (20) we get

$$
\begin{equation*}
\beta_{A_{0}}=\sum_{A}\left(-V_{A_{\nu} A_{0}^{\prime}}+\sum_{\Lambda^{\prime} A^{\prime \prime}} V_{A_{0}} V^{\prime} M_{A^{\prime} \Lambda^{\prime \prime}}^{-1} V_{A^{\prime \prime} n_{0}^{\prime}}\right) \tilde{A}_{A_{0}^{\prime}} \tag{4.28}
\end{equation*}
$$

(This is, striotly speaking, an elimination only if $V_{\Lambda_{0} \Lambda_{0}^{\prime}}=0$ wilch may, however, safely be assumed (see, e.g., ref. 2)). The analogy between (4.28) and Blooh's equations (2.42)-(2.46) should be noted.

The two-step elfmination methad of Bloch would seem to be the most reasonable thing to use, if the wave functions at the different steps were very different.

However, our bound state wave functions in chapter I. 3 and resonance wave functions as given by I (3.3) have the same struoture. Therefore a one-step elimination, treating oontinuum oouplings on the same footing as those in the discrete part of the wave function, seems reasinable.

A comparison with Bloch's equations (2.47), (2.58) now shows, that if we write (4.28) as

$$
\begin{equation*}
\beta_{A_{0}}=\left.\underline{\underline{K}} \tilde{A}\right|_{\lambda_{0}} \tag{4.29}
\end{equation*}
$$

(where equations for other components could heve been obtained enelogously, and tac restriction to $\widetilde{A_{\lambda}} \sim \delta_{\lambda_{0}}$ is not necessary) then the soattering matrix is obtained as

$$
\begin{align*}
& \underset{S}{S}=e^{i \delta} \widehat{S} e^{-i \delta} \tag{4.30}\\
& \widetilde{S}=\frac{i+i \bar{\pi} K}{\mathcal{F}-i \pi \underline{S}} \tag{4.31}
\end{align*}
$$

Still (4.28) contains terms, corresponding to all oouplings, caused by the residual interaotions, including the usually neglected ones.

The qualitative picture, which results from (4.28) can again conveniently be obtained by looking at the averaging of the oross section. This can be done by oontour integration or in other words by introducing an imaginary part in the energy $\left(i \Delta_{\epsilon}\right)$ or momentum ($i \Delta_{K}$) equal to the corresponding experimental width. For the average cross section, we have

$$
\langle\sigma(E)\rangle_{\Delta} \approx 2\left(1-R_{e}<S(L):_{\Delta}\right)
$$

where the contribution to $\langle S\rangle_{\Delta}$ from βn_{0} is obtained from

$$
\alpha_{\Delta}=\left(\underline{=}\left(x+i \Delta_{k}\right)\right)^{-1} \underline{\underline{A}}
$$

Note, however, that when the momentum is in the neighborhood of a single particle resonance α_{i}, Fhich is wider than Λ_{K} the imaginary part of the diagonal elements will be dominated by this $\operatorname{Im}\left(x_{i}\right)$ and Δ_{k} may be neglected. The oross sections, oorresponding to this single partiole resonance must of oourse again be obtained by an energy (momentum) integration over an interval, oorresponding to the width $/ 8 /$ (or a little larger), so $\operatorname{Im}(\mathbb{I}$) will in this oase oompletely replace $\frac{1}{2} \Delta \kappa$, the experimental momentum width.

Conclusion

We have here in some details looked at the possibilities of using the pole expansion method of I in nuclear physics problems, partioularly ooncerning the oonstruction of complex, deceylng stat'es and strength funotions.

In the usual calculation, a number of further simplifying assumptions are introduced, in order to accommodate the diagonalization or inversion of what corresponds to our matrix M.

Similar assumption can immediately be introduced in the resonance function method. What we have in mind is, e.g., the assumption of constant matrix elements in RPA or pairing calculations, or similar simplifications in the particle-phonon matrix elenents. It should still be kept in mind, however, that when the basis is extended, the effective interactions used in a truncated basis must be changed, in order to obtain realistic results.

Here, again the general principle of using interactions, whioh reproduces the energy spectra or parts of them as well as possible, may be followed, then looking for the possible improvement in other measurable quantities with the extension of the basis. The most nearlying quantity is here the particle decay width as is seen in elastio scattering or (j, n) and (γ, μ) prooesses. This is immediately obtained from the oalculations, sketched above, which obviously take into account, in the terminology of, e.g., ref. $/ 5 /$ both Γ^{f} and Γ.

Concrete numerical calculations are under preparation; they will be piblished elsewhere.

The authors acknowledge usefull discussions with V.G.Soloviev, A.I.Vdovin and A.Vitturi.

One of the authors, J.B., wants to thank the Joint Institute of Nuolear Research, Dubna, for paying his stay there, during the period in which this work was done, and the Danish Research Counoil for paying his travel expenses.

Referenoes

1. Bang J.M. and Gareev F.A. JINR, E4-11902, Dubna, 1978.
2. Vitturi A, private communication.
3. Barg J.M., Gareev F.A., Gizzatkulov M. H. and Goncharov S.A. rucl. Phys., 1978, A309, p. 38.
4. Bang J.M., Ershov S.N., Gareev F.A. and Kazacha G.S. Nucl.Phys., 1979, A339, p.89.
5. Mahaux G. and weidenmuller H. A. Shall Model Approach to Nuolear Reactions, North-Holland, Amsterdam, 1969.
6. Bloch C. Soientific Works, V.2, North-Holland, Amsterdam, 1975.
7. Solovier V.G., Stoyanor Ch. and Vdovin A.I. Nucl. Phys. 1980, A343, p. 261.
B. Bohr A. and Mottelson B. Nuclear Structure, V.I, W.A.Benjamin, New York, 1969.
8. Bang J.M. and zimanyi J. Nual.Phys., 1969, A139, P.534.

Received by Publishing Department on June 181981.

Банг E., Гареев Ф.A., Eриов С.H. Резонансные состояния
 E4-81-415 структурных вычислениях (продолжение)

Обсуждается возможность использования метода разложения по полюсным функциям /согласно теореме Миттаг-Лефиера/ для описания ядерных состояний, лежащих в непрерывном спектре, рассматриваются некоторые математические свойства разложений по резонансным Функциям, приводятся формулы для вычисления одночастичных силовых функций. Особое внимание уделяется описанию сложных, распадахщихся состояний, компоненты которых содержат не более одной частицы в континууме. Развитый метод очень прост в практических расчетах, так как результате получается система алгебраических уравнений, по форме почти совпадающих с уравнениями оболочечной модели.

Работа выполнена в Лаборатории теоретической физики оияи.

Сообщение 0бъединенного института ядерных исследований. Дубна 1981

Bang JM, Gareev F A Ershov S N Resonant States
 E4-81-415

 in Structure Calculations (Continued)Some applications of the expansion method for description of continuum nuclear states are discussed. Some mathematical properties of resonance expansion are considered. Formulae are given for calculation of particle strength function. Description of the complex decaying states containing only components with one particle in the continuum are given. The method is very simple since it leads to a system of algebraic equations.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

[^0]: The Niels Bohr Institite, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen \varnothing, Denmark.

