





We shall discuss an example of strength functlons connected
with the states of odd nuclel,

2. _The expansions in terms of pole funotlons

The expansion of arbitrary functions in terms of pole functions
is, in contrast to the usual expansions, used in many branches of
physics,not unambiguous,as is seen from the overcompleteness of this
basis
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Unambilgous expansions are nevertheless obtained for a limited range
of 2(%’) values,for the scattering wave funotions and Green's
funotions using the fact that the ¥./2)5 correspond to residues
at the poles of these functions, and that therefore a Mittag-Leffler
expansion of & in terms of $(z) ¥ (z) with the requirement
that it contalns no entire part, is unique. From this an unambigous
expansion of ‘the scattering function '7"{*) 1s also obtained. This
was, e.g.,used to obtain the equations I (3.8), I (3.9) .

A different situation 1s met, whan a truncated set of poles is
used, The two expresslons
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are obviously not equivalent for a finite N-value, although they
differ by a K-indepenlent term only.
Here, the second expression, (2.4), obviously has some

undesirable properties. Thus, e.g., the usual convergence of the
distorted wave Born approximtion with large energles, which is due.
to the denominator of 5 u:) would not be found with 5(')(1) . It
ought to be mentioned here that only one further problem of

ambiguity is oonnected with obtaining I (3.20), I (3.21) from
I (345)y I (3.6)e Instead of I (3.7) we oould obviocusly, based on
I (3.6), write
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( (/) iniependent of 'y,
Then, the third term in I (3.8) and I (3.9) w111 be, respeotively
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Here, if the singular integrals are interpreted by K =&’,;f~ cor
the G p of (2.6) and (2.7) is obviously ¢,
Now, when we introduce the Mittag-Leffler expansion of Gp
6 =2 e (e By
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in these expressions, we immediately arrive at the nondiagonal terms
of the expressions I (3.19) =~ I (3.21) with

(2.7)
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To get the diagonal term, we just notioe that from (2.5)
((/z:_x)’z)é,(,:') - _/‘a/z 74; (et )&yile) (2.10)

must have a pole at t's £; o Taking the residuum 'here, we obviously
got baok the extra diagonal term corresponding toﬁ;:,gl of I (3.9).

' In this argumentation we have used a)that thé integral in(2.5) 1s
convergent (and therefors, as usual, that the upper 1limit oan be put
equal to R),b) that the pale expansion (2.8) of Gp and the similar
expansion of 7 *(7°) used in (2.10) amd I (3.9) determine these
funotions, i.e.,that no entire function of k or k' 1s allowed, even
when the expansion is truncated . o)' In writting I (3.20) we have
further assumed that the matrix ¥ has an 1nve'rse. Looking apart from
acoldental degeneracles, this assumption is valid only if the expan-—
sion of the total wave function in terms of pole functions ‘



1s unambigious . A similar problem 1s met when no source term 1is
. present, and we have to find an eigenvalue, oorresponding to a
complicated decaying state.

Now, the interdependence ¢f the pole functions, equation (2.2),
will of oourse in prinoiple prevent this uniqueness in the general
case. .

However, when a final number of poles 1s used, in the expansi-
on of both the Green's funotion and the single particle socatter-—
ing functions, the expansion is in general unigue,

The proof runs as follows. If the expansion
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is not: unambiguous, there must exlst a linear relation between
the pole funotions

(2.11)
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Applying now the single particle Hamiltonlan to (2.12) we get
(2.13)
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This prooedure can be repeated, to get an overdetermination of the
¥ 8o that only ;= 0,all £, is a solutlon. Look, €.8., at
N=3
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operating with (/76+V) gives
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from (2.15) and (2.16) we get
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or more generally
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Now, as we have shown in ref, /3/ (appendix) the possibility of
coinoidence of the poles oan in general be 1gnored.

This argument cannot in a convergent way be extended to N —»woo,
S0 no contradiction with (2.2) 1s found. Still, the appearance 1n
I (3.20),etc.,of the same function, ¥ , both in the expansion
of a bound state as ¥y , and in the pole expansion of 7°
as ¥, ; seems to ootradict this linear independence. Here, howev—
er, we should remember that Yb And ¥, go into the calculation
of the matrix M in different ways as is seen,e.g.,from the fact that
even if we write /[A> Z/VA>  with P, =¥, , we have nevertheless

<An| M |An> # <] M]bn>,  eta.

The overcompleteness must mean that in a concrete calculation,
the matrix imversion of diagonalization will become specially
difficult, when the number of pole terms becomes large. It was,
however, shown in ref. /4/ that in a realistio situation, corres-—
ronding to a nuclear physics potential, a relatively small number
of terms was sufficient in the pole expansion of- €ﬁv. The conver-—
gence of the pole expansion can, by use of the Mittag-Leffler
theorem /3:4/ b; improved considerably, introducing entire terms in
G ( and 1’5 ). It should be noted that by means of the Kapur-Peierls
funotions also the entire term oan for %,7’ sK " be written as
a sum of separable operators, with a simple polynomial dependence
of K . : o

In I, the theory of shell modei—coqtinuum states was developed,
and the pole funotions introduoed, using the Mittag-~Leffler
expansion of 409. This means that the singular integrals in I (3.8)
and I (3.9) are interpreted in the same way as they are in the
definitlion of ﬁfﬁ + This leads, as mentioned by Kloch /4/ y to a

. particularly simple, linear expression for the scattering matrix by

means of what 1s usually oalled the Jr.—matrix‘(Bloch's'notation 1s‘
different). ' '

" However, instead of thq Ve -matrix sdatterihg theory is often -
expressed in terms of the K-matrix, whioh 1s obtained in a similar
way, only with the singular integrals of the shell-model-oontinuum
theory, our I(3.8), I (3.9), interpreted as principal value integrals,
If this 1s done, the &» of our equations (2.6), (2.7) must be



6:;: s the continuum part of the prinoipal value Green's
function. The pole expansion of 6‘ 1s easlly obtained from that
of &' ., We may, e.g.suse equation (2.21) of ref. /3/
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Soy; for the continuum part we get the simple expression
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where, as in I, S,=+«  for poles in the lower half k-plane,
S, = =1 in the upper. -

The pole expansion of 6" must of course essentially have the
same oonvergenoe properties as those of 6‘; +« When a truncated set
of poles is used, the requirement, that 53./ should be real leads
to the natural exigenoy that the trunoated set, for each resonanoce
pole, must also contain its mirror pole. Note that in this ocase

N
> f‘%'if-'—? is purely imaginary.
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3s __Complex deocaying states

As mentioned above, we oan inside the framework of the present

theory only give a preoise desoription of such states, where at

most one particle is in the continuum, Of oourse, a product of two
‘0f our states or a sum of suoh produots can, properly antisymmetri-
zed, be interpreted as a state with two particles in the oontinuum,
and so on, but such products are eigenstates of the Hamiltonian
only, in the approximation, that some particle-particle coupling
" terms oan be negleoted.

So let us look at the continuum shell model equation obtained
from I (3.8), I (3.9) in the absence of souroe terms, Here, in order
to obtain a deoaying state, we must interpret the singular integrals
as in the definition of & and we obtain

/\,0( =47, (3.1)

where /7 and are given by I (3.21) and I (3.19), respecti-
vely. -

Alternatively, we can in the random phase approximation get the
same expression, with « given by I (4.13), I (4. 14) and M
given by I (4.16), I (4.17) . e

Starting with the first approach, we see that solutions of
(3.1) ere possible, if

Det(1(£))=2. (3.2)

The solutions obviously have the form given by I (3.2) and I (3.4)

/’)¢'>=Z'e/,,//1>+,72¥'f0/¢’4/!)/[)>; .2

where g,\ is given in temms of the «'¢ by I (3.7), I (3.19). To
discuss the structure of these equations, let us look at the
example of only one bound state and one resonance in one channel.
Now (3.2) is written

<ALV, 14>~ (Eeey-4,) <AlVglr> <alVili>

' C (3.4)
<{lYetn> Cllylzoe26(bany)  <EN 0> (=4
< V> <T)Irs <) > (bx)

For the sake of simplicity, let us assume the diagonal elements and
the pole-~pole ooupling terms of V; to be zero. Then we have
2 2 : -
v, v (. :
= (£ ~e, -¢ ) :
+
2k "+ K 2g (g~ x) o (3.5)
It is seen that a purely imaginary k-value corresponding to. a bound
state solution is generally possible, since in the interval o< ¥#.<¢°

both sides of the equation are real, and the left-hand side will go
from ke(V’ ) to O , but the right—-hand side from £, - €

- >0 ; = Ko
to ¢ oo , where fF-e <0, f<(le_2) ;) ¢ X &



-

. 2

Formally, a solution with & < 0 may in general alsc exist, it ; < PIF> =Z'/o{,/z * ,7‘?%7/"% 16 (0] =2 (3.10)
- A

should, however, be disoarded, since in obtaining (3.1) we used,

among other relations, I (3.15), which excludes & < 0, It is now, as above
- ) f
also seen that for a large class of parameters the other roots must ‘ L6 = (5;" L) ‘!f:/z 7‘; ﬂ,?)(/) (z). (3.11)
be complex ( 3 real roots must be & rare exoeption). So, as we ' A
should expeot, complex energies, oorresponding to mixed resonances
must result from eq. (3.4), or the gemeral eq. (3.2). For weak So the integrals in (3.10) can be written .
couplings we may, in the nelghbourhood of a single particle resonance ) 4 2 P
- * 2\7
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The corresponding 1. Order wave function

/’f? ='(A JA> + ,/2_ /):/)7 + "(t /)pz_ A > (3.7)

is, up to normalization obtained as
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which is formally identlcal to the usual l. Order perturbation o z= 27}'._’2'2_ z—ffa/? "/7’[6:,"/4\:?)2')" 6:,» (é;; ?’Z,)) =
expression. 275

In the Random Phase Approximation, a similar eigenvalue

problem, although more oomplicateds is found, ) B F4 ¥ ‘ ( £ - £ . (3.13)
| - prgr 2 Mt (TS T s

Here, only instead of the elimination of E, B = X « &4 4 -
above, we have in the different diagcnal matrix elements of M
( see I (4.17) ) to eliminate E , ~E and, say, K~ by

_  Pl2) L) Uy (e) (2D =
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Whereas the complex soattering states, as solutions of an
inhomogeneous equation, are normalized by the oholoe of the inhomo-
genecus term, the coefflolents in the equation for the complex

deoayling staf.e should be normalized according to the usual 4 ” ¢ P ¥
conventions, O 2=l
8o we have, for ' : A
2 . .
1> = AZT.;(A /A> +,7§:/a’1 fﬂ)/””> (3+9) Since '€""= - [2-* , this expression 1s purely real, as long as



we s5t1ll retain the rule, that 1f the expansion contains 1, it
must also oontaln z.
The normalization of the corresponding states, obtained in the
Random Phase Approximation is given by
(3.14)

(130 = L %)= 2= [ (14,00 %= lhy- (8] D),

where z%z can be expressed as above, using the éAz
given in I (4.11), : :

4, _Quasi-partloles, strength funotions

We shall here discuss partiocle strength funotion caloulations,
using the pole expansion, for a particular example, whioh contains,
howevery, in prinolple the main problems, met in the general case.

. - The example ooncerns an odd nucleus. We shall here look at the
approximate desoription, relevant, when many partibles are outside

a closed shell, Ths even system, obtained by removing the odd partic-—

ley 18 in an approximate eligenstate of a Hamiltonlan, which besides
the shell model potential contains a short range partiole-partiole

interdotion and some interaotions of larger range. The oorrslations
introduoed by the short range interaotion are of the palring type,

and they are treated by introduoing the Bogolubov transformation

o//\/)f =(/Vd*(y)“gy\}q/)7):‘ . ’ , (4.1)

L) = wy V) = Vo @),
Here the oontinuum states must be oompletely unoooupied in the
even oore, so we must have ‘

V) =0 (@=r) 35 & >0 (4.2)

This means that these states do not enter 1n the desoription on
equal footing with the bound states, but since \/\, s 80 far above
the Fermli level must anyhow be very small, the pairing pioture

is not notioeably modified. ,

. The long range interaotions are ‘treatedin the Random Phase
Approximation, This means that from pailrs of the quasi-partiole
operators, «(V), etc.,glven above, new oolleotive boson-like
operators are oonstruoted by the transformation

10
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properly generalized to the ocontinuum as in I (4.5). Since, dy the
assumption (4.2), the quasi-particle oreation operators (4.,1) for
continuum states are identioal to particle oreation operators, the
oven system with oontinuum admixtures is in principle treated in the
same way as in the case without palring, oonsidered in I.

The equatlons to determine the wave funotion will have the same
form as I (4.13) = I (4.17). We shall, however, here introduoce the
frequently used approximatlon of s_'gpa.rability of the partiole-<hole
foroes. This means that in I (4.16), we get

]

i

(/l‘+/\/z/4f>E.<//'7’/V¢//437>A
NV 4> = i Bl
<A+ Vulidr> = f? ar

Spt) Vi) id-> = g For

Lot i (4e4)

eto. Further, sinoe we want in (443) to express the oollective bosons
by the quasi-partlole operators, the matrix elements in the RPA
equations must be replaced by

<Ap b7 1V lfpe 45 > = " : (4.5)

<dp /V/ ///4//>('/Jﬂ‘1‘—/ {/ﬂq{_;

&) _
Yida = % vz * ‘/{z }.’/x i
and the energles &, by the quasi-particle energies

=/ 2 z 7
Eqen =V (G ~&)°+ A7) |
(Ayon =0 Loz &yp0) 70)

al

(4.6)

The wave funotlons of the odd system are now (written for disorete
oomponents) given as

A
1¥7, Z,"/ os s (v)+£’[./ NOL ]m e * ,
(4.7)
+ 37 + +e A4k,
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where the 0+:S' are the phonon oreation operators, defined above,-
with [’f’, Y’j oorresponding to {X,Yf and {X, YJ/ of I (4.5), normali-
zed by

(4.8)

" ( Togr T = b B ) = B

Herey, the ooefficlients could be determined by the equation corres-
ponding to I (4.17). Since ?",, and Y, will be proportional
to U"/,a.s is seen from (4,2), (4.5), only one particle may be
in the oontinuum, A

We oan, however, in a reallstio situation have one inooming
partiole, only,

If (4.17) really represented a complete antisymmetric solution
with a Hamiltonlan, which was symmetric in all particles outside
a closed shell, 1t would be irrelevant whether this incoming
partiole was represented by the odd particle oreation operator
or by a term in the two—quasipartiole operators.

We shall in the following assume that incoming particles
are only represented by a*; however, we shall follow earlier
treatments / 7/ _ 1n assuming that the presenoe of the odd particle,
(as well as the phonon-phonon coupling) does not influecne the
structure of the phonon states. This means that the phonons oan
in the oontinuum at most have an outgolng partiole, and that they
must therefore be found by solving an eigenvalue problem, whioh 1is
the one which oorresponds to the elgenvalue equation of the last
ohapter (3.2), with the proper ohanges ( ¢,V  factors and quasi-
particle energies instead of & ) '

(4.9)
Det(l1) =0

<e/Mip>= <$I%l77 -
= (¢ =5 ) o2y Pen -

(4.10)

=2 4,.(8 ~ S bx) S de,a; ,

where £ = 4 and ¢=- oorrespond to the 7° and ¥ part of the
eigenvectors, respeotively, and 47/)7/5’? 13 short for the matrix
elements of (4.5), whereas

12
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The equations for the odd system are now reduced to the same
type as those met in the continuum shell model, treated in I,
ohapter 3, with the proper changes, 1.e.,that the states

> =407 >, etcs, I (3.3), are replaced by the components
of (4.7) ' '
+ 3 s
(020 Sy > Inz, =L d) [ 7 (411
' t
,I() /)’0>J.”:d:_h ?ﬁ/ o

/k,/’fﬁ?fﬂ :[-O'lf 4;‘ ]]”?2 >y ez‘c.
The introduotion of the oorresponding pole states, /¢ />
is straightforward following the methods of I, chapter 4.

The interaotion, "\, of I (3.1) 1s replaced by the quasiparticle—
phonon interaction, //f/u whioh,e.g., can be taken as

2r' v (Q * (-) ,;-/445_7 ) *

s 4 yE’
x 237 40 Y ot
A Z'/J:I:.}/?/ﬁ” [— 4ry '/)/"
- 4
T = (n P
-7 - u .
v/:,/; N %/z - Y/, V/ ‘

(4.12)

Here d,,‘/“, is the reduced single—partiole matrix element of the
multipole operators % K/, ; the normalization yz’
1s given in Ref. 7 o -

For many applications the continuum admixtures in the phonon
may be neglected, and thelr energles found as real numbers in the
usual random phase approximation., In the general case, however, we
see that the introduotion of deocaying (damped)_ phonons, as above ,
means that the corresponding energiles, €, of the equation
oorreéponﬂing to I (3.4) are complex.

Even when all oontinuum admixtures are neglected, the calcula-
tions leading to a wave function of the type (4.7) are often
replaced by loocking for the so~oalled strength function, i.e., for
the admixtures of a certain component in the solutions. Further, the

13



exaot strength functlon 1s often replaced by an average strength
function, whioh gives the averaged oontent of a component in
eigenfunctions in an energy interval.

Since the elgenenergles will often lie very demse, the strength
function will often correspond to the physioal measurements. An
extenslon of this method to the case, when oontinuum admixtures
are taken into account 1s stralghtforward. In some cases this will
even lead to somewhat simpler caloulations, as we shall see in the
followling.

Let us suppose that the component in whloh we are interested is
the one, which in our model 1s described by a gingle particle
creation operator, acting on the even vacuum (the first component
in (4.7) ). This oorresponds, e.g.,to a stripping experiment with
the even vacuum as target state.

If this component belongs to the discrete part of the wave
function, as will be the oase,1f the total energy is smaller than the
lowest partiole emission threshold, the calculatlon of the
strength function must f4llow the usual soheme. This means that the
square of the coefficlents, which would in principle result from a
matrix diagonalization, must be averaged with someweight function,
8ay,

Jacz)]) %= z;:f(z - Er) Por s (4.13)

where 7 denotes a solutlon of the eigenvalue problem of the odad
system, é}- the oorresponding eligenvalue. Here, § 1s conventli-
“only chosen in the Lorentz form,
7 AN (4.14)
f(x) = _;/;. /{zf- A%

The sum in (4.13) can be turned into an lntegral of an
expression, which has poles at the elgenvalues < . The resol-
vent L. -7
R=(z-H+H) (4.15)
has this property and in some simple examples (See,ecg.,8 ),
even the residues will be given direotly by the resolvent. It 13 a
necessary condition for this type of calculatlon to be feasilble,
that the /Jz/z are given, for real £ s 1n a way which can be
analytioally oontinued in some reglon of the E plane.

Now, also ¢(z-2 7)) has poles.at .2 ‘= Z 2ty .-24-
and the average is, by oontour integration, obtained from the
residues in these points. The character of this calculation 1s not
‘changed, even if some of the poles are complex.
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If the average distance between elgenvalues of the system with
quasi-particle~phonon ooupling is much asmaller than between the
quasi-partiole energles in the absenoe of coupling, and if A

18 between these, the result of the averaging oan be expressed

by saying that the (analytic) expression for /a/Zhas poles,
whose real part 1s near to the quasipartiole energies and with an

-imaginary part, 42 whioh is proportional to the average of the

square of the ooupling
Some,e.g., stripping oross seotion will contain a Lorentz
faotor ) /7

/’NI (- ;Pﬁe)) * (722)

Lptre) ~£ (peosip)

(4.16)

I~ r< \7177 (x density of levels in ooupling ).  (4.17)

Stfipping, leading to a sufflolently narrow single particle
resonance state, distributed over a number of oomplex states, may

in prinoiple be described in the same way as above. The resonanoe

funotions were sucoessfully used in the desoription of stripping
in the simple case where the coupling to other states can be
negleoted /

It ought to be mentioned that around threshold for partiole
emlssion, the amalytlio energy dependence of the amplitudes, needed
in the procedure desoribed above, 1s not fulfilled. This leads to
practioal difficulties only for the case of neutrons in S-states,
and only in the neighbourhood of the threshold.

If the single particle resonanoe 1s, as will often be the
ocase, sufficlently wide, no further averaging 1s needed in the
caloulation of the strength function. The same 1a seen in the
elastio scatteringe. Here, the formalism of I, chapter 3 is again
applicable. We shall agaln assume that the even oore system is -
desoribed in terms of eigenstates in the RPA-meaning, but with
energles whioh can be complex. Let the only component which can have
incoming particles be the one which ocorresponds to the ground
state of the even system., Now, in the wave funotion (4.7) the summa-
tions over V  are in the oontinuum replaced by integrals over
K » 80 Wwe get a set of components ‘

= [ (oo ()L, )+
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* ¢ v A by -
,\ hz/o/mzz)[a/,, ’4’)}/4 Z,H ]m % re '(z)) 7% 7,

where
Vg () = AL 3(e-u, ) £ (x) (4.19)
We may as before write
= 4,
[),(z’) = /1}2~/(/2) - x,} //5[,' . (4.20)
( § channel index)
where i
f*c’r;)r RAICL S 2
¢ bR ) 2k (e-1) o

In solving the equations for the p/fs' or, equiva.lently, the /?3‘ we
are led to equations which are formally identical to I (3.8), I(3:9).
We may now, as in I, use the =0 definition of the singular integrals.
In this way, we would come direotly to the f/— matrix of the
scattering. This is in mé.m,' ways the simplest method. However, it

may also have some advantages to use real quantities. This means that
the singular integrals must be interpreted in terms of principal
values. This method leads, as pointed out by Bloch instead of the

\7‘- matrix, to the analogous K-matrix., Since this approach 1is
frequently used, we shall stick to that, the changes needed to
replace it by the I matrix approach being simple., Note, that we

are in our notation following Bloch. The matrix, here called K , is
related to the usual K-matrix, see (4.30), (4.31) below.

The main point is that when the principal value definition of

the singular integrals is introduced, I (3+11) is replaced by

>
P %) t
IV 7 - %
¢ L5 Y v (4.22)

This means that the PP-elements in the M-matrix of I (3.21) are
replaced by
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A M)A =<4 ed 7 = 5 (x} -[{J ). dir', (4.23)

, " (4.24)
Gr = Fey S/ (5% ).

- Nowy, we are interested 1n elastlioc scattering, i.e.,in the residue

Bo in Blochs notation of the ooefficient < ()
at 1ts pole K, .
This is Jjust what in I, chapter 3, 1s called

. /“a)‘ (‘4) . . (4.25)

It may at this point be advantageous to introduoe a oommon
notation for all oomponents, whethe® they belong to resonance poles
or not. So for a olass of /1 values

= /0> (/\ >Ax) (4.26)

Then, from the last equation of I (3.21), together with I (3.20)
we have, with the substitution (4.23)

4
/8/" = "C’a [[" = [)?9 ) ’/Ap = (4.27)
= ;\L_‘- VAgA [J/\ - ’av/l ) ’

where we have introduced

7 A
b= tag) , Knx licn , Aok
Now, eliminating the first right-~hand term by means of I ( 20) we
get ’

=z - >
ﬁ/‘o /:Z. ( Vng,\o"‘ 7‘ K’avl /V/Au 'y ) AD (4.28)

4

(This 1s, striotly speaking, an elimimation only if Vj ,/ =0
wnich may, however, safely be assumed ( see, e«geprefe 2)), The
analogy between (4.28) and Blooh's equations (2,42)-(2.46) should
be noted. .

The two-step elimination methad of Bloch would seem to be the
nost reasonable thing to usey, i1f the wave functions e.t the different
steps were very different.

However, our bound state wave functions in chapter I.J
and resonance wave functlons as given by I (3.3) hg.ve the same
struoture. Therefore a one-step.elimination, treating oontinuum
oouplings on the same footing as those in the discrete part of the
wave function, seems reasinable.
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A comparison with Bloch's equations (2.47), (2.58) now
_shows, that if we write (4.28) as

) ~

= KA
(where eguations for other components could hcve been obtained
anelogously, and thc restriction to Z:‘ "'X.Ao is not necessary) then
the soattering matrix is obtalned as

(4.29)

$ —etd el (4.30)
T . _SEAE (4.31)
= ,'/A“];éf

St11l (4.28) contai‘ns terms, correspording to all couplings,
caused by the residual interaotions, including the usually neglected
one s, '
The qualitative picture, which results from (4,28) can again
conveniently be obtained by looking at the averaging of the oross
. section. This can be done by oontour integration or in other

words by introducing an imaginary part in the energy (L‘d )

or momentum (:‘AK) equal to the corresponding experimental width.
For the average cross section, we have

L T2y e 2(1- Re <SCLDiy )

where the contribution to <52, from 'd/\o is obtained from

= (4 (ceit))
Note, however, that when the momentum is in the neighborhood
of a single particle resonance £ , which is wider than Ay
the imaginary part of the diagonal elements will be dominated by
this [ (¢;) and 4, may be neglected. The oross sections,
oorresponding to this single partiole resonance must of oourse again
be obtained by an energy (momentum) integration over an interval,
oorresponding to the width /8/ (or a 1ittle larger), so Jn (%)
will in this oase oompletely replace 2—1 a4 sy the experimental
momentum width.

Conclusion

We have here in some details looked at the possibilities of
using the pole expansion.method of I in nuclear physics problems,
partioularly ooncerning the oonstruction of complex, decaying sta-
tes and strength funotions.
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In the usual calculation, a number of further simplifying
assumptions are introduced, 1n order to accommodate the diagonaliza-
tion of inversion of what corresponis to our matrix _,__/f/ .

Similar assumptlon can immediately be introduced in the reso-
nance function method. What we have in mind is, e.g.sthe assumption
of constant matrix elements in RPA or pairing calculations, or
similar simplifications in the particle-phonon matrix elements. It
should still be kept in mind, however, that when the basis is
extended, the effective interactions used in a truncated basis must
be changed, in order to obtain realilstic results.

Here, agaln the. general principle of using 1nteractions,whioh
reproduces the energy specira or pa.rts of them as well as possible,
may be followed, then iooking for the possible improvement in other
measurable quantities with the extension of the basis, The most
nearlying quantity is here the particle decay width as 1s seen in
elastio scattering or (§,») and (y,p) prooesses. This is immediate-
ly obtained from the oalculatlons, sketched above, which obviously
take into account, in the terminology of,e.g.,ref. /51 both rt
and /'¥.

Concrete mumerical calculations are under preparation;
they will be piblished elsewhere. '
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fBaHr E.,: Fapees ®. A., Epmoa C.H. PeaonaHCHue cocToAHMA | ) EQ-BI:BI5

B CprKTypHHX BUIYMCIIEHUAX . (npvonmeHue)

06cymnae7cn BOZMOKHOCT b, MCNOMbIOBAHUA MeTOAa paanomenuﬂ no nonnCHuM S
GyHKUKAM /COFNacHO Teopeme HuTTar-newuepa/ ANA ONMCAHUA AREPHHX COCTOAHWA, ;
NEeXauMX, B HENPEepHBHOM CNEKTpe, PacCMaTpUBaTCA HEKOTOPHE MaTeMaTudeckue CBOWCT-] .

/BA’ pPa3noweHui NO PEe3OHAHCHHM QYHKUMAM, NPUBOAATCA GOPMYNH AnA BLIMMCTIEHMA

OAHOMACTUYHLX CUMOBLX QyHKuMiA. Ocoboe BHUMaHKe ypenaeTcs ONUCaHUD cnomnux,
pacnananmuxcn COCTOAHMI, KOMNOHEHTH KOTOPHX COAEpKaT He. ,Bonee quou uacTHUY .
a. KOHTMHyyMe. PaaauTuu MeTOA OueHb MPOCT, 8 NPaKTUYECKUX pacueTax,’ TaK: Kax

‘8 peayanaTe NOMlyyaeTcA cHUCTEMa anreSpanueckux ypaaHeHuu, no; ¢opme nouTu

cosnaqanmux c ypaBHEHMHMM oGonoueuHou Monenu.k, L ‘ : . P

L

" PaBoTa BunonHena s flabopaTopuu  TeopeTuueckoi” duanku OHAN.

" CoobueHie 06veaMHEHHOrO MHCTHTYTa AREPHNX MCCNeROBaHWN . ‘fly6na 1981
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Bang J Mo, Gareev.F. A., Ershov S N Reson
in Structure Calcu|at|ons (Contlnued)

tStates Eh-sl-lns

“some appllcatlons of the- expansnon method for, descrlptlon of contlnuum i
nuclear states are d|scussed {Some mathematical: propertles of ‘resonance ‘expan-
sion‘are considered.; Formulae are given for calculation of one particle’
strength function.” Descrlptlon of . the, complex decaynng states contalnlngﬂ“’
only components with one part:cle ‘in. the continuum. are ‘given. The method
is very snmple snnce it leads to a system of algebranc equatlons.\f,

"“The |nvest|gat|on has been performed at the Laboratory of Theoretlcal




