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I. INTRODUCTION 

The dynamics of the processes in the nuclear systems with 
very high angular momenta is a subject of a considerable in
terest because of its relation to the heavy-ion reactions. 
Here we study the simplest questions concerning it: (i) the 
description of the "secular equilibriumn of rotating nuclei 
or, in the language of nuclear physics, description of the 
nuclear yrast states and (ii) the analyses of small oscilla
tions around the equilibrium configuration (i.e., of collec
tive nuclear modes). 

Both these questions have been studied earlier: the shape 
of rotating nuclei is studied, e.g., in refs. 11- 31 using in 
some or another way the nuclear liquid drop model (LDM); the 
collective modes in rotating nuclei are treated in the random 
phase approximation (RPA) in refs / 4•51. In contrast to earlier 
papers on the subject both parts of the problem are treated 
here on the basis of the same model which has some semblance 
of RPA and of LDM. It was developed for studying the nuclear 
structure at low spins in refs. ~-8/ and given a name "dis
torted-Fermi-surface model". Its formulation starts with the 
introduction of a distribution function f(~V.t) giving the pro
bability of finding a nucleon inside the nucleus at time t 
near the point t with the velocity close to V. Then the kine
tic equation of a Vlasov type for the distribution function is 
formulated. Then the moments in nuclear velocities are taken 
from the kinetic equation to generate equations for the nuc-
lear density n(r',t)= r f(r',V,t)dV, and current Jct.t) = 
"" ( f (f. V, t) V d V. To solve the equations which ensue we use the 
mathematical methods developed in the theory of rotating self
gravitating masses 19!. 

2. THE MOMENTS' OF KINETIC EQUATION 

We generalize the methodsn,s; and start from the Vlasov 
equation in the reference frame rotating with angular velocity 
0: 
ar 3 a r 3 ar 1 a11 ~ .... .... .... .... .... .... 
--+};v,- -.};--f-·~-+[fl,rl; +[fl.[fl.rJJ, 1 +2[fl,v] .. 1=0. (I) a.t 1""1 a.xi l=la.v i m a.xi 1 
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Here ~(1) is the potential of the Coulomb and nuclear for
ces; [a,b]. is the vector product, m is the nucleonic mass, 

:i=:..£.!~ The multiplication of Eq. (1) by 1 , vi , vivj•··· and 
int&iration over V leads, respectively, to the first, second, 
third, •.. moment. 

The first moment coincides with the equation of continuity 
~n 3 ~. -+ Y -{nu.)=O, at i=l a.xi 1 

where ui cr. t) is an i -th component of the mean nucleonic velo
city: Ui(r,t) = .l..f Vi f(t,V,t)dV. 

The second ~oment is known as the equation of motion: 

L(nu.) + ~ .1.:..( .!.P.J + n ui u,. ) + a.t 1 j=l a.xj m 1 

(2) 

where 

pij(l'.t)=m r wi wjf(;,v,t)dv 

is the pressure tensor, wi = vi-ui. 
The third moment is the equation of energy-mass transfer: 

~· 3 au. aui au 
..:::ll.. + y (P. -+ PJk- + pik -~)+ 
dt k=l ,, ax. ax. ax k 

3 3 a. 
+2 Y f!,(c,kPk.+<.,kPk.)+m Y -a- f wiwJ. wkf(r,v,t)dv=O. 

k,£=1 L H. ] JL 1 k=l Xk 

d a 2 a 
Here Ei£k is the Levi-Civita symbol; --·;;;; -· -·+ 2,; uk-- · 

ili at k-1 ax. 

(3) 

The Eqs. (2), (3) can be simplified after some natural phJ
sical assumptions. We shall neglect the integral ( wiwj wkfdv 
as it was done in ref.~1. Also let us consider the nucleus as 
a drop of the ideal incompressible liquid. Then it follows 

3 au. 
from the equation of continuity, that I. ...;...._., 0. Introduce 

k-1 a,x k 

the tensor 
K ij = P ij - Po a ij • 

where p0 is the pressure in the infinite nuclear matter, 
1 2 !8/ • 

p
0 

=·amn
0 

<v >o We cons1der the case p o>>Kij , when the 

distortions in the velocity distribution of nucleons intro
duced by the surface and Coulomb forces and by oscillations 
are small. 
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So we have simplified Eqs. (2), (3): 

p~+pri'x.(a. 3-1)+f (2po,.
3

.u. + aa"ti)+.i!... a:u ·=0, 
dt I 1 j=l IJ J. ,Xj m a.xi 

(4) 

d.;j au; a.uj 
--·+P 0(-·+ )+20K 1i =0, (5) 
dt a.xj a.xi 

where p·=m·n; 0 lies along x3 ,and is constant; K11=-2K 12, 
K12= K21 = "tC"22• K1s=Ka1 =-"23 • K22= 2K12 • Kas=Ks2="13 • Kaa= 0• 

When o~o. Eqs. (4) and (5) coincide with the correspond
ing equations of 181, We use the method of the tensor virial/9/ 
to solve Eqs. (4),(5). 

Eq. (4) will be replaced by the virial equation of the se
cond order, i.e., the second coordinate moment of the equation 
of motion: 

3 ~ 2 
-20 l:, .3k f pukxJdi-0 1.. (ll. 3-1)+Q1.+1!il .. 

k=l 1 lJ 1 J IJ 

where (6) 

is the surface-energy tensor; 

Q 1 ,., ~. (x1· -x,')(x,· -x·,) di~ilr~' .. ~- rr q,rl qr )~-,-..:.:.:.+-'-;..._ 
lJ 2 -+ ]f-f' 13 

is the Coulomb energy ten-

sor, q(r) is the charge density in a nucleus; U =- -l.r U(t)df". 
U (f) is the average field of a nucleus. Its form 'follows the 
form of the mass distribution, so we assume U(1) to be a 
square well. Unlike~1. we do not neglect the average field, 
the surface and Coulomb forces. The virial method enables us 
to take the~ exactly into account. 

3. SHAPE OF ROTATING NUCLEUS 

Following1101, we consider the nucleus to be an oblate sphe
roid with semiaxes: 

•;= ·~=a0~1+: 8 ), a;= a0
2(1-: 8), 

where 8 is the deformation parameter and ao is fixed by the 
volume conservation condition: a1 ~ a 3= R3 = rgA • r0 = 1. 18 fm 
(as in ref . 181 ) , A is the nucleus mass number. 

The shape of a rotating nucleus in the state of secular 
equilibrium can be determined from Eq. (6), which under these 
conditions looks as 
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llii -2aii +n2
(1-B,3)!ii +Qii +UBii .Q. (7) 

It is the balance of the surface, centrifugal, Coulomb and 
nuclear forces and of pressure. Eq. (7) gives a unique rela
tion of semiaxes ai to n. 

Tensor IIij is diagonal. Really, if it =0, tensor fij = 
=mrvivjfdV, and the function f is even in Vas it fol-
lows from the definition of ui. Hence, Pij =Pi Oij • Pi (l) = 
= m r vtr dV is the pressure along an i -th axis, and the dis
tribution function does not depend on time in the state of 
secular equilibrium. We deal with spherical nuclei - they 
deform due to the rotation only. There is no any distinguished 
direction in such a nucleus, so assume the pressure to be iso
tropic: P1 =P2 =P3 ,P.Hence, ll;i=B;j(P(r')df',Biill. 

The pressure in the interior, immediately adjacent to the 
surface Sis given by Laplace's formula: P=Tdiv S, where S 
is the unit outward normal on S and T is the surface tension 
coefficient, which is proportional to the parameter b :::J 7 MeV 
of the WeizsB.cker formula: T = ~- o Under these conditions 

4rrr 0 1 the surface energy tensor looks like: O"ij =1tT (((Bij -s 1sj)dS. 
If we use ellipsoidal configurations, ail the off-diagonal 

components of Eqo (7) vanish identically. The three diagonal 
components are: 

2 () I11 = 2a 11 -Q11 -(fl+ U). 

2 () I = 2a· - Q -(ll + U). 22 22 22 

0=2a -•Q -(ll+U). 33 33 

The first two are 
Q ii and vii can be 
tion to eliminate 

identical, as a 1 ~a 2 . The expressions for 
found in the Appendix. Using the last equa
ll+ U we have the equilibrium condition 

(8) 

which is identical 

tution of uii. Qii 

to that for the liquid drop1101
0 

The substi-
4rrR3 2 

and Iii=J5Pai into Eq. (8) leads to 

!.l2= 2R3e2(.!2._Tet -rrQ2B13 ). (9) 
p 4 13 

22112. where e=(1-as/a 1 ) 1s an eccentricity; the expressions for 
Ct,i • Bij can be found in the Appendix; q2=0.0665 i'Me_V Z is 

A2 r5 • 
0 
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0.5 I 

0.25 

the number of protons in the nuc
leus. The typical dependence o(O) 
following from Eq. (9) is .shown 
in Fig. I for two nuclei from the 
$-stability line with different 
fissility parameter X. 

Fig. !.The dependence of the defor
mation parameter (j on the angular 
velocity 0 : I - 168Er( X~ 0.56667); 
II - Z •·114, A-300( X~0.89472); 
flw 0 = 41At.6MeV. 

4. QUADRUPOLE-OSCILLATION EQUATIONS 

To study normal quadrupole oscillations, let us analyse 
the reaction of a nucleus upon the infinitesimal perturbation. 
The necessary information can be found from the Lagrangian 
variation of Eq. (6): 

ct'Vi,j d " < ~ df; df; ~ ~ dt2 + dt- fp(u,,;-u;,,ldr~ fp(u;dt-+U;-dt)dr+ ft\"iidr+ (JO) 

2 3 df. 
+0 (1-8,3 )V;; -20 l c 3k fp(-- x.+u.fJ·)dr-21\a .. +6Q,J .. 

. k=l 1 dt J lJ 

Here 6. means the Lagrangian variation; ( i (f, t )= 6.xi , Vi,j (t) = 
= fP.fixjdt , vij =Vi,j + vj,i , 6.U(1) =0. 

We are interested in small oscillations about the equilib
rium shape. So, ll = 0 and only mea_n velocities corresponding 
to small displacements ei. i.e.' ei remain nonvanishing: 

i:v, i ~ ~ 2 3 • 
-2~=r6K,;<u=O)dr+0 v .. (l-8.3)-20l,. (p( x.dr-21\ac. +6Q. at lJ 1 k=l I3k k J lJ 1j .• 

(I I) 
~ij(ll=O) can be found from the Lagrangian variation of Eq.(5): 

a. a a~, a(; 
-t\K .. =-P0 -·-(--+-.)-206K .. a.t lJ a.t a.x j a.xi lJ • 

The Laplace transformation is a convenient method to solve 
this system: 

2- - -+ 2 - 3 - -+ 
A V .. -(t\K .. dr+0(1-8.3 )V;J· -2Hll '- fpf,x.dr-

I,J lj 1 k""l I3k J 
- - 3 • 

-287;; +6Qii +20l ,,3,v,
1
. (O)+AV .. (O)+V .. (0), 

k=l • l,J l,J 

(12) 
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(I 3) 

.... oo -At 
where F(x,A)= fF(x,t)e dt. The solutiQ.n of system (13) gives 
the formulas

0
for Ll'Kij in terms of fk. The substitution of 

them into Eq. (12) leads to the system of nine equations for 
vij 

The frequencies of normal modes of oscillations do not de
pend upon the initi~l conditions, so we suppose g i (r'.O) = fi(f!'O)=O 
and, hence, V, ,. (O)=V .. (0)=0. IJ.K,,· (r,O) requires a special • ~. l,J d ...., . ..... 
analys~s. It was shown that Pij ~,,t)""' a .. P (r) ~f u:::::O, So, we 
h b d f

. . . 'l ave y e ~n~t~on: 
...., -+ ,.....,-+ -+ ,_,.... :\ 

!J.Kij (r,O) =I!. Pij (r,O) = ljj (r+( ,0)- Pij (r,O) =8ij [P (r+() -P (i')] = 8ij 1!. P (r,. 

~ 

Here Pij-(r,O) is the pressure tensor, corresponding to the 
perturbed distribqtion function f"{f.V',O), which is even due 
to t ... he condition ~ i(f,O) =0. The specification of Ll.P(f) in terms 
of ( requires some supplementary assumtpion concerning the 
physical nature of the oscillations. For the incompressible 
fluid ( is required~ to be solenoidal in order to preserve 
the total volume: divf = 0. If we supplement the system ( 12) 
with this equation, we may dispense with the evaluation of 
~P(~ and eliminate it from the system. 

We restrict ourselves to the quadrupole oscillations, so 
the Lagrangian displacement can be parametrized 1101· 

3 
fi=~L .. x., (14) 

j=l l,J J 

where Li,j are nine unk;nown functions of time (their number 
is equal to the number o~ equations in system (12)). It is 
easy to show that Li J • .::~·Vi J. for ellipsoids, where M ""rnA. 

, ~a1 ' 
With all simpl{fications, system (13) becomes: 

( 15) 

The right-hand side of the equa-

i,j • hence, ~ Kij has the same 

. , 
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A,iO 

By taking appropriate linear combinations of equations (12) 
three noncombining systems can be formed. The first two con
tain the functions Vi,j , which are even with respect to the 
180° rotation of the reference frame about axis x3.They deter
mine the positive signature1111 modes of oscillations: 

( ~2 ~ 02)(\7 11- V22)- ( (&; 11 -~~22)dt- 20 A V12 + 2(~;;1 C~0:2,)-(~Q11-~~i=O, 
(16) 

-u'! CV11+ v22 l+ 2(&1;1 +~-;,.22 - 2 &;ss l-(AQ11+~Q22-2 ~Qaal=O ( 17) 

2 -. - - -
A (V -V )-!H(V11 +V22 )=0, 

1.2 2,1 

>..2- - ... - -
2 '!!a - r ~"ssdr+ 2 ~ 1133 -~ Qss= 0· 

And the last system determines the negative signature modes: 

A2v _ r ~;.13 dr-WA v. 
3 
-n2 v13+2~";,-13 -~ Q 13 = o. 

1,3 ' 

( 18) 
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Expressions for 6.';lj and 6.Qij are shOwn in the Appendix. 
It is useful to note that Eqs. (16)-(18) can be used to 

describe the quadrupole oscillations of classical charged li
quid drop, if one supposes Po:::: 0. 

In the theory of self-gravitating masses~ 1 the normal 
modes of oscillations determined by the systems (16), (17), 
(18) are known as the toroidal, pulsation and transverse
shear modes, respectively. In nuc~ear physics the first two 
are known as they-' and ,8-modes; ~ve shall name the third one 
the a .-mode . 

Insertion of 6.-Kij , ~-;,ij and 6.Qij into system (16) gives: 

(V -V HA
2
+ .2.~.-n2+D)+ V ( B[}A"' 2nA) ~ 0. 

II 22 2 A2+ 16 [} 2 12 A2 + !6[}2 

(V -V ){nA- -~I!_A"-)+V (A2+_2A
2

"-·-2f12+2D)~o. 
II 22 A2+ 16f!2 12 A2+16f!2 

Here 5po 1\ 2 9rr 2/3 2R3 15 2 •~-;:-;;r·(-;'2) (-A-) • D~ -(--4 T<lll -rrq B ). pa
1 

2mr
0 

p 11 
The characteristic equation of this system is 

(A2 + A2", -!12 +D)2 + !12 A2( 4", -·1)-0. 
2 A2+16[}2 A2+16f!2 

If we replace A2 by -w2 (the real w is a necessary and suffi
cient condition for the stability of modes), two equations 
follow for the frequencies of y -modes: 

(19) 

The roots of these two equations differ only in sign and are 
physically identical. So, we deal with positive w only. The 
dependence of three real roots of Eq. (19) is shown in Fig.Z 
( y -curves). Two roots of Eq. (19) become complex at !J::::Q cr, 
which is the least root of the equation 

(20) 
Hence, every infinitesimal perturbation of the configuration 
will increase exponentially in time if n >ncr' i.e.' the mo
tion becomes unstable. This is the reason we break off all the 
curves at Q,., ncr . One of y -modes becomes neutral (w •0) at 
!J=D':h (see a part of Fig.2a in a larger scale). It is a point 
of bifurcation. The continuous transition from the se~uence 
of spheroids to that of ellipsoids is possible herJ1~The lo
cation of the point of bifurcation does not depend on the Fer
mi-momentum and is determined by the Coulomb and surface for
ces as in the liquid-drop model. 
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0.5 '"t 
0 

a 

( 

0.5 

Fig.2. The dependence of the a~.~-. y -oscillation 
spectrum of nuclei on the angular velocity 0: a - 168Er 

(X:0.56667), b- Z:: 114, A.JOO (X=0.89472); flw 0 = 
: 41A-1AlMeV. 

Let us substitute 8.~1', tJ.:a,. and 6-.Q IJ into system (17). 
The last equation involvks A~(~. We omit it to supplement 
the system with 3the solenoidal requirement (see page 6), 
which looks as 2 V .. /a2."" 0 for ellipsoids. So, we have 

j=l JJ J 

- ,\2 2 - 2 - -
(V11 + V 22 )(i+•-0 +E)- V33 (.\ · + 2"v+ G) +(V 1,2 -V 2•1 ) 2[) .\ =0, 

- - - - 2 
(VII+ V22 )·[J.\·-(VI,2 -V2,1 )·A· :O, 

(V11+\2 l+vV33 = o. 
2R 3 15T , ao 

Here v= a 2/ a 2 , E = -{-.......,.-(ul +JJts-· 
1 a p 4 a1 
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G"' 2R3[ _!.E( 2<13 _, 3 :l\33 + :!\ 31)- 2 "q2 B 33] . 
P 4a3 

The characteris-

tic equation of the system gives the formula for the frequen
cies of 13 -modes: 

(21) 

( f3 -curve in Fi~2). 
Insertion of K ij , t1-.,..ij and ,',.Q ij into system (18) yields: 

2Jil15 R 2 where H "'-( -T..,3-" q B13 ). The 
p 4 characteristic equation of 

this system is: 

(22) 

The roots cu2 ... o and w2 ..,Q 2 have been analysed in ref. 1101 

they do not indicate instability. The 0 dependence of the 
rest of pisitive roots is shown in Fig.2 ( ar-curves). One a.
mode becomes neutral (w ~O), when 4H••(v-l) (see the fragment 
of Fig.2a in a larger scale). The form of Eq. (22) implies, 
that w2 does not change sign, when the functiop. 4H+tL(1-v) 
changes sign. Therefore, no instability occurs at this point. 

5. GIANT QUADRUPOLE RESONANCE (GQR) 
In a nonrotating nucleus all nonzero roots of Eqs. (20)

(22) are equal to 
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(23) 

If one neglects the surface and Coulomb forces, the energy of 
quadrupole oscillations 

fl2 9" 113 64.7 E =flw =--(-) =-MeV 
2 sph /2rnr8 A A'/3 

is the same as in works 17 ·81 and is in fine agreement with 
the GQR experiment (Fig.3). One can see that the Coulomb and 
surface forces give rather small effect (the agreement with 
experiment can be improVed by increasing r 0 slightly). Fig.2a 
shows, that these forces do not effect very much the GQR ener 
gy in rotating nuclei also. 

The increase of 0 splits the GQR (see Fig.2). This phenome
non is analogous with the well known fact of GQR splitting in 
deformed nuclei. But here the deformation is not static and 
appears because of the rotation. The static quadrupole deforma
tion does not eliminate the degeneration of the GQR state comp
letely: the modes with the projection of angular momentum K 
and -K (IKI = 1;2) on the axis of symmetry have the same ener
gy. The presence of Coriolis forces eliminates this degenera
tion in rotating nuclei. Hence, in our model there are five 
GQR states every one with its own quantum number K. 

Fig.4 shows the spectrum of quadrupole oscillations of the 
liquid drop (Po= 0 in all equations). One knows that the li
quid drop model is not capable to describe quantitatively the 
collective states of nuclei at 0 = 0 (see the dashed curve in 
Fig.3). But' the qualitative changes of normal modes in the re
g~on of small n are the same as for the GQR (cf~ Fig.4 and 
~). 

6. SOFT HODES 

There are two low-lying collective modes in our model.They 
are different in sign of signature. It is interesting to es
timate these frequencies for small U. For the positive signa
ture mode ( y -mode) we have: 

0 

w ::40(~,f. 
y wspb 

where w ph is tJie fre~uency of GQR in a nonrotating nucleus 
(Eq. (23)), and wsph ~s the quadrupole oscillation frequency 
of a nonrotating liquid drop. 

For negative signature mode we have: 

"'a.= 0 (l-v+4H/"~ /(1+ v +2H /".). 

ll 



Fig.3. The GQR energy of non
rotating nuclei from the {3 -sta
bility line: the solid curve -
the Coulomb and surface forces 
are taken into account, the dott
dashed curve - without these 
forces. The dashed curve - the 
energy of quadrupole oscillations 
of the liquid drop. Experimental 
values· are borrowed from 18/. 

o,L-----~ro~o.-----,2~oo,---~A 

w 
w. 

0.2 

12 

a 

0.05 

0 0.03 2/w. .-.. 
.4 Fig. 4. The dependence of the a- , 

,-, {3-, y -oscillation spectrum of the 
1 

liquid drop on the angular veloci-
tyO: a- Z=68,.A=168(X=0.56667, 
b - Z= 114, A=300 (X= 0.89472); 
hw 0 = 41 a11~ev. 



The effect of the Coulomb and surface forces that determine 
the value of H is rather small (Fig.2a), so H/ •. «1. If the 
more strict condition 

(24) 

is fulfilled, then 
2 2 2 2 "'a.= 0(1-as/al)/(1+ •sl•t)""'w 

where 
II 

"'w=!:J[(Jl -Js)(J2-J3 )/(J1J2)]. 

is the frequency of wobbling oscillations of the rigid-body 
rotator with moments of inertia J 1 ::S-J2<Js. Hence, the distor
tions in the velocity distribution of nucleons (the Fermi-sur
face deformation~/ ) lead to the appearance of the oscilla
tion mode, that is typical for elaStic bodies. Inequality (24) 
becomes wrong, when 0-+ 0 because of 1-v- 0 2 • So, the diffe
rence between wcz, and w w can be arbitrary large for these n. 

7. CRITICAL ANGULAR MOMENTA 

The critical angular momenta, which lead to the instability 
of nuclei, are the object of great interest in the nuclear' 
fission theory. The limiting values Ocr are determined in our 
model by Eq. (20). The analogous condition follows for the li
quid drop if one puts If.·= 0 in this equation. For a nucleus 
we have IL>>D, so the region of stability with respect to the 
quadrupole oscillations is much larger as compared with the 
liquid drop. One can see in Fig.5 the angular momenta corres
ponding to these Ocr calculated for nuclei from the $-stabi
lity line (curve I) and for the liquid drop (curve II). The 
results of Cohen, Plasil and Swiatecki 111 for the axial confi
gurations (without restriction to spheroids) of the liquid 
drop are shown too (dotted curve). This curve is rather close 
to the curve I for A< 25. And our curve moves rapidly away 
from the dotted curve to the region of big angular momenta for 
A> 25. But one must have in mind, that this region of I is 
the region of very large eccentricities e. It has been pro
ved/10/, that the spheroids are not expected to be adequate 
approximations to the exact figures of equilibrium, when 
e~0.8745- The dashed curve in Fig.5 corresponds to the angular 

momenta, at which e = 0.8745. It seems, we must conclude, that 
the instability of nuclei with respect to the fission is not 
connected with the instability with respect to the quadrupole 
oscillations. 
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Fig.S. Critical angular momen
ta, where the instability with 
respect to the y -oscillations 
appears in the nuclei from the 
~stability line (curve I) and 
in the liquid drop with the 
same A, Z (curve II) o The dashed 
curve - angular momenta, when 
e~ Oo8745o The dotted curve -
the results o£111 for the axial 
liquid drops o 

The results we have obtained are useful in two aspects. 
First of all the model enables us to predict the character 
of the collective modes in rotating nuclei, and second, it 
can be used as a basis for new approaches in describing the 
dynamics of the nuclear systems with high excitation energy 
and high angular momentum. 

The model of nucleus we use is rather simple and describes 
perfectly the well-known experimental GQR data. Its results 
on the deformation of rotating nuclei are in agreement with 
the results of the liquid-drop model. They are reliable for 
heated nuclei and allow the specification with respect to 
the shell effects 131• 

This model predicts the splitting of GQR modes in rotating 
nUclei, when spins are moderate, and sharp changes in the 
spectrum of these states, when [)_,ncr . The similar conclu
sions about GQR in rotating nuclei have been done earlier on 
the basis of the schematic microscopic model 14 •51. Characteris
tic values of n, which give rise to sharp changes in the GQR 
spectrum, are close in both the models, but the functional 
0 -dependence of energy in separate branches of GQR is diffe
rent. 

The model predi'cts the appearance of two soft modes in the 
spectrum of quadrupole oscillations of rotating nuclei. One 
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of them is similar to the wobbling mode of the rigid-body ro
tator. The second mode is close in energy to the first one; 
and its symmetry type is the same as for ,8-:and y-modes. Note, 
that in the model of refs / 4·51 only the first soft mode is 
presented. 

It is necessary to mark great potential possibilities of 
the virial method we have used to solve the equations of the 
model. The use of it requires rather simple computating means. 

However, the spheroids are not very good approximations for 
the shape of rotating nuclei and are not adequate for study
ing many actual problems of nuclear physics. It shows the ad
visability of working out the virial method with more realis
tic assumptions on the shape of rotating nuclei. 

APPENDIX 

The expressions for tensors of the Coulomb and surface 
energy and their Lagrangian variations in terms of semiaxes 
of the ellipsoid can be found in refs. 19•101: 

Qii ~ rr 2q 2R8 afAi 8/15; "ii =rrR
6
T(dj+dk), (i,l j ,I k) 

3 2 
1\.Q .. -[ 2 B .. V .. +o .. 1 V,, (B., -A,) l•rr q R3 /p 

lJ lj lJ lJ P= 1 [{_ H t 

For oblate spheroids (a 1,a2> a 3 ) one has: 

2 . 2 2 2 
4a,a11 = 4d,- a3al3. 3a3d33= 4 ([3 -2a, ([13' 
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-3 2 -% 
A 3 ~2(a1e) .[e(l-e) -arcsine]. 

, If 2 4 3 -1 u 1 ~'>l=[(l+e )arthe-e]·(2a 1e) , 

, . 2 -1 -1 l 4 2 1 u 3 .[(1-e) -e arthe •(a 1e )-: 2 1 2; 2 e = - a3 a 1 • 
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