


1. Introduction

An unstable state 1s characterlzed by a distribution over ener-
glese Its measurement is difficult, however it has been realized

in Lambes . experiments. The crowave radi >n of the frequency
K 1nduces transitions of the H-at: : from a metastable 2s-state

to a short-lived 2 ZF% state, : num ' of survived metastable

atoms 1s measured as a function the difference K- 4 , where 2

is the difference of the 2S5 and 2F 1level energies, The function
is called the line shape.

Lanmb /1/ has pointed out that the observed line shape agrees
with a ocaloulation (performed in the Weisskopf-Wigner approximatio
in whioh the microwave field is desoribed by the external scalar
potential equal to ﬂEL}' « Here E is the miocrowave electrio
field, g 1is the eleotron coordinate. But the similar caloula—
tion, in .ch the same field is described by the corresponding
nonzero vector potential ﬁ and zerc scalar potential (see below
sect, 3.7 for detalls) gives another line shape which is in disagree-
ment with experiments. Lamb writes /1/: "0f ccurse, the diffe
between the perturbations E é and -/5};/m, Just corresponds
to a gauge transformation under which the theory is known to be
variant, so both perturbations must lead {0 the same physical predlc-
tiona, Nevertheleas, a closer examination shows that the usual in-
terpretation of probability amplitudes is valid only in the former
gauge oo™

The problem was discussed in a number of papers. Reasons were
given in refs./2’3'4/1n favour of using just the E7 interaction,
the other hand, it was shown in refs. 5’6'4/that it is possible to
obtain the same result using either of the interactions. I stress
that the latter was demonstrated for the processes which are desori-
bed by S-wmatrix, e.g.,for reaotions of scattering. I grgue in
Sectliomn 2 that the line shape measurement (and the very Lamb shift)



must not be of the kind. A refined experiment is proposed , in which
the line shape should be measured. The experiment cannot be descri-
bed by the S-matrix. Standard caloulations give for it different
line ghapes in different gauges (see Sections 2 and 4 below). S0,
- the problem 1s revived. Analogous problems hold for other observab-
lesy see part IV in ref. .

Kuo Ho Yang /3/ has suggested a nonstandard approaoh to the
line shape oaloulatlen. He describes atom states by means of eigen—
functions of a gauge-invariant operator, which do not colncide in
general wlth the free part of the total Hamiltonian defined in the
usual manner., The approach gives for any gauge the same result as
the E[j -interaction (see below Section 3,6). This can be consi-
dered as a solutlon of Lamb*s problem. However, Kuo Ho Yang considers
the eleotron whioh interacts only with the external fileld.

I discuss in Section 3 the general case, when there 1s also the

quantized eleotromagnetic field. I consider the form of quantum
eleotrodynamios suggested in refs. /2'8’9'10./11;5 Hamiltonien has the
free part H, (defined in the usual manner) which is invariant
under any gauge transformations. The eigenfunctions of H, , which
describe initial and final statesy, and interaction Hamiltonian
Hy=H-H, also are gauge-invariant. Using such H, and H;
one gets gauge-invariant results for observables, which cannot be
described by the S—~matrix. In the Coulomb gaugs the re"sults may be
obtained only in an intricate nonstandard way. At the same time the
standard calculations give the same S-matrix in any gauge, We show

how an lnteraotion of the Eé type arises in the discussed form
. of the theory.

. A new theoretical definition of the excitatlon probabllity
of unstable states 1s given in Sec.4. It takes properly into
account the so—called virtual processes, The proposed formula (30)
1s calculated exaotly in a solvable model, As in the Welsskopf-
Wigner approximation /1'2/, one gets different line shapes 1if one

. uses the same standard description of the exoited atom in different
gaugese

The gauge~invariant calculations of the line shape disoussed
in Sectlons 3 and 4 predict that in the experiment proposed in

Secs:2 one will measure the same line shape, as in the exlsting
Lamb-shift experiments, see,e.g.4refa. /11,12/ .
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2. Gauge Invariance of the S-Matrix end Line Shape

1.’ 2.,Fried performed the following calculation of the llne
shape. The microwave photon is ineident on the atom in the 2s-state,
The probability amplitude T of the trapsition in the final state
" [S + Lyman photon j  is calculated as a function of the inci-
dent photon frequency K o It is the "resonance channel" -
K+31S 22P~ 154*}" which brings the main contribution to T.
However, other intermediate channels are posaible, e.g.,k+.25-r3P-v/S+/
which are characterized by the large energy nonconservatior} in the-
virtual transitions K+2S—+3P ~and 3P~ /S+) .Denoting the
contribution of all. these "packground” channels by B,vie;represent T
as R+B in the case of ﬁ-ﬁ/m interaction. With the E-¢ interac~
tion one has correspondingly T'= R'+ B’ - . Fried showed (in the ,
£irst nonvanishing approximation) that although R#R', bufj T=7"

A similar result 1s deolared in ref./°{It turns out that B is sma;!.l
and praotloally  R+B = R’. : : o

The equality T =T’ 1is a manifestation of the known property
of the (renormalized) S-matrix: S is gauge-invariant, There are.
other examples of the equalityof the results obtained with Ap/m
and E0 interactions 793657/, Let us stress that all of them deal

-matrix processed. o
- z.m;:wevei, 1t 1s Just the resonance term which has the direct
relevance to the Lamb shift: Just the 2p-state shift 1s of interest.
If the "background® 1s essentlal, 1_:he expeﬂmer}t must be changed as
to pick out Jjust the resonance channel, For instance, one should
measure the number of Lyman quanta-(as a funotion of 'K : ) which are
radiated after the beam of H-atoms abandons the miorowave field
reglon. Then the contribution of the nonresonance ohannels wﬂl
dimiiiish beoause 1s does not increase with :time unlike the resonan-
ce channel coiltribution (ﬁote that energy nonconservation in the
transition K+ 25— 3P 1s much grea,tezjgthap the 2P level width,
whioh oorresponds to the lifetime 1.6 1077 seo)s .

The experiment cannot bé desorlbed by the S-matrix because
it provides information on-the intermediete stage 1o:_‘.’ the process

K+2S-»15+) end not only on its initlal and final steges..

(In other words, only delayed )’-photons are measured in this
exPe’-’;::n%‘;;/m and E-i interaotlons pfidi?t different outoomes
for the proposed experiment ( R eand R =7’ , respectivel¥)es

3. Let us note that 1t suffices to calculate, instead »of R or R',
the probabllity of the trensition K+ J §-+1Pvecause the experiment cen
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be made so that the probablllty of a subsequent deca.yZP-» 13*1’will
be practically equal to 1. Just the probability of K+ L3>2Pwas cal-
culated by Lemb and in ref.’'1/(see Sec. 4.2 therein) and will be cal-
culated in Sec, 4.

3. New Gauge and E. ¢ Interaction

' A new form.of quantum eleotrodynamlcs has been proposed in refs.
/21849,10/ wnich is applicable for localized charges.It has been shown
in ref. /10/ that it can be consldered as ona more electrodynamical
gauge (along with the Coulomb oney e.g.) with the gauge condition
(9), see below. Here it will be generalized to the case when there is
a time-dependent externsl electromagnetic fleld. Just suoh a fleld is
usually used to describe the microwave radiation in the Lamb shift
experiment. It wlll be sufflolent for our purposes to consider only
the single spinless electron, which interacts with the quantized
eleotromagnetioc field besides the external one (the level shifts and
widths are caused by the former interaotion),: The generalization to
the second-quantized Dirac eleotrons can be made in analogy with ref.
/10/ and brings no problems.

1, We start with the Coulomb gauge for the quantlzed potentials
and with an arbitrary gauge for the external ones A;f " .« The
Hamiltonian is ’

HE) =[p-e A (G)-e A (5,0]%,, + W) +e At*(3,¢)+ o)
+4Jd'x [ERG) + H*(R)].

Let us perform the canonical transformation (9I=S*@S of the
theory operators (7 :

S =expieie)[ [P aE-B(E) + [IaF Fer@)])}. ©

The integrals in (2) are along the stralght line, connecting
with the origin which is ohosen in the centre of the bilnding poten—
tial W « We have

e Sf ? ) Z_{:/a; , ’-'l.,--'ﬁ»l

B . B o &)

p'= STHS=p+etA) +e NG, 0),

Mo e [1ERG | A"y 0am [T A%
)

Eym (%)= Em tx)+ef7z dg, Si (§-%) , m=xyz, O

N :
8:"‘ (y—X)E Sim,, SJ’{y X) ‘47' a?yn ggx 5_/; . '- (6)

From eq. (@) we obtain

P_QA _e/;e _75_9(,4 +VA) e(Ae*, V/\“)~ o Y(-‘.;)
=P—ea—ea“. )».

"Here a aﬁd a“ oan be considered as new potentials., It
was gshown in ref, /8,10/ that

a(") AJ(X)+V/\(*}——f’o<dd x:H(elx) ‘ te)
ac (xt)‘ﬂ“+v/\”— fl.,(do( Xx H“(olx z‘j

EBgs. (3) and (8) show that the operaters /9 and a are
connected with p and /l by a gauge transfomation. The . potenm
tials A, have satisfied the gauge oondition divA, =
no conditions have been. imposed on /l ex . We ‘can and do impose the
following oonditions on ( and a ex

[eE-a@) -0 [[4§-A(z,4=0 Y'x . ®

It ie easy to verify that middle parts of eqs. (8) satisfy these
conditions.

2. A1l operators in eqs. (1)-(8) are Sohroedinger ones. But
new operators ﬁ’ " depend upon the time ¢ explicitly if Acx
do depend upon t,See(3).No such operators appeared in refs. /2,8,9,10/
The correSponding Heisenberg opera.tors

p,, (t)= u (t,o) p Zl(t,‘v) (UL o)/gt = H(t) UL, o
therefore satlsfy the equation

5;Pu(‘)- 5 ’(t,o)[p+ev/\(y,)+el7/|“(q,f)]u(ta)}-.
i [Put, Hy®] + U2 eVANG DU . . ‘(lo)



It oan be rewritten in the canonical form

2 pitl=-i[pit), Hy@] H'=H<e 2019, 13y

~ As we see, the additional dependence of . i?',:lt} upon time can
be fully taken into aocount 1f we substituts H for H ana
then consider pj (#) to be the usual Helsenberg operator ( 1.e,,the
one oorresponding to the Sohroedinger operator which does not depend
explicitly upon time). It was shown in Sec. 3 of refs 13/ pow the
Teplacement H > H' can be obtained within the Schroedinger
Ploture,

Je Using eqse (3)=(7) one can write X' 1in terms of the new
(primed) operators :

H'= H-e IN/34 =[ﬁ'-€ﬁ(7‘/"€zz”[:“/]1/2m + W@")"
re AT (G - e AN G~ [TaE Er gy
13 Jax]ER,

(12)
U188 [Tas (T as. st e

The last (divexjgent) term in the eq. was considered in Sece 4424
of ref,.

4, The theory described 'b& the Hamiltonian (1) 1is invariant
under an independent gauge transformation of the quantized and
external potentials

7]._1 —>ﬁ_).“6f(;)r

a3)

A"f——vﬂu—a (,“‘It),
] _/v ] M I"? . (14)
P—.IJ7+ev)r+e\77 ,H> H-¢ 2n/ace ., . @as)

Usually one writes, instead of (15), the oorresponding transfor-
mation of the wave funotion: @ -> P exp ie(x+p). . When
electrons are seoond—quantized, one transforms only operators, and
it 1a oonveniexit to do 50 in the considered case. i

While 7(!, ¢t) oan be an arbltrary smooth function, the
. funotion x(x) must be harmoniec V. \7}(:0 because div A, =0
© If the potentials 4, and }Lfﬁj are required to vanish ‘

et infinity (their matrix elements are implied, of oourse), then

b

Fyx—0 as X -»o°
holds everywhere.

However, usually we conslder physical systems which are locali-~
zed in a finite volume V ( e.g.,inside a laboratory). If (13)
holds only for the polnts X whichbelong to a part v of the
whole spacey then A}’:() not everywhere and V/ can vanish at
infinity not being zero everywhere. For example, the infinite sole-
noid with a current Induces outside 1tself a nonzero gradient-like
potential‘ Ay « Another example 1s the "quaslgradient transforma-
tion" (26) in 719/ o :

Let us show that even such a gauge freedom 1s absent when one
considers the new electron momentum B’ and the potentials &,
satisfylng the conditilon (9). Indeed, let us try to write

~ - - (16)
a-=Qax)+ Vf’[i) xel/ -

~
o~ —

4s (9) must be true both for ({ and {{ , one must have

0= L1 4§ -VL'le) = x't5) - x'10)
if V covers completely the reglon Y, , where the electron is.
localized. We see that X'(7) is a constant and ﬁf’zo_

The gauge transformation (16) with ¥X3# )  oan be shown to
exist only 1f V  does not oover Ve « But suoh a transformatlion
18 accompanied inevitably by a change of o'bservableg.‘For instance,let
(16) be induoed by a solenoid, the magnetlo field H  of_which 1s
equal to zero outside V ( 1t follows from eqe (8) that (Lmust be
a gradlent in the reglon where }7=0 )e In the oonsidered case
the reglon, where H 0, must interseot with V (otherwiae
(16) would be true for V, and then Tx'=p ). Such a field
leadsy of course, to the observable level splitting. :

We oall the quasigauge a transformation which looks like the
usual gauge one but only in some (s:unple-oon.neoted) part V

. Then Vyx=g forall X if 4xX=(

" of the whole spaoe. The reglon |/ must cover the physioal system

under oconslderatlioen. Then the quasigauge transformation will not be
accompanied by ohanges of observables whioh are measured inside |/
and will be indistinguishable insideVfrom the usual gauge transforma~
tion, .

The gauge invariance of the momentum follows also from the
faot that TeheSe 0f eqe (3) 18 invariant under (13)~(15), Note that

AGI+A(G1) > NG)+ A (G ¢) - X(5) + Flo) = p(5 ¢ + 9o €) -



0f course, one ought to speak more exactly that
gauge freedom within the new gauge.

The operator H¢=p'%/im + W(g') , 1ts elgenfunctions (which
describe atom states) and interactlon Hamiltonian also are invariant
under any (usual and quasi) gauge transformations.

5. Now of course one can rewrite H¢ in terms of the Coulomb-
~gauge operators and try to use 1t for the atom state description
in the Coulomb gauge. But H, does not commute with fd’x[-E.f+I7‘,1.
as well as with the photon number operator. The consequence is that
one cannot descrlbe even the slmplest state ®atom in the ground sta—
te, no photons®, So, one will be forced to alter also the photon
description, If we prooeed in a correct manner, we shall obtain the
same results which new gauge glves in the standard consistent man—
ner. ’

Other gauge invariant descriptions of the a_toin states were
proposed in /314 for the electron which interacts only with the
external field A“ « In particular, Kuo Ho Yang used
(p-e Aex)fy,, instead of He=[p-eT/d§ A% )y + W
This approach ca.nnot be generallzed, however, to the case of the
eleotron whichinteracts with the guantized field (the reasons are
similar to those presented at the beginning of thils subsectlon).

6. Consider the Ha.miltonlan (1) 1in the dipole (1ong-wa.ve)
approximation, substituting '41 (o) and H“(o £) for ,4‘L [{}
and A‘”‘[‘q', ) » The equivalent replacement for A, ?"(7’ ¢)

18 (see sect. ITIA in ref. /27 ) .

A (1) =

The o-number ﬂ (0 t) can be discarded in the Hamiltoniane.
We get

,5" has no

15003 qu (902Gt /orm);,

Ho=[p-e All-eA™(06)]*ym + Wﬁ) '

veq VA (0t) + %fd%(€f+ﬁﬁ-

Letting §=0 1in eq. (7) and using (J(0)= a?’/,, t)=0,
_see eq. (8), one obtains ' '

:/_5-2 IZ):L(D)—E ;4’.“(0,75) =Pl

e e

The term —-g 3N /54
manner as A" (¢,¢)

in (12) can be treated in the same
» Using (4) and then (B) at x =0 one has

A%t =5 gn [3A Gt axn )z, =~ G A% (02) -

So, the Hamiltonian (12) in the dipole approximation turns into

Hi =P %am + WI(§) + e 37 AS0Y + 052 A5y -

-effdg Eze)+zldx(5"+u")+ 5 {fag. [ 51 (6510

A similar operator can be obtalned from Hy
cal transformation which is simpler than (2)

S=exp fél'e) [ (?,'/L(") + é,-ﬁ"(ﬂ,‘t/] .

Denoting qu, s, s'pS,...
as before we get

an < Py * Wig') - e§'E () - e§EL(0) +
FIOAER (B + S E agn 870 00)
B = 3A%/5 ~5A

by means of a canoni-—

by primed operators 7’, ID'

19)

7. Let us comment the oitation from 11/ "quotgd in the Intro-
duotion. The miorowave radiation will be approximated by a plane
wave having the eleotric f:l.eld

e ' 20.
E":E";() ) Ee (x, y’zt/ E us[K(x f)+f$] ~( )
The field can be described by two seta of potentials
AP=0=AF A“{ x42t)= Ep K“an[K(*-thﬁl A=0 , (&)
Z‘c‘: ﬁ;’:a R A (X 52, f} E K I{SIH[K(X t)fp]_‘. I(nlkt_ﬁj}

(22)
A (;y,zt)~_.E zcaS(Kt-F) S ’

The sets are c.onnected by the gauge: tra,nsformation

A,« /"7 ' 7 E, K" 23‘”(Kt‘ﬁ)



The electron intere.ction with the external field is represented
in the Hamiltonian Hs by the term -ep, A (yt)/m
in the case (21) and by ¢ A =-~e g% ES"(ot) in the case
(22) ( note that ﬁf’(o,t) =0 ). The interaction term is equal
to - et},’-l::"(o,z‘) . in Hy and does not depend upon
choosing (21) or (22), It coincldes with the interactlon term of Hy
when (22) 13 used. So, standard calculations using Hy will glve
the correct (gauge invariant) answer only i1f just the potentials
(22) are used in H; ( cof. Seot. IIIC in ref. 7%/ ),

4, Probabllity of Electromasgnetic Excitation of the Atom.

1. Suppose that at t=0 the atom is in the ground state and
there 1s one photon with the energy K ( the state ¢K ). Then
A ={ @ |U&O) | f)  1s the probability amplitude to  find
at the moment ¢ the state ¢,, ¢ atom 1s an exclted state n,
no photons. The atom excitation probability is defined usually as
| Anx 1*. But [Anxl® 1s only a part of the total probability
to £find an atom in the state n :

P =5 1 (e 1UBO)] GO

Here.summatlon runs over all states of the kind %atom is in N,
there are arbltrary number V  of photons with arbltrary momenta
and polarizations £ o Just the Pnx oorresponds to the experi-
ment in which one deteots only the atom excitation and does not
measure any accompanying photons. 0f ooursey in the majority of the
transitions . -» ¢, 1in (23) the energy 1s notconserved, if
fenergy" means an eigenvalue of the free part of the total Hamilto-
niane. The probabllities of such ®"virtual transitions® are known
to. be nonzero for finite ¢ .« In partidfﬂ.ar, an atom can go to the
state n - and, moreover, emlt a photon with any momentum K.
Note that the described prooess prooeeds independently of the
presence of the initial photon, The r.hes, of (23) 1s not equal to
zero even 1f the initial state 1s mot (f,  but @, @ atom 1s 1n
the ground state, no photons. Therefore, the measured total probabl-
11ty of the.atom exoltation must oorrespond only to the part of

P.xc s whioh 1s due to the presence of the photon K in the
initial state ('1t 1s the physi‘oa.l oause of the atom excltation).
That part will be defined as - :

(23)

W) =3, [ { B0, l?j{;,o)]g&)l‘ S5 Ky UGG 2o
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We subtraot from Pﬂk~ the "theoretioal baokground", 1i,e,,the
probabllity of the "causeless transitions®, It should be stressed
that ¢, in (24) must be normalized to unity, as the state ¢§, 1s.

Similar definitions for other cases were proposed, @.ge.s 1n refs.
/14=17/ . . .

Note that the Welsskopf-Wigner approximation dees not take into
account the virtual transitions in any way. They can be absent 1f
atom gnd photon states are desoribed in a speolal way, see,;e.Z¢s
ref. /% , In such a case (24) will be equal to |{ @, lu{t,olﬁ)l»‘.

2, I shall repregent (23) as an expeotation value of the
Helsenberg operator A,(tf = U* /¢ 0) N, U2 ‘ _
of the number of electrons in the state n  ( taken in the state

¢,‘ ). The operator can be found by solvihg the equations for
Helsenberg operators (without using M{# 0) whioh may not exist /184,

The second-quantized description of the nonrelativistic
electron 1s needed, The Hamiltonian (1) ocorresponds to the
one-electron seotor of the Hamiltonian [ d*x H(x)

HE) =go @ §[-1V-e A -e A¥T%,, + W) +e A5 (R} @1R) 4
+ 1 [El+ B ()]
(see, e.g.,/lgf ). The operator ('U(x)

functions (,0,, of He =p*/am+ W(x)

pix)=§ P (2) o(,, ’ (25)

18 expanded over elgen-

,S,, denotes summation and integration over He spectrum, Using
eleotron and photon creation operators o} and Qf(«, ¢)

the states g, ¢n and’ ¢‘, oan be written as

¢n‘= oAn §2, ) ¢a = °(: Q (26)

¢ = of at(xe)f, |
where §2, 18 the no-partiole state and o = oreates the
electron in the ground state. '

Consider the,operé.tor_ /V,, = ol,:} 0(.; of tke number of electrons
in the state n « Bxpend ‘&,  1in the operators (1, which
project on the states with A  eleotrons on the level 2 « The
states may have electrons on other levels along with an arbltrary
number of photons'

W ohn = 0Ty v 4 My + 2.0, « ... (2
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n Z. jd‘(t fdk Z l¢iw>:<¢nu' :" ‘ o (28)_

¢nv = oly f(“:,f:) ar(kv, &) 5,

Only the one-electron part of: fly  1is written, 0f course, 1if
our nonrelativistic electrons obey Ferml .statistlcs, there: cannot
be two eleotrons in the same.state and [I,=0 . Because of (27)
and -(28) we have. PR o - » R

(Ubo) g Y oty | UG By o <29>
..—Z <1L(t0)¢xl¢nv>(¢nvlu{t‘o}¢ > an""

Z((f 0)¢ 1s a: one-eleotron state, only /I oontributes

to (29) sy Doreover, only the part of. . [l - :contributes to (29),-" ©g

which is written in (27),: v v e
Introducing the Heisemberg operators seldnlt) = u_f(l;go}o(,,:lf_((‘t, 9)
one can rewrite (24) as’ ‘ C '

Woe ) = { B | 10 €] 6) ~ L gl cta®[4) . (0

Here oln', oln oan be considered :as.oreation-destruction operators
of a seoond-quantized Dirac electron. '

) - 3e The atom stateg are descrlibed by eigenfunétions 5/7,, (x)
and @, (X)  of He= P'lam + W (%) and He = P fym + W (5)
in the Coulomb and new ‘zaugey respeotively, If one usesy, in the-
framework of gaoh, gauge,'thé same .canonloal representation -¢ v
for P  and 'p' 5 then . ¥, (¥) ang ¥ (3') “are the same
funotions of X « In the same manner the same ca.nonical
Fock representation oan be used for the photon operators .a:(k, L')

and Q'(k,£) inside eaoh gauge. So, one can use the same analytli-

cal desoription of ¢,( ..and ¢0 in both gauges. . But interaotionv

terms in (l) or (17) differ from those 1n (12) or (18).
Therefore, the probability W,.,,( , calculated 1n the  hew gayge may
dii’fer from W,.K celculated in the Coulomb one. We shall _—
oalculate Whe and an in the following solvable model..

B ¢ 4 one assumes W{gl =) maetg /g in (17), then one gets
a solva‘ble theory. It 1s possible to show that its Ha_miltonia_n is
_mot bounded from below ( see Appendix A  1in 167y,
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For this and other reasons ( see Sec. 1 in ‘/16/ ) one should
spread beforehand the local interaction of the electron with photons
in (1). This i1s realized by replacing

Alg) - Al =fd% 6¢(15-31) Aty | [EN)

C(3)=@n)>fak e AL X<<pect¥mi . (32)
k242 ! :
o -
After the replacement we substitute Alo) ana /q (o, ¢
for A(q) and A%(gt) 1in (1). Expanding further A
in multipoles we get that the electron interaots only with dipole
photons, Retalning in thé Hamiltonian only thelr creation-destruction
operators we get the Hamiltonian h,{ e It turns our to be a sum
het h’ +h;  of three mutually commuting operators /;,’ hy, he
whereyeegey hz contains eleotron operators Pe 1 7: and
dipole photon operators Qg(k), Qs (k) of the’ #  z_ aspecl-
es" ( the subscript 2z of @,(x) stems from the Z ~projection
of the photon total angular momentum), If the initial veotor ¢‘
is ae (k) 8, s then the subsequent evolution 1s determined only
by h, o It is written explioitly (without A ) 4n /160207
The model 1s exaotly solvable beca.use ﬁz 1'3 a. quadratic form of
Pe, Gz, Gs(%), at (x).
The elgenstates of the operator pPi/am + mxly,‘/;_

oan be represented as (o{z ) R, , h=0y1y2y44s using the operator
t _ . ‘
D(z = [[’z/y‘mu +( qé me]/.fz . (33)

The corresponding Hamiltonlan h; of the new gauge is obtal-
ned using the simplifiedkoa.nonical transformation ( see  Sec. 3e6).
If the replaocement (3) 1s’ :Lntroduoed, the transformation operator
must be of the form

S=exp{cie)[ g A (0) +g-A% (o t)]} (34)

4. Let the exciting electromagnetic field be described by an
initial photon (as 1s the case in the preoeding subsectlons 4,1 -
4,2 ) and not by an external potentiale. Let then Au* =0 in

~ this subseotlon, It 1s possible to calculate exaotly the probabllity
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.W,((t}=<¢x ENCGERGE] ¢K> NEAEHOEAUII B S N (&D))

For c(; see (33); ¢,< describes one dipole photon having the
mean frequenoy K with dispersion AK<< K

&, =f""dg'fk (x') at)f, {Tax | fx (K)l2
I present only the result of calculations with the Hamiltonlian 6,_
(for similar calculations see /1% ). Note first that the daifferen— -
ce (35) (unlike its first or second term) tends to zero as f-—»>°°.

This is natural because excited states are unstable., Further, W, @)
has the resonance term which is large for K =) . Retalning only
this term and making some other neglects, we have for 1/x<f< l/A,<
and X- 2r<K<k+2r

W, = C eZIaHz

- .u')l e L4 +’€_2rt—26~/tco:>(x—x')t]. (36)
1/9mx 18 the squa.z"e‘of the dipole moment ‘
d= (d, 2, |qi | 2,9 3 X' ' differs only slightly from X
if the cut—off parameter M 18 chosen as in (32); / ezxz/_?m
C does not depend upon K , ¥ Zx’, t. ‘
Analogous probability wyi was ca.lcula.ted in the new
gauge (all operators in (35) are replaced by the primed ones). It

Here | d|* =

turns out to be exaotly equal to K/ - Wk () » 50 that
for 1/y < t< /ax and  H-2f <K< X+ one bas
W &= Cezld)2, - -2yt rt » .
[ 4 Ce }d’ ( J(’)l [1-4- M(k )(}t']. (37)

I stress that here X' and / " are the same quantities
" as in (36): the line shift and its width are the same in either
gauges. A : o

Note that the average number of the photon of the frequency K
which are emitted by the exoited osclllator -

(o ] a (#) @, (xe) A 02.) ~(Q., | @i (<) a. ()] )

1s represented approximately by the T.hese of (36) at T/ <t<ee.
The expression colncides with eg.’ (124) from Ch.8 of ref,

( ege (124) 13 also approximate). At large ¢ the T.h.s. ot (36)
and of (37) coinoide also with egs. (50) and (53) of ref. /2/,
respeotively. '
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The importance of the discrepancy between (36) and (37) for the
Lamb shift determination has been discussed in ref, 2

Note that both gauges of the model have the same S—matrix
(1.es, photon—electron soattering), For its calculation see Appen~
dix B in ref, /16/ and also ref, 22

5« The external-field approximation seems to provide a better
description of the microwave radlation of the Lamb—shift experiments
than the one~photon deseription. The microwave fleld is strong and
has a complicated structure. .

Consider the simple external field (20). The reason for writing
the phase 3 1s the following. The metastable atoms enter into
the microwave field region at unknown accldental moments of time.
They are initial moments (t=0) of the field actlon on atoms and
E%*(0,¢t) must not be maximum at t=0, The final result must be
averaged over all JE y 0=f<2n sy cf. /1/ Sec, 4.2, The
averagling corresponds also to the completely uncertain phase of the
one=photon wave.

The difference

{Uto)n|d} o [ Uk )Y = (U, t0) | ol | U, 6:0)52) 9

was calculated 1n the model described in subsection 4,3.

Here U(t,0) satisfies the eq. (dU[pt=h: @ U ‘ where h. ()
contains the external potential (21). U, L, o) is the evolution
operator in the case the external field (the cause of at;om exclta~
tion) 1s absent: 'll.,(t,o)=ex/b/-¢'fh,"), I , ]
where A} does not contain A * ( as in subsection 4.4), For

9] one can taeke, e.g8., the "bare®" or "physical® vaouum. Let w. e -
denote the difference (38) averaged over B + The result of 1ts
calculation (for similar calculation see 723/ )v can be approxima~
tely represented at t< 1/” by the r.h.8. of (36) if the amplitude
E, 1in (20) is chosen so that the energy of the dipole part of the
external field 1s equal to the energy K of the one-dipole~photon
state @ 1in (35).
The analogous quantity W, fex(e)

to be exactly equal to K*/z2- W **(@).

of the new gauge turns out

I am grateful to R.N.Faustov, E.L.Feinberg, and V.I.Ritus
for useful disocussions.
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