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TouHo pellaeMass Mopelb g Heynop adO04YeHHBIX CHCTeM

PaccMoTpeHa mopenb AHAepcoHa Ais HeyNOPSAOYEHHBIX CHCTEM B TOM
cly4ae, KOrga MarpH4Hbie 3/1€MEHTH MepPeKpPHITHA pacnpefensHsl N0 3aKOHY
Jlopenna. Ilonyyeno To4YHoe BhipaxXeHHe ANd yocpeOHEHHOH T'DHHOBCKOHK GYHKUHH
B MpelNONOXEeHHH, YTO YPOReHh SHEPTHH Ha KaXAOM y3/e 3aBHUCHT nuHeHHO
OT MHTerpanos mnepekphiTis. C Momollb 3TOro pelynbTaTa obcyxpaeTcq
CTaGHNBHOCTL aMOpGHEIX rels3eH6eproBCKHX ¢eppomarueTuxkon, Hayuaercsa
Modens Yajipa B cnydae (NYKTYMPYIOWHMX MATPHYHBIX 37E€MEHTOBR. BoiyucnseTcs
NAOTHOCThE COCTOSIHHH 3SHEpPTHH.
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Solvable Model for Random Systems Including
Off~Diagonal Disorder

Anderson’s model for disordered systems is considered
in the case in which the transfer matrix elements fluc-
tuate according to a Lorentzian distribution. It is shown
that the exact ensemble averaged Green function may be
obtained if the energy level on each site depends linearly
on the overlap integrals. Using this result the stability
of amorphous Heisenberg ferromagnets is studied. The
Weaire model of an amorphous covalent semiconductor with
fluctuating matrix elements is considered. Numerical re-
sults for the density of states are given.
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Introduction

Lloyd 1 has shown, that the ensemble-averaged Green

function for Anderson's disordered Hamiltonian

2

lated exactly, if the potential at every site is a random

variable with a Lorentzian distribution. Recently there have

been obtained similar results for a system of muffin-tin poten-

tials in which the strengths of the potentials are random

variables 3,4 . Also for the case of overlapping potentials with
a definite sign the average Green function may be calculated

if a Lorentzian distribution 1is used.

In the Lloyd model 1 only diagonal disorder is considered.
However in a 1liquid or an amorphous solild off-diagonal disorder
is essential. Also a more physical description of disordered
alloys must include off-diagonal disorder in order to fulfil

the Friedel sum rule 6,7

the generalization of the model used by Lloyd to off-diagonal

disorder and the multi-band case within a tight-binding descrip-

tion. Of course, in the models

methods are not used - the fluctuation of overlap matrix elements

are included automatically. However, recently the problem of

394,45

—~1in which tight-binding

. The main ooncern of this paper is

extending the CPA to treat off-diagonal disorder has been

discussed by several authors using simple tight-binding modelsg_

We obtained an expression for the

and for the density of states which can be compared with the

average

Green functlon.

CPA. Aside from this our tight-binding model can be applied
17-20

to disordered magnetic systems

can be oalcu-

5

16



The outline of the paper is as follows. Ip Section 2 a
simple one-band model 1s consldered with a Lorentziandistribu-~
tion for the transfer matrix elements. It 1s shewn that the
model 1s solvable, 1f the potential at erery site depends
linearly on the overlap integrals., The results are discussed
in Section 3., Unlike the Lloyd model 1 the off-dlagonal disor-
der involves a state-dependent self energy and therefore a non-
symmetric density of states, It 1s shown, that the model
describes an amorphous Helsenberg magnet in the approximatilon
of a lattice model. In Section 4 the Wealre model of an
amorphous covalent semiconductor is considered. Using a Lorent-
zian distribution for the tight-binding parameters the density
of states is calculated.

2+ One-band mod el

We consider a system in which an electron moves between
sites M , on which 1t has energy levels 8n‘ The Hamlltonlan
describing the electron in thls system has the form

H=2& m><nl +3 V. in><mli

. 2.1
= “n Sm m (2.1)
It is the simplest way, but not necessary, to assume that the
matrix elements \41rn for hopping between sites are nonzero

for nearest nelghbour sites only. We want to describe the
struotural disorder in a liquid or an amorphous solid within a
lattice model. Accordingly we assume that the site positions
form a regular lattice. The transfer matrix elements are taken
to be statistical independent variables with a Lorentzlan

distribution function

/1
PMVow) = (¥, V)T T2 (2.2)
In order to solve the model in an exact manner, the energy level
E,lon each site must be a function of the surrounding hopping
integrals &, = «f(\/“m) ; the function f(V“m)
is given below.

The Green function G satisfies the equation

(2.3)
(E-&)G, -2V G, =
nm wan TWonm nm
The ensemble averaged Green function
(2.4)

<G>=(G(E, e, T iP(vnm)clvnm}
nm

may be calculated by contour integration in the complex plane,
1f the Green function has no pole inside the chosen contour.
Indeed, Lloyd 1 has shown, that in the case of diagonal
disorder the averaged Green function may be obtained by this
trick. Now we extend Lloyd's idea to the case of non-dlagonal
disorder.

Let us oconsider the Green function QG as a function of the
complex variables 8,1 and \athm' The singularities of the
Greents function are given by the zeros of the determinant
det (E-H). As 1s shown in the Appendix det (E-H) is certalnly
different from zeroy if all eigenvalues ). of the imaglnary
part of (B-H) are positive ( negative). From the so-called
Gersohgorin criterion one gets for the elgenvalues A. the

condition



IIm(E-&0-A & Z{TmV, ) (2.9
m

for all n .
Let us first consider the case of the Lloyd model with only
dlagonal disorder. Consequently, we put Im Vnm= 0
in equation (2.5) and the eigenvalues A are given by
An =Im(E-£) Therefore, for Im E>0and a1 Im &, <0
all eigenvalues A are poslitlve and the Green function oAa.nnot
have a pole in the lower &,, half-plane. For Iw E <O
the same statement 1s valid for the upper 5_" half-plane.
Hence the average Green functlon may be evaluated by contour
integration.

Now we consider the case of off-dlagonal disorder. If £,
and Vnmfluctuate independently, the condition A> 0 (<0)
1s not fulfllled. To make sure that the Green function has no
poles in one half-plan of the complex varlables V;n
we assume that the diagonal elements &n depend linearly on

the transfer matrix elements V“m H

= ' - al=

En=a2(V, -V)+r e | lalzAa (2.6)
m

Here @G 1s anarbitrary parameter; £ and VY denote the

average site energy and the average hopping integral, respective-

ly. Putting (2.6) into (2.5) it follows that the sign of the

elgenvalues ) is determinated by the sign of the dlagonal

elements Im (B~ £,) if Al Z 1. Consequently, the Green

function cannot have a pole in the Vnm half-plane defined by

SV, )= SE,.)=-SE). (2.7)

Here the function S(E) is given by

S(E) = sgn (ImE). (2.8)
Hence we should close the ocontours of integration in (2.4) 1in
the Vnmha.'l.f—plane (2.7). The only pole inside the contour
of integration 1s V“m=\/—'i' S@EY . Thus we obtain

for the averaged Green function the exact result

(2.9)
{G>= G(E, E-11aiZMSE), V-iS@e)l),

where Z 1s the number of the nearest neighbours.Introducing an

effective Hamiltonlan

H = (e+6,)2 In><nl +(V+6)S m>dmi (2.10)
eff o /L Sl
with
G,=-rlalZNS(E), 6= -4 S@E) (2.11)
the average Green function may be expressed by
(2.12)

. -1
<G> = (E-_ Heﬁ) .

By the way, the case of only diagonal disorder is included 1n

these results in the 1imit [ — 0 and  al'= constant.

3, Discusslon

Ag an example let us consider a Bravais lattice with Z
equivalent nearest neighbours, Without disorder C&“- & R V“m=V)
the E versus K relation is then

Ek) =&+ Vi), (3.1)



with
fk) = Se " (3.2)

According to equation (2.12) the average Green function may be

written as

<GpE)> = (E-EM -ZE) .3

. e
where the exact self energy Ei(k) is given by

Z(I)r- 6; + 6;{(—1{). (3.4)

Thus for the density of states D(E) we obtain

4 IE(k)I
DE)= =
(E) i (E E(k)) N l}(k)l (3.5)

Equation (3.5) shows that due to the disorder each state is
smeared out by a Lorentzian distribution. Unlike the Lloyd model1
where the width of the distribution is the same for all states
the self energy :E(E) depends on .E and ,therefore,the width
of the Lorentzian distribution depends on -I « This effect
involves an asymmetry in the density of states (3.5) even 1f
the density of states in the ordered system is symmetrical.
Unfortunately, the applicability of our exact results is
restrioted by the condition (2.6), which relates the fluctua-
tions of the site energies 511 and the hopping matrix elements
V;vn° A relation like (2.6) is appropriate for a liquid or
an amorphous solid, where a change of the distance between the

nearest neighbours "M and "™ changes the transfer matrix

elements \alyvl and the potentials on the sites ™ and ™M .

In a first approximation the net change of the potential

due to the fluctuations of all the nearest neighbours may be obtal-
ned by an expressionlike (2.6). However, we must note that the
fluctuations of the emergy levels £~ are smaller than the
fluctuations of the overlap 1ntegra1521,. Thus for a ligquid

or amorphous solid we expect al <1,

Pottier and galecki22 have considered a model in which
the off-diagonal elements are random variables and the diagonal
elements are fixed. Using the CPA they derive an expression for
the density of states which shows the same behaviour as that

23 remarked

obtained in the Lloyd model. Recently, Herscovici
that ~"at least in a certain approximationu— the average Green
function may be obtained by contour integration also in the case
of independently fluctuating diagonal and off-diagonal elements.
However, from equation (3.3) follows that in this case the
imaginary part of the average Green function may change thp sign.
Therefore, this approximation gives a density of states which is
not positive definite.

An example, where our model describes the actual physical
situation, is the case of an amorphous spin -1/2 Heisenberg
ferromagnet. Within the Tjablikov—decoupling procedure the

equation of motion for the Green function is given by 24

ad Gnm= 6hm+z }‘ni(Gnm— me) ) (3.6

where 6 1is the magnetization and }h,nm are the exchange
integrals. Equation (3.6) is equivalent to (2.6) if we put

=- F and £ = 3 sy leeey = «l. With the help
\van nwm " :E



of our exact recult for the density of states D(E), we can
try to calculate the magnetization 6 . For this purpose we

must solve a self-consistent equation for 6 24

« We only find
the solution 6 = 0, since for Bose like excitations it is

not allowed that D(E) > 0 for E < 0. Consequently, the Lo-
rentzlan distribution glves no ferromagnetic solution. According

to the discussion in 18

the high part of negative exchange
integrals destroys the ferromagnetic order. In contrast to this
case the Gaussian distribution, which supresses large fluotua-
tion of the exchange lntegrals, ylelds a stable ferromagnetic
solution 18 .

The exact determination of the average Green function can
be used to check the guality of different approximations. We
note that the single site CPA becomes exact for the Lloyd

25

model + The same 1is true for our model including off-diago-

nal dlsorder. In a forthcoming paper we want to show that like

Foo et al. 8 and Morita and Chen 16

a single bond CPA can be
formulated for the model (2.6). Thls procedure becomes exact

i1f a Lorentzian dlstributlon is used.

4. Generalized Wealre model

The results of Section 2 can be generalized to the multi-
band case directly. As an example we consider in the following

26-28 . 1ich describes an amorphous tetra-

the Weaire model
hedrally bonded semiconductor like S1 or Ge. It is assumed
that the structure of these elemental amorphous semiconductors
1s that of a random network in which every atom is almost
perfeotly tetrahedrally ooordinated with its nearest neigh-

bours. The model Hamiltonian may be written as

o

ne n . na (40
H=V, mi>dnl +23 VY Ini>dng +2 V. imi>anil, )
ni i, n
where the atoms are labelled by n and the sFiorbitals by

i,i « The first term in (4.1) determinates the position \Q“‘
of the energy level at the site m belonging to the orbital 1.
The second term describes the overlap between orbitals assocla-
ted with the same atom. The last term involves the overlap
along a bond i between neighbouring atoms n and M, .

1f we take into consideration only topological dlsordere-
this means the matrix elements of the Hamiltonian (4.1) are the
same everywhere in the structure but the conneotivity 1is
disordered-some exact results for the density of states can be
obtained. First of all a gap persists for all topologlcal

structures 26-28

. The density of states for the diamond struc-
ture 1s shown in Fig.l. The delta functions at the top of the
valence band and the conduction band are entirely p like and
structure lndependent. The rest of the speotrum depends on the
structure via a one~band Hamiltonian are connectivity matrix 29’30.
Experimental results 31532 2or the density of states
in the amorphous phase indicate that the p-like peak at the
top of the valence band remains almost unchanged but the two
lower peaks coalesce into a single broad peak. In constrast to
these results the topological disorder of the Polk model turns
out to be not sufficient to give a single peak 33 .
Now let us consider the influence of fluetuations of the
matrix elements in (4.1) on the density of states. Wealre and

Thorpe 29 had shown that the gap remains if the fluctuations



34 considered

of V1 and V; are small. Recently Thorpe
the relationship between the structure and the gap and showed
that the gap increases 1f one makes the structure more homoge-
neous. Streltwolf 35 calculated the density of states of the
valence band in a single site CPA neglecting the interaction
between bonding and antibonding states X , Unfortunately, in 35
only the Hubbard form for the density of states 1s cogiidered.
Here we assume that the matrix elements \4rt and \g in the
Hamiltonian (4.1) are distributed randomly according to
Lorentzian distributions with mean values \a and V; and with
widths P1 and r; . From the consideratlons in Sestion 2

1t follows that the average Green functlon may be obtalined

by contour integratlon if we assume, thqt the diagonal element

na n4
\G in (4.1) depends linearly on \g :
na ni (4.2)
Vo= a(y, -V,), laiza,
Introducing an effective Hamiltonian
(4.3

Heuz VOZ ini>nd| + \742 _lni><nj\ +vzz'|m><n,.u‘
" ni i, g ne
with

—~

\7°=-ua\ [SE)Y | V= Y-4056), V;Vz-u‘ls(ae),(ﬂf-‘t)

4

the average Green function may be written as

<6y = (E-H)

s o o et et it

(4.5)

X We are grateful to Dr.Streitwolf for his results prior

to publication.
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As in 9530 we obtaln from equation (4.5) for the density of

states the expression

(4.6)

A A 1
DEY=-7 Im{ g7 *Egey e go Feeg,

with the density of states g(a) of the one-band Hamiltonian
and the definition

2~ -1 (4.7

Feg,E)=2(e-V,-20)[(e-[-20)*- -4V, &] |

( In equation (4.6) we put ImE —+0 ).

The numerical results for the density of states for the
dilamond structure are shown in Figs.2 to 5.In all cases the
parameters Y, and ¥, are the same (V,=-1 \4_="3),

O0f course, due to the Lorentzian distribution the bands have
infinite talls and the gap is smeared out. However,our model
allows to study the influence of gquantitative disorder in a
simple manner. In Fig.2 only the tluctuations of \Q 1s taken
into account ( =0, ,—-0, ail, = 0.11). As in the
Lloyd model the fluctuations of the site energy V) provide
an overall broadening of the density of states. In contrast to
this case the fluctuations of % influence only the bottom

of the bands ( Fig.3). Since the term in the Hamiltonian (4.1)
which involves ﬂ 1s a projection operator for s~states, the
p~like states at the top of the valence band and the conduction
band remain unchanged.

In ¥ig.4 the density of states 1s considered if V; and V;
fluctuate (T, =0,1, Q=-1.1)., For a < 0 the fluctuations

of Y; compensate the fluctuations.
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Fig. 2. Density of states for the diamond structure
=0, =0 ,laif, = 0.41).

-4 -2

Y
.

0

2 E

D(E)

okt

02 ¢

. _\

-6 -4 -2 o 2 E

Fig. 3. Density of states for the diamond structure
(=04 |, N,—0  iai1f=o0002),

01¢

-y

-6 -4 2 0 2 E
Fig. 4. Density of states for the diamond structure
(r,=0, N=04 , a=-4.4)



06

o4t

(= 0.4

-2

=04

0 2 E
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of \G for the bonding states and increases the broadening
of the antibonding states. Hence we expect a large broadening
of the conduction band. Fig.5 shows the density of states for
the case of fluctuatlng matrix elements Vo , % and V.
The valence band and the conduction band are smeared out.
However, the delta-peak at the top of the valence band is only
slightly changed. The density of states for any structure can
be calculated from equation (4.6) if the density of states
%&)of the one~band Hamiltonian is known. However, as have
been shown by Weaire and Thorpe 27 the &— and Dbonding-like
fraction of the density of states does not depend on the

structure. Hence the general behaviour of the density of states

due to quantitative disorder is the same for all structures.
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APPENDI

We want to prove that

det{A*iBl + 0 (A1)

where A and B are hermitean matrices and B is a positive
2
definite one. Let b a hermitean matrix which satisfiles b=B.

Then it follows

det|A*iB|= det|B| det] 5‘A5‘r41|’ (A.2)

where I is the unit matrix, Using the real eigenvalues Q.

-4 5 -4
of the hermitean matrix b Ab s (A.1l) may be written as

det(A+iB)=detIBIT (A, £1) *0
" (a.3)

and the proof follows.
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