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1. The description of the pion-nucleus scattering in terms 
of an optical potential has raised much attention in recent 
years/i-s/.The simple first-o'rder optical models give a cor
rect description of the elastic scattering data in the 120-
250 MeV region (pion kinetic energy, T„,in the lab.system) 
even on such light nuclei as 3He and 4He.A different situa
tion occurs for scattering at lower energies (see review /в/). 
The disagreement becomes still larger with decreasing energy 
or given fixed energy, with decreasing of the nuclear size. 

N To obtain a reasonable fit to existing data, one must essen
tially complicate the originally simple concept of the first-
order optical potential. As was mentioned in 'Z/, although the 
recent calculations ̂ 5 , e' agree rather well with experiment, 
the agreement may be fortuitous. An apparent sensitivity of 
calculations is observed in this energy region to various 
computational details. 

In this situation it would be helpful to apply to a new 
unitary approach of the description of the pi~nucleus scat
tering recently proposed in '9-Ю/, based on the method of evo
lution in coupling constant (CCE) (see review /ll/). In this 
approach, an iteration procedure for the direct calculation of 
pion-nucleus phase shifts can be developed. The basic element 
of the given expansion is the so-called two-body pion-nucleon 
matrix u. This quantity is simply related to r?N -partial 
phase shifts. The general formalism was presented in /Ю/.The 
goal of this paper is to apply it to the description of the 
pion elastic scattering data on light nuclei in the low-ener
gy region. Here we consider the first-order approximation in 
the two-body u -matrix, which in the present approach plays 
the role of the first order optical potential. 

The paper is organized as follows. Section 2 contains 
a short review of the formal aspects of the theory. In Sec.3 
the first-order approximation for the pi-nucleus phase shifts 
is considered. Their representation in terms of the elemen
tary ffN -phase shifts агЛ nuclear densities is obtained. The 
numerical results are discussed in Sec.4. 

2. In the problem of n -nuclear interaction considered in 
the framework of the CCE-method the Hamiltonian for the sys
tem is/9.10/ 
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A i 
H =K„ +H.+ AU. V =2 U . (I) 

where K„ is the pion kinetic-energy operator, H A denotes 
the nuclear Hamiltonian, U 1 is the pion interaction with an 
i -th nuclear nucleon and Л plays the role of the 17N coupling 
constant. The pure nuclear problem with the channel Hamilto
nian: 

h = K „ + H A
 ( 2 ) 

is assumed to be known and the system evolution in coupling 
constant A from A=0 with the switched-off pi-nucleus inter
action to the realistic value A- 1 is considered. 

The matrix elements Vllt/*<ii\V\ v > ot the potential over the 
eigenfunctions \it>,\v>, etc., of the Hamiltonian H are the 
basic quantities in the CCE-method. The exact eigenvalues of H 
are defined by the known equation dE„/d A = U . The par
tial phases of scattering of two particles (no matter, ele
mentary or composite) are given by the relation * 

dS(k)/dA --^(k) fU^CA)! . (3) 

where и>.|кД|, 1̂ > = |к',-*'>(к=|к| = |k'|), f(k)-Jlik/2ira is the le
vel density; JH.the reduced mass, к and k' are momenta in 
the c.m.s. before and after collision. There is a system of 
the nonlinear integro-differential equations for the potential 
matrix elements Û ,,. In'9' some iteration procedure for 
solving these equations was developed. The series obtained 
for Ufji, is the. expansion in powers of the exact two-particle 
matrix element Umn of the pion interaction with a separate 
nuclear nucleon (or briefly, the two-body u -matrix). On the 
energy .surface of the two interacting particles it defines 
the irN-phase shifts by the relation (3). Note, that each 
term of this expansion is Hermitian. Therefore, we arrive 
at the scattering matrix which is unitary at each step of 
successive approximations. 

Let eigenfunctions of the channel Hamiltonian h(2) be |k,n>, 
where к denotes pion momenta in the pi-nucleus cm. (Acm) 
and n the properly antisymmetrized nuclear state (n=0,1,2,...; 
n=0 denotes the ground state). The matrix element in (3) 
corresponding to the transition from state ]£, 0> to the|J',o> 
( к and к' are the meson momenta before and after collision) 

*Here we omit indices of the angular momentum, spin and iso-
spin in relations like (3). The braces in r.h.s. of (3) denote 
appropriate partial harmonics of the matrix element. 
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can be represented as follows ' 9' 
и д 1ДЛ) = <k, 0| U(A)|k',0>. (4) 

Two first therms of the expansion for О was explicitly repro
duced in ' along with their graphical image. Here we write 
only the first term 

A A 
UU)= .2 u1 (A) ==2 2|n> n' (A)„<m| , ( 5 ) 

i=l i»l n,ni 0 пш -'О ' 
where |n> 0, |m> 0, etc., are eigenfunctions of the free Hamil-
tonian Н 0=К„+ K A ( Кд labels kinetic energies of nucleons). 

The calculation of the pi-nucleus phase shifts by eq. (3) 
is appropriate in the case of the very low-energy region, where 
nucleus can be considered as an elementary particle. At higher 
energies in full analogy with the optical model method ' i-4', 
it was shown that the many-body problem of n -nucleus elastic 
scattering can be reduced to the two-body one. The generali
zation of (3) is 

dS(k)/dA= -fff(k) l<it,0| U0(E,A)|S'.0> ! , (6) 

where U 0(E, A) is som,e effective energy-dependent operator. 
It is connected with U(A) in eq. (4) by an exact integral 
equation (see ref./ 1 0' ). This equation has an iterative solu
tion in powers of U (A) and therefore (5) in powers of the 
two-body matrix u. 

Below we shall consider the first-order approximation for 
U 0 . In general, the exact UQ (E, A ) -operator is the non-
Hermitian. Its non-Hermitian part represents the contribution 
of inelastic channels to the elastic one. But the first ap
proximation, Uo (E, A)=U(A)=£ u' (A ) (see (5)), is Heraitian 
and reproduces (6) real phase shifts. Thus one may believe that 
this approximation will be appropriate at comparatively low 
energy pi-nucleus-scattering region. 

3. In the first order approximation (5) for the pion-nuc-
leus phase shifts, using antisyimnetrized target wave functions 
we have 

S(k)=-ffAf.(k) fdAKto 1 u^lk'.OI, (7) 
я о 

where (̂ (k) labels the level density of the n -nucleus scat
tering states in Acm . The matrix element has the form 

<l0|ul(A)|l',O> -Г-^ г,<Р.5|п(А)|р-4Г>Е нЛ.р^, (8) 
(2 ff)3 u u 
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where q« к -к ' is the transfer momentum. The overlap, F 0 0 , 
is defined using the momentum-space ground-state wave func
tion, ф$ц ,кг,.../£А): 

A dk A 

FOO(P.PO ^ ^ ^ - ^ ( P . k2...-.k W P ' X .....tJ*PA+ s efj) (9) 
In (8) and (9) the summation over spin-isospin variables is 
also implied. 

In ' 1 0/ we had calculated (7) and (8) in the static limit 
(m/M-»0 ,where щ and M label respectively the pion and nuc-
leon masses)of the theory. Here we shall consider it in the 
factorization approximation which is usually employed in the 
calculation of an optical potential Л-4/. It assumes that u 
can be taken outside the integral in (8) at some average nuc-
leon momentum called p 0 . Then the matrix element simplifies 
to the form: 

<k,0| ЛАМк'Л» =.<кГр0| u(A) Ik', p0-q>p(q) . < 1 0> 
where the nuclear form factor, p(q), is 

p(4)= fF0o(p.P-q)i^/(ar)3. (П) 

The accuracy of (10) depends, of course, on the choice'4 

of P 0 • 
The next assumption consists in that the two-body u -mat

rix in (10) is on energy shell (impulse approximation), i.e., 
describes the free <rN scattering*. This simplifies the task 
of expressing of the n -nucleus phase shifts in terms of the 
n-N -ones (see below). We also admit the picture, in which 
the nucleons are "frozen" in the target nucleus, and, hence 
in Acm p =-fc/A. All mentioned above assumptions are usu
ally employed in the construction of the first-order optical 
potential '*'• 

Thus, in (10) the two-body u -matrix corresponds to the 
free scattering in Acm. Let us express it in terms of the Ц -
matrix in the 2 cm ( irN- cm. system) which directly relates 
to irN phase shifts by (3). Considering that the u -matrix has 
the same transformation properties as the scattering matrix, t, 
we have** 

*This requirement is satisfied in the static limit' 10/but 
in general it is not. 
**It immediately follows, for example, from eq. (4), in' 1 0/ 

which connects the u- and t -matrices. 
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<k\p0|u(A)|"k'.p0-"q> = y<« |u(A)|V>. (12) 
Here к and ~к' denote relative momenta in the 2 cm. The colli
sion energy Eo and momentum к = |к'| = |к| in the 2 cm are 
determined by using the invariance of the four—vector product 
• - ( Р * + Р н > в : 

2 2 
E 0 = s = (Ы(7.(к) +(ук (к)) = 

(13) 
*Ы„ (k) + ( U N(k/A)) 2-k 8(l-l/A) 2, 

where ш„(р) =. (pS+m s)l/s > u>N(P) a(P e+M 2 ) 1/2. The scattering 
angle in 2 cm (cosg^ N= *;?' / к 2 ) is related to the Acm one 
(cos0 = kS' /k2) by the relation: 

cosf?ffN = a + /3 cose . 04) 
where (3 =kB/xaand a = 1-/3 . It follows from the invariance of the 
four vector products t =(Р^-Р')г .The factor y in (12) is: 

У =^>„<K)O>N(K) /u>7r(k)<oN(k/A). (l5-j 

By substituting (12) into (7) we get 

S ( 1 )(k) = - A f f f A(k)y) p(q) V dA <x lu (А)1к'> I , 06) 
0 

where the level density tA(k) = k 2 / [ 2n 2 dE A c m(k) /dk 1 , 
Е А с 1^к)= Ш ( 7(к) + щ A(k ) labels the pi-nucleus collisions energy 
in the Acm-system (u)A(k)= (k2 + (AM)2) 1 < / a) . 

The spin and isospin structure of the problem was thorough
ly analysed in '10/. Below (Sec.4) we consider the pion scat
tering on nuclei with zeroth total spin and isospin. In this 
case /1°/ the phase shifts S ( 1' are expressed in terms of the 
spin-independent two-body matrix elements, < K ] U I

C ( A ) | K / > 
at a given isotopic jN -state 1=1/2,3/2 as 

a^)») — А „ д ( к ) у | P ( )(q) fdA[-f<K|u 3/ 2W|2'> + 0 3 
+ 4- < й I "e (A) I '•'>] I L . L-0,1.2 

where р0(ф is the Fourier transform of the nuclear density, 
the symbol lf(x) I s i- /dxPL(x)f(x), where P L are Legendre po-
lynomials, x="kt'. 
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To express pi-nucleus phase shifts (17) in terms of^N 
ones it is necessary to make the partial-wave decomposition 
of the matrix elements and the nuclear form factor '10'- By 
substituting these expansions into (17) and integrating over 
A with the help of the basic relation (3), we obtain 

( k ) v ,:. l w L t'C 8 b W Т&ГиЪ", {S + ~S) ( o о о ) 

j-et-L. ( i s ) 

dn>pe»xv[±.8\-z (к)+ - | « е 3 / 2 ( к ) ] , 

where sL denotes ffN -phase shifts in each eigenchannel 
(f,I,j), t„ (к) labels the level density of the pion-nuc-
leon scattering states in the 2 cm-system: с 2(к) = 
= K2/[2ir2dE0 /d K ] with Е0(к) defined in (13). The mixing 
factors, dff , enter into (18) due to the angle transforma
tion (14). The expressions for these one can find in/4/. For 
example, d0o= 1 > d,0 = a , d1{=/3 , where a and f} are defined 
in (14) and %'=0 for V > i , The expression (18) is similar 
to that of the first order optical potential (set, e.g., 
(2.36) in' 4' ). Thus, the pion-nucleus phase shifts can be 
calculated by (18) using the experimentally defined ^N -
phase shifts and nuclear form factors, 

4. We present now some numerical results for pion-light-
nucleus scattering in the low energy region. Our object is not, 
in fact, a detailed comparison with experiment, but rather 
the study of the accomplishment of the obtained simple appro
ximation (18) for pi-nucleus phase shifts. Calculations for 
4 He were carried out in the 24-120 MeV energy region and for 
1 2 C at 30 and 50 MeV. Only s- and p-jrN -phase shifts were 
taken into account. We used the J?N- phase shifts from /12,13/. 
The nuclear form factor was chosen to be of the form used to 
parametrize electron scattering data (see ref.'4''): 

P„(Q) = d-a(qa)a/2(2+3a)) exp (~{qa)2/4), 
where a=(A-4)/6.The parameter a for 4He was taken to be 1.38 fm 
as in /14.16/ and for 1 BC - 1.59 fm /*/. The Coulomb interaction 
was taken into account approximately by the following formula 
for the pi-nucleus scattering amplitude: 

f±(0)«f*(0) + 1L £(2L + l)e 8 i aL e i SL Sin(S L)P L(cos0). (19) 

where fc is the point-like Coulomb amplitude'16', CTL label 
Coulomb phase shifts and S L are defined in (18). One can 
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believe'17' that this approximation is not so bad especially 
in the low-energy region. 

The results for theff-- He differential cross section are 
presented in Figs. 1-5 along with the experimental data/14'l8-ie/. 
The solid lines denote our ejaculations with (18) and (19), 
where Solomon's n-N -phase shifts (M.3. n N) are used as 
an input. As in the optical (see refs.'8,6' ), calculated 
results are sensitive to the choice of different sets of irN-
phase (see Figs.la and 2b, where dashed lines show our re
sults with the ffN phase shifts from/ 1 3/ ). The M.S. ffN -
phase shifts give apparently the best description of the ex
perimental data. We also present in Figs.1-5 some optical mo
del calculations based on approximations like (18). in Fig.1 
Dedonder's'8' and in Figs.3a and 5b_ Mach's'7'14/ results with 
the Kisslinger potential are shown. In Fig.2b we present Lan
dau's calculation^5/ with the improved optical potential/*/ 
(2-body Energy, M.S. IT N ). One can see that unlike the 
standard-optical-model calculations, the agreement of our 
results with experimental data becomes better with decreasing 
energy. At energies lower than, say, 70-80 MeV the approxima
tion (18) gives an acceptable description of the n ~ - 4He 
scattering data. This also can be seen from the comparison of 
the calculated by (18) " - He -phase shifts with the results 
of the phase shift analysis (PSA) data' s s ' (see Figs. 6 and 7), 
In these figures we also present Nordberg's/18/and Crowe's/15' 
phase shift data at 24, 51, 68 and 75 MeV and the predictions 
of the optical model / 7 , 2 a/ The PSA/22predicts the absorption 
P -wave parameter to be unity at energies lower than 70-80 MeV, 
This is not reproduced by the optical model calculations (see 
discussion in ' г 2 ' ). 

At higher energies our calculations considerably exceed 
differential cross section data in the large-angle scattering 
region. This is in accordance with the known fact /21/that the 
ratio of the inelastic cross section to the elastic one in
creases with increasing energy, or given a fixed energy, with 
increasing scattering angle (and A). Note that the dip posi
tion is predicted correctly at all considered energies. 
Numerical results for »r+-12C elastic scattering at 30 and 
50 MeV are presented in Figs.8 and j) along with the experimen
tal data from Refs./ 2 3 , 2 4/. We compare our results (solid . 
lines) with the optical model results of Landau and Thomas J' 6 , 2; 
In Fig.8 the dashed and dash-dotted lines label Landau's re
sults'23/, respectively, without and with inclusion of the true 
pion absorption channel. In these calculations the three body 
choice of the subenergy for the "N-collisions matrix was 
taken (3-body Energy). In Fig.9 Landau's results/5.23/ without 
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Fig.l. 1ГГГ= Pion- He differential cross sections 
at T

f f=24 MeV (absolute scale). The results 
of the present unitary approach (eqs. (18) 
and (19)) are shown by the full (M.S.ffN'12^ 
and dashed (Alm.-L. n-N /is/ ) lines. The 
dash-dotted line is obtained with the Kiss-
linger optical potential by Dedonder M 
(without Coulomb, nN phase shifts from 
ref/20/). The experimental data are from 
ref/ 1 8 / аХтг.Не) and b) (ir+, 4He). 

Fig.2. Pion- He differential cross sections 
at T-V = 51 MeV. The results of the unitary 
approach (eqs. (18) and(19)) are shown by the 
full (M.S.tfN /is/ ) a n d dashed (Alm-L. .rN/W) 
lines. The dash-dotted line shows the Lan
dau calculation/5/ with the improved 
optical potential (2-body Energy, M.S. 
я-N ' 1 2' ). The experimental data are 
from refi19'a)(>r~,4He) and b)(ff+,4He). 

'cm 



4 Fig.3. Pxon - He differential cross 
sections at T„ = 68 MeV. The full 
line is obtained with the unitary 
approach (eq. (18), M.S. »N ).The 
dashed line is obtained with the 
Kisslinger type potential by 
Mach/7.14/. xhe experimental data 
are from ref. / i e/ a) (n~, 4He) 
and Ъ) (ff

 + . 4He). 

4 
Fig.4. Pion - He differential cross 
sections at T„ = 75 MeV. The full 
line is obtained with the unitary 
approach (eqs. (18) and (19), M.S. wN ), 
The experimental data are from ref.' 1 9' 



Fig.5. Pion - He differential cross 
section at T f f = 98 and 120 M eV. The 
full line is obtained with t..e unitary 
approach (eqs. (18) anr4 (19), M.S. irN ). 
Mach's optical model calculation/i*/ 
at 120 MeV with the Kisslinger type 
potential are shown by the dash-dotted 
line. The experimental data are from 
re{/14/ a) (»-. Tie), 98 MeV, Ь)(^~,4Ие) , 
120 MeV. 

20 
30 60 90 120 150 a c m 

Fig.6. Energy dependence of 
the" - H e phase £ s and 
of the absorption parameter 175 
The full line is obtained with 
the approximation (18) with 
the M.S.ffN/lS/djg- 1); the ^ a 

dashed lines the optical mo
del calculations'7,22/; the 
dash-dotted lines the results 
of the energy dependent PSA 8 . 
Phase shifts of the 

p S A/22/ 
are 

denoted by the open circles, 
the Norenberg's result'18' at 
24 MeV by the black triangles 
and the Crowe's ones at 51, 
68 and 75 MeV by the black 
circles. 
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Fig.7. The same as in Fig.6 but for the n- He phase 
Sp and for the absorption parameter r> . 

absorption, but with two different choices of the subenergy 
for the "N collision matrix are shown. 

From Landau's results it follows that the optical model 
calculations are essentially sensitive to a specific choice 
of the "N -subenergy and that the true pion absorption plays 
a crucial role in obtaining an acceptable fit to data around 
30 MeV. But from our results one can see that the absorption 
effect may not be so strong(see Fig.8).There are two second-
order corrections which can, in fact, improve (or destroy) 
the agreement of our results with data. The first one is the 
rescattering effects of a pion by a nuclear nucleon, i.e., 
the correction to (5). Its importance was illustrated in ̂ 9' 
by a case of the low-energ/ п-d scattering. The second one 
(see eq. (23) in^ 1 0' ) reflects the contribution of the pos
sible excitation of a nucleus in intermediate states. Due to 
this correction the imaginary part of the pi-nucleus phase 
shifts will arise. A systematic consideration of these correc
tions will be made in a subsequent paper. 
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differential cross section at 
T„ " 28.4 MeV. The experimental 
data are from ref.'23'. The solid 
line is obtained with the unitary 
approach (eqs. (18) and (19)), 
M.S.*N />2/ ) # T h e d a s b e d a n d 

dash-dotted lines label Landau's 
results''23/(3-body Energy, M.S. 
"N ) f respectively, without and 
with inclusion of the true pion 
absorption channel. 

Fig.9. (f > C) elastic-scattering 
differential cross section at T„» 
= 49.9 MeV. The experimental data 
are from ref/ 2 4/. The solid line 
is obtained with the unitary ap
proach (eqs. (18) and (19), M.S. 
"N ). The dashed and dash-dotted 
lines label Landau's results/5.28/ 
(without absorption), respective
ly, with the 3-Body and 2-Body 
choice of the subenergy for <rN-

60 90 120 150 a collision matrix. "cm. 
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