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The method of evolution in the coupling constant(КОС)propo­
sed in ref/1'turned out to be highly effective / 2 /for treating 
the many-body systems at low relative energies of particles/3/. 

In the i7 -nuclear scattering problems the simplicity of 
this approach is caused by a rapid convergence of iterations 
of the equations of the ECC-method for the scattering phases 
and by a comparatively simple calculation of the iterations 
themselves. 

The starting point of the ECC-method is the statement that 
the description of evolution of the dynamic system in time is 
equivalent to the description of evolution with respect to 
the coupling constant. Hence, it is clear that the "natural" 
boundary condition to solve the differentil equations of the 
ECC-method should be the one at g'= 0, where g is the coup­
ling constant. Thus, evolution of the system starts from a 
free motion of all particles of the system. Just this point 
of the ECC-method admits generalization. 

The generalization, which is the aim of this paper, con­
sists in that the problem of evolution of the system turns 
out to be also solvable, if the considered system starts 
evolution from a certain value of the coupling constant g=g 0 

which provides an exact solution of the problem, rather than 
from a free motion. In terms of the theory of multiple scat­
tering this means that as a boundary condition with respect 
to g we use the problem in which a partial summation over 
a series of multiple scattering has already been performed. 

Let us illustrate these reasons by two estimating examp­
les. In both the cases we shall discuss the three-body prob­
lem, namely the wd -scattering at zeroth pion energy. 

1. 
Instead of the system Hamiltonian n-2N we introduce an 

auxiliary Hamiltonian H(g) : 

H(g) = H 0 + V ; r +gh. (1) 

Here H 0 is the kinetic energy of the relative motion of a 
pion and of the center of mass of two nucleons, V f f=V f f N +Vff 
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is the interaction potential of тг-meson with nucleons,h 
is the subsystem Hamiltonian 2N and g is the parameter 
which can take the values in the interval [0, 1 ] . 

It is obvious that H(l) is the Hamiltonian of the real 
system ir2Nand H(0) is the Hamiltonian of the model of fixed 
centers.Therefore,the scattering on fixed nucleons rather 
than a free motion is the boundary condition in this case.It 
should be mentioned that inclusion of the term gh in 
the total Hamiltonian of the system means that the 
contributions of the discrete and continuous spectra of 
the target Hamiltonian are taken into account simultaneously. 
This is an important distinction of the method from the known 
approximations of the theory of multiple scattering, in which 
the contribution of the continuous spectrum of the target 
Hamiltonian is neglected as a rule * . 

Using the equations of the ECC-methad we find the correc­
tions to the scattering length, which is exactly calculated 
in the model of fixed centers. 

Following the ECC-method / 2 / w e shall proceed from the equa­
tion for the scattering length in the from 

dg &• Г'=о' ' f=0 (z> 

where \4-> > is the eigenfunction of the Hamiltonian (1), 
<4tg, |h|4<^ >=<4'j,|h|4'£>-ES<J'-k>), index " c " implies a connected 
part of the matrix element, E is the total energy of the 
system, which is equal to the deuteron binding energy in the 
case under consideration. 

For the matrix element in the right-hand side of eq. (2), 
we have 

<4>-, |h|<P-,>c =h ( 1> + h < 2 ) , 

h(1> dQ.dq. r ., <k'q* 1|h|k'q 0> - -, -/—i-M^if,) 11 S_„(k',q2;k) + (2*) e 

* In the Faddeev equations the contributions of both conti­
nuous and discrete spectra of target Hamilconian are taken 
into account. 
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g 2ft m 
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1 1 ( a r ) 3 1 1 d 
T i s the t r a n s i t i o n operator for the system ir2N and фА 

i s the deuteron wave f u n c t i o n . To d e r i v e e x p r e s s i o n s (3) and 
( 4 ) , we have used the f o l l o w i n g r e p r e s e n t a t i o n of the wave 
funct ion of the ли system: 

* - , ft j , q t ) = (Sir ) 3 S ( k ' -k j ) ^ ( q p + 

k? a 2 - l dq\ -> -• -» -» -» 
+ ( Z ' - ^ _ l L ) / _ i i < k 1 q 1 | T ( Z ' ) | k ' q ' > ^ d ( q ' 1 ) . 

2p m' ( 2 * ) 3 * s 1 d l ( 6 ) 

which is valid at low energies of it -meson. It follows from 
definition of h that the matrix element h*1* vanishes. The 
matrix element h*8* can be found by calculating function 
l(kt .4i;k) in the approximation g = 0*.As a result for h(a> , 
we get 

n - a0 —' 
2\/g 

•Using the .esutts of ref. one can easily show the vali­
dity of the extension in powers g for the function rj(S, ,q, ;k'). 
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where a Q is the ird scattering length at g = 0 and Y 
is the numerical constant (Y= 0.05). Substituting (7) into 
eq. (2) and taking into accout the boundary condition, we 
get the solution in the form 

»(8)=a0-VI*oY- (8) 
For the physical value g = 1 , we have 

a„„ =-0.06 fm. (9) 

Thus, as is seen from expression (3) a correction to the л-d 
scattering length a 0 obtained in the fixed centers appro­
ximation, is quadratic in a Q and its contribution to the 
scattering length of the пй system is small because of a 
small value of a„ . 

Now let us consider the second example. Instead of the 
physical Hamilionian H of the system ir2N (see the figure) 
we introduce an auxiliary Hamiltonian 

H ^ = h 1 3 + h 2 8 + B h 1 2 , (10) 

where 

h,. = — i i - + V (ij) =(13), (23), 

h 1 0 = — P i . . • P D , + V1!>-p П 

It is clear that H(l) is the physical Hamiltonian of the 
system n-2N. At a certain value of the constant g=go the 
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ж! -scattering length can be shown to be equal to the sum 
of elementary scattering lengths. This value of the constant 
g will be considered as a boundary condition in soloving 
the equations of ECC-method for the scattering length. To 
treat the physical meaning of the quantity g 0 we rewrite the 
Hamiltonian (10) in Jacobi variables i = p* + p , 

13 23 

- Pl3~Pg3 . 

H ( U ) - - ^ U * + ^ T ^.+'-4»..' <»> 4ro fi m'2 '18*'«8**'18' 

1 - 6 + р я/т 

Thus, the Hamiltonian of the nucleon subsystem is 

h = — 3 + gV . (12) 
NN m'(g) 12 

It turns out that at g = g 0 the Hamiltonian (12) has an eigen­
value equal to zero. This condition will be used to deter­
mine the numerical value of g . So, the Hamiltonian H(g-) 
describes the interaction of an incident particle of mass 
A>r/go with a bound system of two part ices each having 
mass equal to m'(g 0) and the binding energy equal to zero. 

The equation for the scattering length has the form (2); 
in the right-hand side, we have to calculate the matrix 
element of the operator 

V = v i 8

 + 7 - ( T - * 2 ) ' (.3) 

к' »2 k ( & ) 1 8 k 1 1 
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As in the previous case, we use representation (6) for the 
wave function of the system. As a result we get formulae (5) 
with change of h by h l g . 

The boundary condition for a(g) is 

» ( 8 - g 0 ) - " ^ ^ »". < 1 5 ) 

where a° is the isoscalar combination of the pion-nucleon 
scattering lengths, 

№ 
For the separable triplet NN potential V l g the numerical 
value of g 0 turned out to be equal to g0=0.744.As this value 
is close to the physical one,g = l, a reasonable approximation 
to the exact value of a can be made by using a linear 
approximation for the function a(g) 

a(g) = a(g Q)+(g-g 0)a< 1>(g 0) . (16) 

Thus in approximation (16), we have to find the constant a(1'(g,J|, 
i.e., the right-hand sids of equation (2) at the point g=gQ. 
The contribution of h*8' (g0) comprises several per cent only 
as compared with the contribution of Ir ' (g 0) ; finally we 
get 

a(g)=a(BJIl+(g-gn)(-L + 4 i —-)], (17) 
0 6 0 2 

whence for a rrd ~ a(l) we have 

a j . =. 2.64. e(g )=- -0.066 I'm. (18) 

To define the estimates (9) and (18), we compare our results 
with the results of calculation of апЛ using the Faddeev 
equations and with the experimental value of this quantity 

a F * d d =-0.061 Гт , (19) 
гтй 

a " p =-0.073 ± 0.030 fm / 5 /. ( 2 0) 
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The fact that the values of (9) and (18) are close to the 
"exact" value of (19) indicates the reliability of the obtai­
ned estimates. 

Within the ECC-method one can easily evaluate the scatte­
ring length, which occurs due to the so-called indirect inte­
raction of particles 1 and 2 (see the figure), i.e., due to 
the term " 1 3 ^ в з . 

The calculation of a(g) without this term gives 

a(g) -»(g ) l i - . 
go 

The comparison with the estimate taking into account the term 
—IS Ш— shows that its contribution to the scattering a„. 
length is 30%-40%. 

CONCLUSION 
So, in this paper two possible ways of improving approxi­

mate solutions of the three-particle equations describing the 
wd scattering at zeroth pion energy are realized in the 
framework of the ECC-method. Both approaches provide the value 
for the n& scattering length, which is close to that obtai­
ned by solving the Faddeev equations. A specific feature of 
both treatments is that the contributions of the continuous 
spectrum states of the target Hamiltonian are taken into ac­
count. 

The considered examples show that the ECC-method can always 
be generalized when the "solvable part" of the many-particle 
Hamiltonian can be separated. 

REFERENCES 
1. Киржниц Д.А. В кн: Проблемы теоретической физики. Памяти 

И.Е.Тамма. Наука, М., 1972, с.74. 
2. Киржниц Д.А., Такибаев Н.Ж. ЯФ, 1974, 25, с.700. 
3. Беляев В.Б., Соловцова О.П. СИЯЙ, Р4-80-524, Дубна, 1980. 
4. Peresypkin V.V., Petrov N.M. Nucl.Phys., 1974, А220, p.277. 
5. Chean L.T., Von Egidy J. Nucl.Phys., 1974, A234, p.234. 

Received by Publishing Department 
on December 22 1980. 


