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1. Introduction 

Interest to the muon catalysis of the nuclear synthesis in 

the mixture of hydrogen isotopes/1-3/ has been revived by 
the intensive theoretical /4-5/ and experimental 161 investiga­

tions, the possibilities to take the practical advantage o£ this 

phenomenon having been discussed /7/. For the detailed descrip­

tion of the }.l - catalysis kinetics in ( !()2 + T, ) mixture it 

is necessary to lmow the rates A..p of the nuclear synthesis 

reaction 
dttJ ~ 41-/e + n t- J.-1- (1) 

from the different states ( Jtr) o£ the rotational and vibratio­

nal motions of the dt.,..,_ molecul.e. In solving this problem one 

uses the experimental data on the reaction /8,9/ 

d + r ._ 4He + n + 17.6 MeV (2a) 

and the scattering / 10/ 

(2b) 

Reaction (2a) has been studied in the df CXS energ;r region 

8 keV ..:::. E < 12 MeV. The peculiarity is the neartbreshold reso­

nance in the cross section 6'ln (£) at energy fR.:a 64 keV with 

the balfwidth fi'z ~ 70 keV, the cross section maximum 

6:""' "' 5b being close to the unitary limit. All the experi­

ment;! data suit the hypothesis that at energies £< 200 keV 

reaction (2a) proceeds from the dl: state with the orbital 

angular momentum of the relative motion L•O and the total angular 

momentum {] :s 3/2 through the intermediate excited state of 

5a:e (3/2+). The other states ( L • o, 0" • 1/2+ 8lld L>-- 1) 

contribute less than 1% in the energy regicm discussed /9,11/. 

Ordinarily /1, 12 •13/ the reaction (1) rate is calculated 

with formula 

I :l'lr 12 'A; = Ao Y (o) , (3) 

1~rtllf(-R) dL 
where ~ is the wa"Ve :tuncticm of the l: relative mo-

tion in the mesomolecule di:t-~ (with the nuclear cH 



interaction not talmn into account) and A0 is the reaction 
constant 

Ao = &."" ( 6i.n v c:2
) 

v~c (4) 

being the dt ~relative velocity ~md C0 - Gamov factor 
for the S- wave scattering 

(5) 

All the exl.eting estimates / 1 •121 of the rate 'ht were obtained 
with formula (}) for the c}tt-t ground state ( ~ • 1)" = 0). 
They, however, c~ot be believed without same additional consi­
deration. 

First of all, when calculating 'hr t.bey usuall;r exploited 
the quaaiclassical approxl.~~~ations for the wave functions -y:ttran 
inside the nuclear forces range (0 < R ~~~7 fm). That, as we 
will see below, is quite inaaequate for the excited rotatiQUB.]. 
states with ::J I< o. Besides, in some papers 1141 the rele-.ance 
of formula (3) was doubted because in the region R~ R, ths 
nuclear dt interaction radicall;r changes the wave function 

y:lV" (in • Furthermore, it is not clear in advance to what 
extent formula ( 3) can be trusted in case when the reaction cross 
section is dominated by the nearthreshold resonance with large 
inelasticity. 

In the present paper to cal.culate the mesic molecule levels' 
shifts end wj.dths caused by the nuclear df interaction we 
have solved the eigen-value problem for the Hamiltonian of di!-f 
system. For the calclllation of the p molecule wave functions 
we have used the adiabatic representation for the three-body 
problem 1 15/ and the algorithms developed in papers 116- 18/. 
The nuclear d-1:: interaction '11 was chosen in the form which 
follows from the consideration of the coupled channels problem 
for dt ~ n~He system. The anti- Hermitian part of Y, has 
the separable form and negligibly depends on energy near the 

~ 

threshold. The Hermitian part of Vi is also a smooth fqpc-
tion of energy and can be approxi.:mated by a local potential. 
With the nuclear interaction of the kind we obtained a good 
description of the reaction (2a) and the elastic dt scattering 
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5 He (3~) resonance region and calculated the widths 

and shifts t> e~~ of dt,._. molecule levels :l'tr. 

In the paper we have also determined the rate of nuclear 

reaction "in flight", i.e., without preceding formation of' dtfA 
molecule d •1-1 _ tl-' + -+ n + e + 1-' • < 6) 

2, The Effective Hamiltonian ot di: Interaction 

Consider the two-channel problem with the Hamiltonian: 

llo u•, V " Here n, and n t and v2 are free Hamiltonians and 

interaction potentials in the chaDD.els dt and n 4~e 
correspondingly, V12 :V,;,. is the potential coupling the 

channels dt and n'He • 41 
To find tile d-1: scattering amplitude . J (E) we 

e%ploit tbe method of the "generalized optical potential" 1191 
which enables one to reduce the two-channel problem with Hemil.to-

nian (7) to tbe one-cb.elmel problem with the non-local and 

energy-dependent Hamiltonian H1 of the form 

~ 0 ( 0 )-i () ~ 
t-11 = H, +V1 + y,, E-H2 -V, V,1 e t-11 +V, (8) 

Making use of the spectral representation f'o.r the Green fUnction 

of n 'lie channel") 

1E-H' -V)-1
= \2rn,)k s"' \£"><(I {i: dr 

\ 2 2 s, E+t.-f (9) 
0 

0 

wilere \~) is tile e1gen·fuuct1on of the Hamiltonian H, +V2 , 

b. • 17.6 lleV tile distance between tile tbre sholde d t and 

n "He , we obtain the :toll owing eXpression :tor the genera-

•) Here and below we consider the state JJr • .,;2+ with the 

quantum numbers: L • o, S • }/2 in dt cbennel (redu-

ced IISSS m, ) and L = 2, S • 1/2 in n~HE' chsmlel 

(reduced mess m 2 ) / 111• 
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lized optical potential V1 in the pb;ysical region of cit 
scattering ( E • 0 corresponds to the dl: cluumel threshold) 

Y,(E..->o) = Vh+ Va 
( 'h"" V, = V. + 2m,) J V.1 le><c\V2,1e c1 

h • 3t o E+fi- e e e 
'% ., 

Va= -i (!lro,) (E·d~) V.-,\O(C\'1/11. 

The anti- Hermitian part '1/,. of the potential 

(10) 

of "' 
theE separable form. 

dependence of V rJ.. 

Near the dt: threshold at 
can be neglected and VQ can be written 

as 

( 10a) 

(!> being the real constant and functions <RW> being 
localized inside the range of nuclear forces. As it will be seen 
below, their specific form is inessential. ,..., 

The Hermitian part Vh of the potential ~ includes, 
besides the Coulomb repulsion Vc = cJ./R

1 
the superposition V~ 

of the diagonal nuclear dt. interaction end the Hermitian part 
of dt: interaction due to the d+...., n ~;.j E' cluumel coupling. 
The latter weakly depends on energy ~ , since in the case of 
interest E:«A and E is small compared to the characte­
ristic range of integration E'o ..... (rn. R!Y'- 1 MeV in expression 
( 10) for '1/h ( R, >! 7 fa - the range of nuclear interaction in 
dt chenne~. In the following we assume that Vh can be 

appro:z::lmated with local and energy-independent potential tT(R) • 

Partition ( 10) allows one to express the scattering ampli­
tude S""(E) of the initial two-cha.Imel problem in terms ot' the 
solu.tions of the one-chennel dt scattering problem with 
potential Vh = tT (R) • Let known be : Green function 6'1 = 
= tE-H~-Uf' , scattering ampUtude ,fL(E) , Jost 
function ¥L (E) and the regular solu.tion lj)LE (R) for the 
partial wave with the orbital angular momentum L • Remind 
that 
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(11a) 

and the normalized solution of the scattering problem is of the 
form: 

-1 

(l<RY' 'Xu,- (R) = KLjfL(~)j ~ ( R) ~ (]<R)
1

sin(~R-~Pn2<R-J,g2 +§"L J ( 11b) 
LE R-t~ , 

'h 
where l(;m,v= (2m,£) is mo..,ntum in the di channel, 
8~(E)="-"5r(L~1+i1) is Coulomb phase shift, 0..(E) is addi-

tional phase shift due to potential V n • 
With the two-potential formula (see e.g. 119/) scattering 

amplitude j~1 
(E) can be expressed in terms of the introduced 

quantities as follows 1201 (below we restrict ourselves to the 
case l = 0 and suppress the index L ) : 

t'tE) = S- 2m, ~lE) <-JI< tv" (H~.v.,f' I.Pe "> • (12) 

Making use of the separable form ( 10a) of potential Ycr 
we can calculate the matrix element ( 12) e.xplici tly: 

-<f-.1<:-Pe \h\2 

1 +ijl>(l \Q, tr'> 
(13) 

Then the S- matrix element corresponding to the dt scattering 
can be written as follows: 

- 4 2 
rlH( ) 2;8(e) (

1 
4m,KP., \~(E)\ \<ll.Pe>J J 

;::, E = e - - c 14) 
1+ q> <ll G, H'> • 

Using the spectral representation for the Green function of d i 
channel 

?12"" .PI 2 
G(E•<o)=(2m.) S \.Pc'><_e \f<e)fiedr 

-t .JI o E-E: +tO 
(15) 

(16) 
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where 
(17a) 

(17b) 

At 0 < E < 200 keV 
the regular so1ation 

since in this energy region 
depends wea'kl..y on energy inside the 

nuc1ear forces range. 
The integration region in (17 b) can be divided into two 

parts: 0 ~ E ~ to and fo ~ E < +oo in such a way that at 
E:4 E:0 the proximity ~· const is sati~ied, while the E-

dependence of the integral over the region f:0 ~ f_ < .... oo 
can be neglected: 

"12 f 0 _,_ 

F(e) = (2,...,) A s• \t(t)\ le dr + F"o 
"' o E-e 

(As the numerical calculations show 
appropriate.) 

Co Of 0.5 MeV is 

(17c) 

Thus, to describe the cross sections of the elastic dt 
scattering and the reaction d~-'> n 'He near dt threshold 
two constants A and Fo and Jost function ~(E) for 
potential U(R) at energies E.t. f:o will suffice. The 
behsviour of ~(E) at t">. (;0 is irrelevant and we will 
exploit this circumstance when choosing the potential U(R) 
As it w111 be shown in Sect.3 the knowledge of the quantit1.es A 1 

Fo and U (R) is sufficient for calculation of nuclear 
shifts and widths of dl:~--4 molecule levels. 

we have chosen potential U(R) in the form (see Fig.1): 

(18) 

provided U(R.) = Vc ( R.) • Here and below the system of 
units e=i; = ma • 1 ( ma = m,.m\ (m,. .. m.y' • 199-~m.> is 
used. Value of m.. and the units of energy f'-1 and of 
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Fig. 2a .. Cross section 6tn(E) 
ofd+-\:-" V\+ "H~reaction:2-
experiment/8~ f- the survey/9< 
theoretical curve was calcula­
ted with (20a~, (16) at para­

meters (21) of potential (18). 

7 

~lEI= 

(~)., 
3 (9§-), 

2 

0 

:Fig. 1. 

The sketch of potential 

q. (R) = Vt' (R\+V" (R) 
the depth of Vt' lR) is 

0,6 keV « ER • 

R, ~ 0.025, V0 = 15.8 MeV, 

'Vt'{R,)"" 200 keV, 

l.w d•t-d•t 

----------------

m 

Fig. 2b.Quant1t;r ~(E)(20b) for 

(2b): experimental points 
from/lO/, theoretical curve was 
calculated with (20b), (16), 

rx._2 "" 16 when simultaneous fit­
ting to6\.f'\(1J points) ans ~ 
(11 points). 



~ength a, equal corresponding~ 

£, = m.e~ • 5.422 JatT, 
{19) 

P&ralleters Yo • L\) I " t ro were chosen so that the 
qllBiltities calculated with the formulae •) 

(20..) 

(20b) 

give the best fit to the experi..,ntal data. Here 

'$(e)= do.t (e,e) I do<(£, e) 1 
dn I d.o G="'k 

(20c) 

is the ratio o~ the ditterential cross sections ar the elastic 
d-1:. scattering and of the Coulomb scattering at ec>< = :Iif2 • 
s- aatri:l: ·~e ... nt S11 (E) was obtained with formulae (16), (17) 
with Jost function ~(E) found from the nWIIBrical solution of 
the one-channel scattering problem with potential (18). The 
experimental data are from :papers /8-10/. 

!be best fit ( 1(2/n~ • 16/20 ·j 24 experi.JI>ntal points 
and 4 psra...tera) to the experimental points Oin (E) ( 1~ points) 
and ~ (!<) (11 points) in the energy region 0 ~ E <: 200 kBV 
is achieved with the following parameters (see Fig.2a and 2b): 

•) Coefficients 2/~ and 1n in formulae (20) talat into accoomt 
the fsct that the cross sections 6",., (E) and Od (E) 
have been ..,asured for unpolarized d and t , 11hile the 
s- aatri:l: has beea calculated for the state with definite 
total spin of the auclei S • ~/2. 
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1\ = 5.45•1o-6 (f,O,/J;.. ') ~ B.34•10-19cm3sec-1 

Fo: 0,025" at £: 0 = 0.5 MeV 

V0 = 2917£ 1 = 1S.&2 MtY 
-1 5 p -I 

UJ = 911 a, = "3.4 r"' ( R, =0.0252 a,= E>. 10 f .... ) 

In Fig. 3 functions I~(E)i2 , H(E)C.t"l. and F(e') 

(21) 

calculated with potential ( 18) and parameters (21) are presented. 

08 ·FIE! 

Fig. J.Funcuons!¥(e)r?HCe)c.r"2. 
andF ( E)for potential (18) with 

parameters (21). 

Some remarks about the choice procedure of potential U(R) 
and constants A and Fa • For the gi'Ven shape of the po­
tential U(R) the 'X2. criterium enables one to find poten­
tial parameters, however, the shape itself does not follow 
uniquely from the scattering and reaction data. There exists 
a set of potentials U"(R) having similar Jost f'unctions at 
O<E <. f:

0 
a.nd, hence, allowing to describe successfully the 

experimental data on reactions (2), since formulae (16) - (17) 
involve not the potential but its Jost function ~{E) • In 
connection with the said, potential (18) should be regarded as 
a representative of the definite class of the potentials but not 
as the true nuclear dt. interaction potential, the real form 
of which is inessential as far as we deal with calculation of 
the mesic molecule levels' widths. 
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3. Widths and Shifts of dtM Molecule . Levels 

When finding the shifts l>f~\f and widths r :l'l>" of dffA 
-molecule levels ::J'\f the first problem is to ealcuJ.ate the 

energy levels E e. and the wave functions '!* ~ of the 100 sic 
molecule with the Hermitian part (10) of the nuclear d-f: 
interaction Vn. talren into accotmt. The interaction 
Hamiltonian H,_. in this case differs from the Coulomb mesic 

molecular Hamiltonian H~~~/15• 161 by the short-ranged 
nuclear potential \)"' (see Fig.1): 

HI"=\-\~ +Vp.+V.,., 

(Hl'- Es)\~s'>= 0 
(22) 

The energy Ee. = f:t'lf+ l> 12~';! of the :':l'lY state of 
d-\:t-< molecule is measured from the +t·H-d channel thre-
shold, f'J'Ir being the energy of dt}-< molecule level 
for Hamiltonian 1-l~+~, 

The shift l>E:= ll e~~ and the width r= r:!'l! of the 
energy level E & due to the absorbing potential Yo. are 
found from "'the ScbrOdinger equation with the Hamiltonian HI' : 

HI" = Ht' + V" , 

C\4t"-E)\>!r) =0. 

E= Es~llE-•r/2, 
where potential V01 is defined by relation ( 10s), 

Equation ( 23) can be transformed: 

(23) 

--1 

1-lr'> = (£- Ht') Voi..V>, (24) 

Write the spectral representation of the Green functions 

l~l·> > < W",l 
£-E";,! 

o\r(•) ,\d.O 
where 'f s. and 't' z 
functions of the dt!'-1 

• (25) 

are, correspanaingly, the wave 
molecule state n = (':l'lr) and 

]I) 



( -1:!--' + d ) system at scattering energy f , n'\~ is the 
reduced mass of ( *-J..-t..,.... d ) system. Not written is the contribu­
tion from the continuum of df'-' + i channel. Here we have 
neglected the contributions from the channels corresponding to 
lllgh excitations and dissociation o:f dl-' and i!-' atoms, 

In the adiabatic representation of the three body problem 
115•16/ the wave functions ~)= '\)r;:,~ (i',R) o:f d-l-1-' 

molecule states ~'\Y are decomposed over the adiabatic 
basi/21/: 

~ - If, - :1\f <1'.:1 ) ir.,., (r,R) = f 4>i (r,R)'l(i lR)"'-""mj (<P,S,o , 
(26) 

where No - the number of decomposition terms which provides ,,l 
the required accuracy, .V!~ 9, o) =/J.(r+G~.Jrf[.l)_~f:!,9,o)+f/"])~£'f£1•!J. 

In this decomposition functions <bj (r) R.) describe the 
I" - meson motion in the state with quantum numbers j c (Wfrn) 
in the fiel.d of the fixed at distance R nucl.ei d and t , 
The algorithms of their calculation are tnow.of211. The functions 
'X?''(R) present the rel.ative dl: motion, They satisf',y 

the system of differential equations 

~ d~ ( (~) ~ (~+1) -2rn' ~ )J Jlf 
=R.,_ t-2m, €~u+AE:~tr -Vn(R\- -U,. (R 'X· = u• R'" ll I 

"'• ~ ~1f (27) 

~~"(o)= 0 
l 

= ~ U .. , (R)'l(., (R) 
j'ti ll l 

'X~,. (R) -o 
l R .... coo 

which follows from Schr'Odinger equation (22) after the substitu­
tion of decomposition (26) end the elimination of the meson 
coordinates f and the angular variables e t 'I of 
vector R 115• 161, 

To calculate the matrix ele.•nts 1n (24) one has to know 

functions "1\Ti'' (i',R) and "OjJ-,f'(i', R) in the region 
o .$ R. 4 R, « 1. In the l.imit R--> o functions </>j { r, R} 
transform to wave functions tJ.r.,t .... en of ( ~ 5!1~) meaic atom 
states j = (wlw>) , defined in the coordinate fraae rotating 
with vector it /Z2/, asymptotice of the tota1 wa'Ve function 
becoming 
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\/o. being projection operator to the L ::= 0 state of the 

relative dt motion, it is. necessary to extract the correspond­
ing part from the wave fun~tion (28), what is achieved by 

transition to the laboratory reference fr8Jl)9 t:: ( f1~ tQ) --. 
~:: (r-}8\\l) 122/. This transition is given by the 

following formulae/221 

~'\!" _ _
1 

m;n(!,J) Jt1 

~Pm (r,R)= R I 'L L L 
~ N£ m=O L •1~-1!\ ry-! (29) 

where 
. tj)wenlt (r,iH) YLm, (a,¢) c~L 'Xwern (R) 

:H-L 
Q':J e.., h (-~) LO 

GmL =l-l) [2.(1+8.,o)J'I'l Ce, ~ ....... (30) 

Chang-Fano transformation 1231 from the rotating to the rest 

C LO "~Yi\J 
frame ·Of coordinates 1 P.w. 'j-..., and '- ~Wle Ln"lLare Clebsch-
-Gordan coefficient.'241. 

It is important that in the new representation (29) the 
dependence from the angles e and tP is governed not by the 
total angular momentum ~ of the three-body system, as it 

were in the initial decomposition (28)
1 

but the orbital angular 

momentum L of the relative d-l motion in the mesic 

,n,ol.ecule .• 
The R _, 0 . asymp,totics of the solutions of the set of 

equations (27) has been constructed in ,paper 1221 and has the 

form: 
~·t ~:! J~!'lf ,.. 

li''X:l~ (R) = L: G ... L .tlwe 'f>Le. (R) C71l 
N<M R~O l; \:J-~1 

. . ~:! 
where matrices G_l are defi=d by re~ation (30), 

reguJ.ar so~utian of the system (27) 

-IlL~ (R) R:o RL 

12 
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~~'If 
and the values of coefficients Ji,;R are found from relations 
(31) and (32) with the calculated from eqs.(27) functions 'X~1f(R) 
normalized by the conditions 1 

f S(~~ ... (R)}
2oiR=1. 

j 0 \ 
(33) 

In the sum (31) only the term with L = 0 should be taken into 

account, since Vo,is the projector to S- state. Using the proper­

ties of Clebsch-Gordan coefficients 

00 -'h 1-W\ 
c~"' 3 _.., = l'2;:JH) e-n (34) 

and orthogonality condition: 

e:l Q~ 
:2: G "'L G..,L = 1 
"' 

(35) 

we obtain with formulae (29) and (31) 
-• ~,. G :~:~ o:~.,- ,n 11 ) 

R 'l( N~rn (R) R•C mo Jli/:J los (E , 

,..:W {~ -) L -G':J~ olr ( NN )V ( ) -4 ~U" :r..,, r,R ;.0 Nrr> ..,0 '~'N:l..., r,f',of Joo 9,~ R 'l(ti~,.,(R)• 
(36) 

(37) 

(38) 

From the numerical calcu.lati.OZlB it follows that coefficients 
Jf,!~ at N • ~ + 1 e=eed coefficients with N ,,o ~ + 1 

by an order of magnitude. Thns for the wave ftmction ~ 
the following expressian is va11d wi.thin .... 10% accuracy: 

.lrW ~-) __j_ .k- ( --) IJV,nll 
,.""" (r,R ~o '(ljjf "':JH,':!"!l r,e;.p B loa (R) ' (39) 

:l'lf ,d:l'll 
where we have introduced notation: 8 =- c.H ..,,..1 .l'J • 

13 



Function ~~ in representation (25) is that of the scatte-
ring problem -l:p t d ... -\_ J--1+ d at R-. 0 and has the form ana­
logous to (29~ and (39) with 'X~~ (K, R) substituting 'l(~Y~ (R) • 
Functions ')( Q~ ( ~. R) of the continuum ( c " E = K'/2 m, ) 
satis:fy eqs.(27) with the boundary conditions 

'X~ ('< R) ___.. sin (od{- ~~T-. 8:7) , 
,-;M ., R...,. Ot> ('l-Oa) 

~Pt. (R) ,<:;0 R" is the regular solution (27). Jost function ~I' (E) 
for potential \J,_.(R) =Yr(R) -.vn(R) at L = 0 is de:fined, 
similarily to ( 38) 

-j 

I~/" (E)\= ~2J+1 ('l-Ob) 

Using (25), ( 39), ( 40) and separable form of v~ , elimi­
nate the unknown :function \t) from 'Eq.(24): 

i = r, \<-Pt., \\>\~:~rn~ )'~Soo \<~o~ \(> ~~ (c)(ff d f . 
E-Ee. JT E-f t' (li-1) 

0 

(Here we take into account only the leading term in the spectral 
representation (25) of the Green function, because the contribu­
tiOn from other d~t-' molecule levels is negligible near the pole 

E= E~. 
From eq.(4'i) :follow the expressions for the· shift and width 

of dtf-l .molecule level•) 

•) This result is valid 'alway,s except for· the case when 
exists a narrow nuclear level in 'th~ potential \/h 

there 
, its 

ene~gy being close to the energy ot' the. level in the ·mole-
cul~ poten~ial- \/p and bene~ the rearrangement of the 
spec~um of o\{}'A system occurs 1261. If' it is the case, 
when solving Eq.('tf) the dependence 1'1' [E) on_ f: should 
be taken into account. In J+,._.. system such situation is 
not realized~ ~ more detail this question will be discussed 
in other paper (see als.o Appendix). 
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-0.6 

r = llE=-I.F:(t:) 2 t' s ' (42) 

(43) 

t' 
As the calculations show the regular solution f 08 ( R) for 
Hamiltonian Ht' coincides with the regular solutions ilo£ (R) 

and 'flbE (R) for Hamiltonians H1 and H r at energy E up 

to 200 keV, the precision being ~ 10-3. Taking this fact and 
relation (17a) into account we obtain as a result: 

02 

~'If 
Fig. 4.Wave furicti'ons'X.ti£"' (R) 
of different states of 

dtp molecule (see' Table I). 

v99 tP.)- the leading term 
':1 

in the matrix U jj ( R) of 
effec·ttve potentials in 

(27). 

15 

Fig. 

wave 

(for 

(for 

--t---­,R, 

' 
' 
: 
' 
' 
' ' ' ' ' : 
' ' ' 

,.d'tfv' molecule 

M:i·-,-

f 'j\f (") unctioD.s ""'tJ€rn R.. 
VI" "I-V~·; and i~f.., tR) 
vt' )_,inside the 

range of nuclear forces. 



2A·I B:,-'~~1 2 

1 + v; (E.,) 

Af:~ = ll.E = -~ r':l'lY Ft'(Ee,) 

(44) 

Coefficients B'!IV are presented in Table I along with 
coefficients s;'lf which ha'Ve been calculated from the system of 
equations (27) without potential Y.. of nuclear dt inter­
action. It is easy to see that coefficients s'jV and B~"" 

(.':l'lr) 

Nern 

-~,; ... 
!.',~ ... 

B':IT 

~~~ 
s-• 
':W" 

'),f 
or• 

Table I 
The main characteristics of ( '::1 'l.f 
and rates of nuclear reaction in 

.molecule •) 

) states 

dtJ-1 

(00) (01) (10) (11) (20) 

1St> 186 21>S 2Ps- 3ds 

319,2 34·9 232.4 0,64 102,5 

0.374·10-2 0.340•10-2 0.210•10-4 0.130•10 ..... p.519·10-6 

-o.112 -o.102 -0,634·10-3 -0.393•10-3 ..0,147•10-" 

1.1•1012 0.95•1012 1.1•108 4.2•107 1,1•1o5 

1.0•1012 0,80·1012 1~1·108 4.2•107 1,1•1o5 

•) Q.uantities B ~'lr and S~'lf are calculated for potential 
(18) with para..,ters (21) and for 1\,(P.) = 0 ,respectively, 
with IV 0 • 12, including 6 pairs of states j = (N~Wl) of 
two-cenller proble"" 1Sot , 2.P5;. ; 2.Sos , 3P<5"u ; 
"3dG"5 , 4~S... ; 2 p.;r" ; 3dS.S ; 3f::.T" , 4cb; ; 
3 cl '89 , 4¥ S.. . Q.uantities 11f and ~ ~ are calculat-

ed by means of(47) and(48), A and Ao from (46) 
and ( 4) , 11{ coincides by the order of magnitude 
with estimates ?\ >! 1012 s-1 :troa /1,12/, 
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differ by more than an order of magnitude. Figs.:; and 4 display 
~'\f - ~:h.r 

the functions 'X w!m (R) and 'l( W!m (R) calculated from 

eqs.(27) with potential \In and without it, correspon-

dingly. It is evident that functions 'X'tY.., (R) and 

~'j"! {R) behave in quite different manner. In particular, 
t./t .. rn 1'11~\f ) Q •) 

functions "•t"' (R have nodes in the region R < • • 
:!'If 

4, Calculation of Rates 'A.f 
In the limit E __... 0 the cross section c:::- (E'\ (20a) can Vin ) 

be written in the form 

v6",, = ~<;.;-;. A \~(E) \-
1 

e-~o '3 1t-F2 (E) 

From (44) and (45) it follows 

~~,. == r:l'lf= l ~'"" (vs,, W(E)\
2

) \B~~\2 

~ Ua Y~O 

Introducing notation 

(45) 

h F
2
(o) 

1-t Fr (Es) 

(46) 

and separating the scale facto~ o;-:3' from \ B,'Jl1' '2 write ~~'If 
in the form 

(J'lf- 3 A \n~'lr\2 hF2(0) r.. - ---, 0 2 (47) 
f 2 Lma, 1+ •r (Es) 

Expression (4?) coincides, but for the last fB.ctor, b;y its 

form with the "classical" expression (3), which, after elimination 

of the sngul.ar variables from ·tlr UO , beco..,s (with the spin 

factors taken into account) 

(48) 

--------------~----~. ~ 
•) Such behaviour of functions ')(. j lR) corresponds to the 

function o'f oscillator 2S- state, which well reproduces 
3/2+ state of 5ne* nucleus 1251, 
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The similarity between formulae (47) and (48) is due to the 
identity of the methods used to derive them: iD both cases the 
Hamiltonian }:\1 ::=-~~ +V~+ V""' ~Vo. of the effective one-channel 
problem is decomposed in two parts. For one o:f them the eigen­
value problem is solved precisely, the other one is taken into 
account by somewhat means. 

The relation (48) is based on the partition H1 
z (H~ +\/•) +(Vn+Va) , the short-range interaction V.+Y,. 
being considered as perturbation in the scattering amplitude/27/•l 
The deviations from relation (48) have been studied in detail 
only for two body system with Coulomb interaction 1281, for 
arbitrary long-ranged potential this question was scarcel7 
investigated (see alao/20/and references therein). 

Relation ( 47) originates from partition H 1 • 
= \H~ i-\/c+\1,...) i-Va • where the anti-Hermitian part Vat 
having a separable form, is a perturbation. This relation is 
valid everywhere, but in the region of the rearrangement of the 

molecular spectrum. The probabili t;r o:f the rearrangement is 
extremely small as it follows from general considerations/261. 
The illustrating numerical calculation is given :Ul Appendix 

Reaction constants 

Ao • 1.3·10-14 cm3 s-1 

A • 1.3•10-17 c,.3 s-1 
(49) 

were found with formulae (4) and (46), formulae (20a) and (16) 
with parameters {21) having been used to extrapolate Otn (e-) 
to E • O, The A0 magnitude is close to A,. 1,1•10-14.,.3s-1 

found in paper 1291 by PadS-approximation of cross section 
15-.,..(E) to £ • 0, 

r,... (E"a) it is necessary 
, for potentials 

To calculate integrals F(o) and 
to find Jost functions ~(E) and ~r(E) 
tT(P.) = Vc. + Y., and \TI'{R) : Vr + \/,. , the potentia1s differ-

•) lfota, that the nuclear potential vt\ should not necessarily 
be small (in partie~, nuclear levels of its own are 
poasib1e), and ths perturbation theor,r in ths potential is, 
in general, inapplicable. 
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ing by their long-ranged terms Vc.. and \/r- • Jost :function 

~(E) was obtained by numerical solution of the one-channel. 

scattering problem with potential tl(R) • Function f~(E) 
was found from the relation 

where f lE) is Jost :function o:f purely Coul.ombtr--'+of problem, 

calculated with the algorithm /30/ based on the method of phase 

functions /31/. (Here we have taken into account that ,... - meson 

involved in tf+d scattering slightly influences the position and 

width of the nuclear dt resonance.) 

The numerical calculation gives (HI"(o))/(Hr~l£0)) = o.9J 
for i:J .., 0 and 1.1 for ':) = 1. Besides, as one can see from 

Table I, the ratio holds 

I e?'~~'/~"\~ "'Ao/A 
hence, values of ?..f and 'Aef found with formulae ( 4?) and 

(48) agree within 10% accuracy. ~II" 

Our investigation shows that when calculating ~ f one can 

use formula (48) along with (47), despite the nearthreshold 

resonance in the ( 2a) cross section and the node of the wave 

N <lU(n) R o •) 
function 1\ " in the region ( K-t • 

The accuracy of the values 'A~,. is estimated to be about 

1($. This uncertainty includes the experimental errors of cross 

section (2) and the error in their extrapolation to E = o. 
~V" 

Besides, when calculating 'Xi we have kept only the leading 

term in the decomposition (29) o:f v~<r' R) • Inclusion o:f tbe 

remaining terms (the so-called nonadiabatic corrections) would 
,.~.,-

somehow increase the values o:f ''.f • Further, we have taken 

into accotmt only the state 0 rr = 3/2+, L = 0 dominati.Dg in 

•) In paper /32/ the formula was uaed instead of (3) snd (48) 

'1\f : Ao /4rn~ \ R;'?\ (R.)\' , wbere Ro~ R, was varied to 

check up the stability of results. In reality, there is no 

problem of Ro choice, d..f one keeps in mind the identity 

o:f regul.sr solutions \j)0, (R) snd ~08 (R) at R~ R1 
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reaction (2a). To estimate the contribution from other states is 

a special problem. 
"~f'lf Mention also, that the calculated values '' correspond 

to the rate of nuclear reaction from the hy.per~fine structure 

of dt p :::hr levels with total spin of nuclei s = 3/2 1331. 

This circumstance should be taken into account when calculating 

the }'-' - catalysis process kinetics. ) 

The shifts A f:~';i and Af~ of dtf"' mesomole-

cule levels due to nuclear dt interaction are given in 

Table 2. The total level shifts ll £:;n, = c.Et~ +- b€ ~~ do 

not exceed 10-3 eV for ell levels l~'lf) 

Table 2 

The shifts of dtt-' molecule 

due to dt nuclear interaction •) 
levels 

(~-u-) (00) (01) ( 10) (11) (20) 

Ll€(") 
~ -0.88•10-3 -0.74•10-3 <::: 10-5 < 10-5 .(. 10-6 

llt_l") 
!]<,- 0.18·10-3 0.14•10-3 .(.10-6 .(.10-6 .(.10-6 

ll €:nr -0.70·10-3 -0.60·10-3 < 10-5 <. 10-5 .(.10-6 

) (") 
• The shifts are given in eV. hE ':Jv- - the shift due to 

nuclear potential YV\ , 11 E.~ - the shift due to Yet 
tJ. €- • C. t:<~l + A £Co) 

..... u '!S'\r -:nr 

5. The Rate of Reaction t/:1 +<::1 -'> n +~He+ ,_.-

In our approach the reaction (6) cross section is calculated 

with the same formulae as the reaction (2a) cross section is. The 

only difference is that one shoul.d insert J ost function t (£) 

of tt-' + d scattering problem into formulae (20a) and (16) 

instead of d-!: scattering problem Jost function ~(E). It is 

evident that at large energies I?+. 1 MeV the difference 

between .¥-tE:) and ~t' (£) becomes insignificant and cross 

sections of reactions (2a) and (6) equal each other. However, at 

E" ~ 10 keV this di£ferehce is noticeable, because there is no 
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1.5 

1.0 

as 

t,u •d - 4He~n·Jl-

10 E. ~ev 

Fig. 6.The rates WI' lE)(51) 
and W(E)o:t reactions (6) 
and (!a) at liquid hydrogen 
aensity. Experimental points 
are fro./ 91. 

Coulomb repulsion at 

The means of ~t' (E) 
Section. 

R '>,..0. s 2,66•1o-11fa in +J..t t-el SJ"Stea. 
calculation were discussed in tbe previous 

Fi.gure 6 shows the E- dependence of reaction ( 6) rate VV't' 

Wy. = o;.,·v·No (51) 

( Vis relative ~. ol velocity, /110 • 4.25•1if2 cm-7 is 
the liquid II;ydrogen densi t;y). The attention should be psid to 
the specific m1n1mnm at £~ 0.5 keV. J.t E a 12 keV the 
reaction (6) rata vv,. • 4.9•106 s-1 still significantly exceeds 
the rate W = 2.7•105 s-1 of reaction (20). 

The obtained results are in good agreement with the simpl.e 
estimate of nuclear reaction "in flight" rate W t'4 /1,3/ 

W ., ?\ ·rra.1 'i~ 1 , 2 , 1012 2. ·10 "' 1o5 -1 .it... 3 . ( '6 -11)7 

,.. t '- ta.r o.5•10::s • • 

6. Conclusions 

The present investigation is the first detsil.ed cal.culation 
of nucl.ear reaction rates from difi'erant(~) states of cHI"' 

.molecul.e. The method developed can be applied to calculat16D 
of nuclear reactions rates in other f"' - mol.ecu1e s. 
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It is shown thst formuJ.ae (47) and (48) for calculation 
~~\f are approximately equivalent, despite the neartbJ:'eshold 

resonance. 

Reaction (2a) was theoretically studied earlier in the frame­
work of the two-channel potential model /34,35/ in order to 
describe the cross section S~n (E) in the wide energy region 
E ~ 5 MeV, the possibility to use the simple ef'fecti-ve one­

-channel Hamiltonian being thus excluded. 
In the energ;y region of SHe" (3fi) resonance (0 < t < 200 ke"V) 

we succeded in reproducing reactions (2a) and (2b) cross sections 
with the generalized optical potential. 

Our approach.is,in essense, model independent, in spite of 
the particular form ( 18) of potential. It would be, however, 
desirable to calculate the rate ~ i,.. without concretization 
of potential U lR) • The possibility is given, e.g., by 
boundary condition model where the set of eqllB.tions (27) is 
sol-ved with boundary conditions at R"' R.. following from the 
analysis of reacti0111s (2a) and (2b) in the framework of Jl. -
matrix theory/36/. 

The authors greately appreciate the help from M.P.Faifman, 
L.N .somov and s. I. Vini tsky end fruitful discussions with R.A.Eram­
zhyan, S.S.Gerstein, Yu.V.Petrov, V.A.Sergeev and I.S.Shapiro 
~t different stages of the work. 

Appendix 

Formul.ae ( 44) are valid when there is no rearrangement of' 
dtp molecuJ.e spectrum. To estimate the probability of 

such sitaation we have studi~d how the energies of d-tt--t 
molecllle states depend on the depth V0 of nuclear 

"well" V ... 
Figure 7 displays the V. - dependence of the energy ~ ~nr 

of dtp molecuJ.e state ( ~ • o, 'lY • 1), found by 
numerical integration of eqs.(27). 

The depth \/0 ot nuclear potential increasing, the 
nuclear qu.asi-ste.tionar,y level. ER • 64 k.eV corresponding to 
312+ state of SHe_ , goas -down and at Y0 ~Vo* the spectrum 
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Fig. 7 
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The scheme of' the rearrangement of dt~ system 
spectrum. The position of the levels ( 3/2+ of S)-1/ 
and ( ~ • o, 'I) ~ 1) of d+t"' molecule) is 
shown versus V0 - parameter in the potential ( 18). 
The magnitude Yo* = 2968.225 essentially differs 
from Vo • 291? from the set (21). The rsnge of 
rearrangement region llVo/Vo "' 10-5• 

of cltt--~ system rearranges , the "ex''-le,.l 92 + of the 
nuclear well y...., substitutes the t" ·mo1ecul•e level ( ~ *' o, 

'\) • 1) , the latter takes the place of ( ~ • o, 'lf c 0) 
level and this one becomes botmd state in the nuclear well. The 
wave functions 'l(~'lf(R) achieve additional nodes inside the 
range of nuclear forces 0 < R <. R1 (see Fig. B). The calcula-
tions show that the strang interaction weakly influences the 
position of dtf-1 molecule levels, but in the close vicinity 6V0 
of the point V0 * , where the level shift csn be of the order 
of the level energy: lA~~..,["' lt•T \ • The calculations show that 
the critical region is very small AV0 /'1/0 ~ 0,01/1<9 ~ 1<J5. 

Parameter V0* = 2968.225 correspondi.ng to the rearrange.ent 
region essentially differs from this (21), which provides the 
best fit to the experimental cross sections (see Fig.1a and 1b). 

The cross sections 5t~ le-) and S.t (t;) calculated 
with formulae ( 20) at \/

0
::Y0" differ from the experimental 
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Fig. 8 

x:!Rl 
dlpiJ• 0, V•ll 

X1so, ro·' 

' ' ' 
0 '----

!f<:, 005 0.10 0.15 0.70 R 

' 
-1 ' ' ' ' ' ·2 ' ' 

' ' _, 1 Xuo 

I 

The wave functions of d-1: 1-' system (with potential 
( 18) ) in the rearrangement region. The numbers 
correspond to Fig.?. Functions 2 and 3 exceed function 
1 by three orders of magnitude. Function 3 (after the 
rearrangement) differs from function 2 (before the 
rearrangement) by its sign in the region R ~ 'R" 
and by additional node at R "' o. 7. 

ones by two-three orders of magnitude and do not reproduce, in 

particular, their resonant behaviour. This fact evidences that 
the rearrangement of dt}--\ molecule spectrum does not 
occur. 

Note that this study has been carried for the nuclear level 
of zero width. The rearrangement of dt.t-' molecu1-e spectrum in 

general case. needs additional consideration and should be 

presented elsewhere. 
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