


1, Introduction

Interest to the muon cetalysis of the nuclear synthesis in
the mixture of hydrogen isotopes‘”“}/ has been revived by
the intensive theoretical / end experimental &/ investiga~—
tions, the poseibilities to take the practical sdvantage of this
phencmenon having been discussed 7 . For the detailed descrip-
tion of the J - cetalysis kinetics in ( Dy + T ) mixture it
is pecessary to kmow the rates A ¢ of the nuclear synthesis

dip Moo pa )

from the different states (U) of the rotational end vibratio-
nel motions of the CH:H molecule, In solving this problem one
uses the experimental data on the reactiom 78,9/

reaction

d+t — “He+n + 17.6 Mev (28)
and the acattering 710/

Reaction (Z2a) has been studied in the dt oxs energy reglon
8 keV < E < 12 MeV, The peculiarity is the nearthreshold reso-
nance in the cross section ©;, (E) at eneregy Eé: 64 keV with
the halfwidth [/ ~ 70 keV, the cross section maximum
6::” ~ 5} being close to the unttary limit. All the experi-
mental date suit the hypothesis that et energies E < 200 keV¥
reaction (28) proceeds from the di state with the orbital
anguler momentum of the relative moticnle( and the total angular
momentum of = 3/2 through the intermediate excited state of
SHe (%/2%). The other states (L« 0, J* = 1/2* ama L3> 1)
contribute less then 1% in the energy regiom discussed /9’11/.
orainarily /112113 ghe reaction (1) rate is calculated
with formuls

A= Ao I‘i’ww)]a, 3

I p
where T (R) ig the wave functiom of the dt relative mo-
tion in the mesomolecule . ditpt  (with the muclear ot



interaction not taken into account) and A, is the reaction
constant »

Ao = bim (&, v C) ()
V  being the dt _ relative velocity and Cc ~ Gamov factor
for the 5- wave scattering

2 25k o«{C
. Gy = U5 - (5)
¥ _ g4

A1) the exlsting estimatesg oy of the rate 7\; were obtained
with formula (3) for the S’H:;-l ground state (Y = 7 = 0).
They, however, camnnot be believed without some additional consi-
dexration, .

First of all, when calculating Af they usually exploited
the quasiclassical approximations for the wave functicns ¥ IU(R)
ingide the nuclear forces range (0 < R .€-R$-? fm). That, as we
will see below, is quite inadequate for the excited rotational
states with ﬂ # O, Beaidsg, in some papers /n/ the relewvance
of formmla (3) was doubted becauge in the region R<$R,  the
nuclear df interaction radically chenges the wave furnctiom

L'a uv(ﬁ) . Furthermore, it is not clear in advence to what
extent formula (3) can be trusted in case when the reaction cross
section is dominated by the nearthreshold resonence with large
inelasticity. .

In the present paper to calculate the mesic moleoulelevelg!?
shifts end widths caused by the nuclear ot interaction we
have solved the eigen-value problem for the Hamiltonian of cim
system, For the calcuplation of the p molecule wave functions
we have used the adiabatic representation for the three-body
problem 715/ gna the algorithms developed in papers / 16"18/.

The nuclear ot interaction Y, was chosen in the form which
follows from the considerstion of the coupled channels problem
for dt -» n'"He system. The snti- Hermitian part of \7; “hes
the separable form and negligibly ggpends ©oh energy near the
threshold. The Hermitian part of Y, ig also a smooth func-
tion of energy smd can be approximated by a local potential.

With the nuclear interaction of the kind we obtained a good
description of the reaction (2a) and the elastic df scattering



. N . _
in the SHe(32 ) resonance region and calculated the widths
rov and shifts AEYS of cH:H * molecule levels v

In the paper we have also determined the rate of nuclear

resction "in flight", i.e., without preceding formetion of d't’.l
nolecule

tpu+rd > nefHe w7 | (6)
2, The Effective Hamiltonisn of dt Intersction
Consider the two-channel problem with the Hamiltonism:

HY #V, V2
H= (n
Vo,  HotVy [ o '

Here Hf snd H: y V., and \Q are free Hamiltonisns end -
interaction potentisls in the chamnels dt ana n‘He
correspondingly,  Ve2=Vas 1s the potentisl coupling the
channels dt and n'He ,
To fing the dt  scattering smplitute J (E)

exploit the method of the “genmeralized optical potentiasl™ 749/
which enables one to reduce the two—channel problem with Hepdlto-
nian (7) to the one-chennel problem with the non~local and
energy-dependent Hemlltonian H, of the form

ﬁ1= H‘: +V1 + \/12 (E‘ Hf-—Vg) 1\(111 = H: +v-l (B)

L]
Making use of the spectral repregentation for the Green functiom
L ]
of n “He channel

ey gl
(E OV L__) S Foe &de | ®

. o
where 1€>  is the elgen-function of the Hamiltonisn Ho+V,
A = 17.6 MeV the distance between the thresholds dt ama '
nite , we obtain the following expression for the genera-

*) Here and below we copsider the state 3" = 3/2* with the
quentum numberss L = O, S w3/21n dt chennel (redu-
cedmass m, Jed L =22, Sa=4v/2in n'He chamel
(reduced mass My )



lized optical potential \/,  in the physical reglon of ot
scattering ( E = O corresponds to the dt channel threshold)

v' (E+10) = Vh"}' Vd

Vo= \, + (_g'_n_.z)%?%zlﬁ)<€\\fz4{—d :
h™ M §TEeb-E ede (10)

A
Va=-1 (Qm,)% (E»rm’2 Vip 1> <€V &

. Ao
The snti- Hermitisn part Va of the potential Vi is of a
separable form, Neer the Ot threshold at £ %A the E
dependence of Vo cen be neglected and V, can be written
as

Va=-ipRY 3L, (10e)

>  being the real constant and functions <RII>  being
locslized inside the range of nuclear forces. As it will be seen
below, their specific form is inessential. ~

The Hermitien part V}\ of the potential V, includes,
besides the Coulemb repulsion WV, =d/R’ the superposition V,
of the disgonsl nuclear dt interaction end the Hermitisn part
of dt intersction due to the dt-n'He chamnel coupling.
The latter weakly depends on energy L , since in the case of
interest L4448 snd E is small compsred to the characte—
ristlc range of integration &£, ~(m,R) '~ 1 Me¥ in expression
(10) for V), ( R,¥ 7 fm - the renge of nuclear interaction in
dt channel), In the following we assume that V|,  can be
approximated with locel and energy-independent potential U(R) .

Partition (10) ellows one to express the scattering ampli-
tude §7(E) of the initial two-chanmel problem in terms of the
solutions of the one-chemmel dt  scattering problem with
potential Vh-:U(R) . Let known be: Green function G, =
= (E-no-yY! » scattering amplitude £ () , Jost
function  §, (E) end the regular solution Ve (R)  for the
partisl wave with the orbital angulsr meomentum L . Remind
that



L@ ® RO hElee.

SE)=BLEWE)  § (e)= S

SL(E) (118)
Tk

and the normalized solution of the acattering problem is of the
form:

-4 . _
(KR)‘J’KLE(R) = KLWL(E)l‘PLs (R)R:?WQKRS sin(xR-zﬂnm-%‘-'",xS,_) (175)

A
where K. =m,V= (?.r'n.‘l;)h is momentum in the dt chavnel,
Sc ()= argT(Le1+iq} 4s Coulomb phase shift, &_(E) 1s addi-
tional phase shift due to potentisl V., .
With the two-potential formula (see e.g. ‘,19/) scattering
amplitude :f (E) can be expressed in terms of the introduced

quantities as follows (below we restrict ourselves to the
case L = O endsuppress the index L )3

# y' -

§ley=§-2m; RTE) e lVa (1-GiVa) 195 | (12)

Making use of the separsble form (10a) of potential Vq
we can calculate the matrix element (12) explicitly:

i 1D 13
1+ p3IE RS

Then the S- matrix element corresponding o the c“i scatter:';ng
can be written as follows: - 2 : .
44y - HE) (1 _amxp IHEL 1G9
- 1+ B Q1G>

Using the spectral representation for the Green function of +/
channel

0 Vo (-6 V) 10D

(14)

G, (E+i0) = (__. S We}<‘9€ W(E)H_df' (15)

we rewrite the matrix element g
) = %86 4- 2m.KAW(E)| +LF(E§
1+ 2m A BE R (6)

(16)




where

I\=[5\<‘°=B>\i r (178>
rley= @pd” § VI 1" de

(170

At 0<E < 200 kev Aeonst  ginoe in tmis energy regiom
the regular aolutien \PE (R) depends weskly on emergy inside the
nuclear forces range,
The integration region in (17 b) can be divided into two

parts: O LELE, and o€ & <10 4n guch a way that at

£4&, the proximity Axconst is satisfied, while the £-
dependence of the integral over the region F,{f ¢+
can be neglected:

3 Eorpe
F(E)= Q%DA§%%~@39 + Fo (17¢)

{As the numerical calculations show Eo ™ 0.5 MeV 15
appropriate.)

Thus, to describe the cross sections of the elastic CH
scattering and the reaction di-sn“He near dt threshold
two congtants A a2d Fo  and Jost function ?(E) for
potential U(R) at energies [<&; will guffice. The
behaviour of P(E) at E>&, is irrelevant and we will
exploit this circumstence when chooming the potential [U(RY .
As it wili be shown in Sect.> the knowledge of the quentities A,
o end [J(RY is sufficient for calculation of nuclear
shifts snd widths of d'h.l molecule . levels,

We have chosen potentisl U(R) in the form (see Fig.1):

Vo + M’ gt pgRER
UR)=VetV,= { = 2 * )

1R ., R>R,

(18)

provided U(R-) = Ve (Q-) . Here and below the aystem of
mits €=k = Mg = 1 ( Ma=mMumy (Musmey? = 199.3mg) 18
uged, Value of m™M, and the units of energy £, and of
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The sketch of potentiml
W(R) EV’J(R\*‘VI\(R) 3
the depth of Vn(R) 1is

~ 0,6 keV X Eg |

R, = 0,025, V = 15.8 MevV,
UnlR) » 200 keV.

Fig. 2a2.Cross section Ein(E)
ofd+t -+ i+ “Hereaction: § -
experiment 8, - the survey

theoretical curve was talcula-
ted with (20a), (16} at para-
meters (21) of potential (18).
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rdo
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Fig. 2b.Quantity §(E)(20b) for
(2b): experimental points

from 0 y thecoretical curve was
calculdted with (20%), (16).

-’Xa = 16 when simultaneous fit-

‘ting toSyn (13 points) ans ‘g
(11 points).



length Q4 equal corregpondingly
m.| » ‘1“ .m5 mg

) 2 . {19)
£, =MeE/R = 5.822 KeV, an—‘tlei = 2,655°10" en

Porameters Va. s W, A, K _uere chosen so that the
quantities calculated with the formnlase®’

Sin = 23 (1-184) | (20m)

3 =4, 5\ ..m'ﬂnsm(-)/z 'z (4-3")\2

{A

(20b)

glve the best fit to the experimental data. Here

% (E) = 5)—%59)/&(__ } (20c)

is the ratio of the differential cross sections of the elastic
dt scattering and of the Coulomb scattering at Qg = F2 .
S- matrix element S (E) was obtained with formulee (16), (17)
with Jost function () fownd from the numerical solutiom of
the one-channel scattering problem with potential (18)., The
experimental data zre from papers

The best fit (X /Ng = 16/20 ; 24 experimental points
and & paremeters)to the experimental points Gin(E) (13 points)
snd Y (E) (11 points) in the energy region O <L E < 200 keV
iz achieved with the following parameters (see Fig.2a and 2b):

*} Coefficlents 2/3 and 1/3 in formulase (20) take into accomnt
the fact that the cross sections 6 (E) snd Gy (E)
have been measured for unpolsrized o snd t , while the
S~ metrix hss been calculated for the sbtate with definite
total spin of the nuclel § = 3/2.



A 5-45°10"6(€.O./h3- = 8.34010~ 1 Pemdsec =1

Fo= 0025 at £,=0.5MeV (21
Vo = 2947 £, = 15.82 MeV

W=HTa) =345 fm T (R.=0.025201,= 6.70 fm)

2
InFig. 3 functions W’(E)‘Q , ]P»(E)CJ end F(E)
caleculated with potentisl (18) and parameters (21) are presented.
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02 andF (EYfor potential (18) with
parameters (21).

Some remarks about the choice procedure of potential TJ(R)
and constants A and F, . For the given shape of the po-
tential U(R) the X criterium ensbles one to find poten—
tial parameters, however, the shape itself does not follow
uniquely from the scattering and reaction data. There exists
a set of potentials U{R) having similar Jost functions at
Q<FE <&, 2nd, hence, allowing to describe successfully the
experimental data on reactions (2), since formulae (16) - (17)
invelve not the potential but its Jogt funetion ?-(E) « In
connection with the said potential (418) should be regarded as
a representative of the definite class of the potentials but not
as the true nuclear dt interaction potentiel, the real form
of which ig inessential ag far as we desl with calculation of
the meaic molecule levels' widths.

9
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2y Widths and Shifts of d{ZH Molecule  Tevelg

When finding the shifts Dy and widths [9° of dt
molecule lewels W the first problem is te calculate the

energy levels Egp and the wave functions Wy of the mesic
molecule with the Hermitian pert (10) of the nuclear d‘[:
interaction WV, taken inte account. The interaction

Hamiltonian W, in this case differs from the Coulomb mesie
04\, /15,16/
molecular Hamiltonian HH \L ’ by the short—ranged
nuclear potential W, {see Pig.1):

Hp = HE #V,+V,
(H}"“ EB)\Y&»'_' 0. .

The energy Ep= Eyg+ Aegg of the v state of
dtpm molecule is measured from the tpM+d chepnel thre-
shold, &€yy being the eergy of dipm molecule level
for Hamiltonian HV. :

The shift AE= AESy snd the width I'= of the
energy level Ep due to the sbsorbing potentisl WV, are
found from the Schrddinger equation with the Hamiltonian M. ¢

(22)

rn'ﬁ

~ I
H'M = Hr‘ +Vﬂ '
Hu-E)ly =0, (23)
E=Ep+AE-iT/2,
where potential V, 1s defined by relstion (10a).
Equation (23) can be $ransformed:
WS = (- HuY Va ¥, (28
Write the spectral representetion of the Green function:
-1 14" > <4 ™) @m? V220 M ek
E-HY = T 2oz b, Qmi) oyl (K
Emd % T 7 g A L
wherse ath) and ﬂ’;}‘ are, correspondingly, the wave

functiong of the d')qul molecule state n=(Y%) and

jo



(tpr +d ) system at scettering emergy & , M¥ 1s the
reduced mass of ('LFH—O\ )} system. Not written is the contribu~
tion from the continuum of i+t channel, Here we have
neglected the contributions from the channels corresponding to
high excitationsand dissoclation of dH and ‘{'H atoms.

In the adisbatic representation of the three body problem
/1537%/ tpe wave functions s\- ‘h’?ﬂv (7,R) of OH'H

molecule stetes YT are decom;::osed over the adiabatic

basis/21/= N,
o (D) = T QEOAT@Dam 300,

where Ne — the nurber of decomposition terms which provides
K] - 3 g
the required accuracy, 9...9} 8 a}':[i("*&-v)] i’[:Qh_{f,S,o}*é) .D...i_%e"’ﬂ.

In this decomposition functions (bj (F LRY describe the

M - meson motion in the state with quantum numbers j=(N‘Em)
in the field of the fixed ot distance R nuclei d ~ and +
The algorithms of their calculation sre knowr/2V, The functions
‘Xf U(R) present the relative dif  motion. They satisfy
the gystem of differential equations

2 w - )
[ romi(eggroety ~Va(r)- LE0=2m_gyqg)lxd

No 27
=2 U (aw;“m

3#
W, N .
X-) (0)— 0 X 3 (R) R-woo

which follows from Schrédinger equatiom (22) after the substitu-
tion of decomposition (26) and the elimination of the meson
coordinates F  and the engular veriebles @ , @ of
vector E /15'15/.

To calculate +he mnatrix elements in (24) one hag to know
functicas V' (F,R)  ana TH(EFER) in the region
0 $R&R, « 1. In the limit R-—» O functioms ¢ (F,R)
transform to wave functions Yykw (F) of ( p5He) mesic atom
states j=(Nlm) 3, defined in the coordinate frame roteting
with vector R / 2/, agymptotice of the total wave function
becoming

11



' No - Y T
P2 ED =, T 0O K, @D, (£6,0). 20

Vu béi.ng projection operator to the L = 0 state of the
relative d{ motion, it is necessary to extract the correspond-
ing part from the wave function (28), what is achieved by
transition to the laboratory reference frame F= (",ﬁ', l?) -

F= (f,g){n . This transition is given by the

following formulae/22/ €3 et
N, L L A min(€J) 3¢ 4 3’“3
Y. FRI=RZZ Z > ¢ .
ma, NE m=0 L=l3-8i m"=-e Eme'Lml' (29)
" . k]
Prom, (LB F) Yo, (6:8) Cint Xy (R)
where Mf-L .
0y B g v (=4) Lo
=) ———
G‘“L [2 (44 8mo)] ¥ Com 0
Chang-Fano transformation /a3 from the rotat&ng to the rest
LD i3
frame of coordinates, Cgm N.m Bnd Cﬂvng L wnare Clebsch-

=Gordan coefficient 2t .

It is important that in the new representation (29) the
dependence from the angles € anda @ 1is governed not by the
total angular momentun g of the three-body system, as it
were in the initial decomposition (28)’ but the orbitel angular
momentum L of the relative d‘{ motion in the measjc
molecule.. . :

The R —» O asymptotics of the solutions of the set of
equations (27) has been comstructed in paper /22/ and has the
form:
st 08 Iy M
2% (R) = 2 Gt Aye P (R) (31)

" . ﬁ N H
where metrices G‘EL are defined by relation (30), \PLB is
regular solution of the system (27) ‘

W L
O (&) — R )

12



AR
and the values of coefficients v{ are found from relations

(31) and (32) with the calculated from eqs.(27) functions 'X F(R\
normalized by the conditicm:

'Z S[’K (R)] dR=1 . (33)

In the sum (3‘1) only the term with I = 0 should be taken into
account, since tis the preojector to S— state., Using the proper-
ties of Clebsch-Gordan coefficients

Ima o S Jom
Cﬂmp 00 = 3oy Swm:, Cam 3om = (20+1) ) G

and orthogonality condition:
ey ey
an GmL G =4 (35)

we obtain with formulae {29) and (31)
o Oy
Ri'xugm (P\) - mo '-H ‘P (E)

T 7 =, z G Vom, BV BT @) ©

= 7= T Yaom, (DAL (0 |

(37}
T
Coefficient xy can be found from relation (31)1
oy -1
N‘: = (G \ le R lXN‘Jﬁ (R)=
(z8)

1231\ anR IXN‘:IO(\ .

Prom the numerical calculatioms 1t follows that coefficlents

"g at N =% + 1 exceed coefficients with N =% N+ 1
by en order of magnitude. Thus for the wave function Vg
the following expression is valid within -~ 10% sccuracy:

ﬂf::(F,'ﬁ);o T B 'swb(”e"” os ® , 3m)

)
where we have introduced notation: B‘Jv'—" Sef M e

13



Tunction \]:’{f in representeiion (2%) is that of the scatte-
ring problem {P‘ +d -"lM-H‘JI at R~ O and has the :E‘orm ana-—
logous to (29) and {39) with q(qm {(K,R) substituting 'XNr(m (R} .

Functions ’)(Qm (,R) of the continuum (£ - pg= KYam,
satisfy eqs3.(27) with the boundary conditions
X (4, R) 777, S (R~ 5 +85) (408)

440
(KR\ 7( L (x, R)- Z ML K[JR (E)I < (RY,

\PFE (R) = R 1s the regular sclution (27), Jost funection -P ()
for potentlal U iRrY = \}r‘(f,{] +V, [Ryat L = 0 is defined,
gimilarily to (58)

“Qr‘ (E)]: 2344 g'mg (KRY X oy (R (40b)

Using (25), (39), (40) and separeble form of Vo , elimi-
nate the unknown function H)) from Bg.{24):

\<»Pw\z> Y gmn R> d
LBy olvede

(Here we take inmto account only the leading term in the spectral
representation (25) of the Green function, because the contribu—
tion from other dl‘:p molecule levels is negligible nesr the pole
E= E5 . .

From eq.{4%) follow the expressions for the shift and width
of dtp molecule level®

L=

*) rhis result is valid ‘always except for the case when there
exists a narrow nuclear level in the potential W, y its
energy being close to the energy of . the level in the mole~
_cular potentisl Mp . and hence the rearrangement of the
spec‘t‘mum of cH:)A -system occurs /26/. If it .is the .case,
when solving Eq.(41) the: dependence Fp.(E):: o £ ‘ghould.
be taken intc account. In d M system such situation is
.not realized, In more detail this guestion will be discussed
‘in other paper (see also Appendix).

14



] a2
-t g,
P &

{42}

where

/zw

() Q_m (‘%g“)\ %-. \{_Af

(43)
0

As the calculations show the regular solution ‘*Pog (R\ for

Hamiltonian Hru coineides with the regular solutions ‘Pog (R)
I for Hemiltonian and at ener Q]

and \Pos (R) or Hami s H, Hp gy E up

to 200 keV, the precision being w 10"'5. Taking this fact and
relation {17a) into account we obtain as a result:

:

R R

e o

Yy (R

|SB

Ty (R

e S
Fig. 4.Wave fudctionsX ypm {(R)
of different atates of '

I
|
1
'
1
1
i
]
i
!
i
|
|
|
'
'
'
'
1
]
'
t
1

d{:p molecule (see' Table . :F'ig. 5d"CM mr;lecule

Vao {R) - the leading term wave functiohsx (R

in the matrix UJ}(RX of ' (for Vrﬂ-\/n i and rx'd'lf (R\
effective potentizls in (for VI“ ).inside tne

(27). rangeé of nuclear forces.

15



r'd'u- - 2A I Btﬂf‘z
1+ Frf (E)

A N e L A A

Coefficients BRIV  are presented in Table I along with
coefficients ng which heve been calculated from the system of
" equations (27) without potential Vi of nuclesr it inter—
sction, It is easy to see that coefficients R°Y and B?V

{aa)

T abh I
The main cheracteristics of ( JU ) states
and rates of nuclear reaction in  dtpm

.molecule‘)
YD) oD (10) D) (20)
Nem | 1de 1ds 2P% 2ps 3dc
el K 34.9 2524 0,64 02,5
By [0.374.1072 [0,340.1072} 0,210-10~* | 0.130.10~% 0,519,107
R | 0,112 ~0,102  |-0.63410"7 [-0,393+1072 |0, 147.10™H
W
A | 110102 | 0.95.10712 1,1+10° 4,20407 ] 1,1e10°
s—|
WL 12 ) g 7
At | 1.0-10 0.80410 141-10 B,2410 1410107
s-'

*) Quantities B '  and B?,f are calculated for potential
(18) with parameters (21) exd for V,(R)= 0 ,respectively,
with Ny = 12, including 6 pairs of states j= (N8 of
two—center problems: 436, » 2P6y, : 2563 » 3IpSa H
3dS, » 4f6u 5 2P 3dsg 5 Spiu, 4ddy s
3ABy + 48, - Quantities 7,'?’ snd ALY are caloulat-
ad by means of(47) and(48]}, A =md A, from (46)
and (4), Np  coincides by the order of magni tude
with estimates A~ 1012 &1 from /1’12/.

16



differ by more than an order of magnitude. Figs 3 and 4 display

the functions ’K’:’gm (R} ana % ”Qm(p\) calculated from
eqs.{27) with potential W, and without it, correspon-

d.l.ngly. It is evident that functioms ’X?:{m (R} and
Nbﬂ (R\ behave in quite different msmner. In particular,
*
functions !anm (R\ have podes in the region R < R4 ),

o7
4, Caleulation of Rates ’)\g

In the limit E — O the cross section 6}“(E) (20a) can
be written in the form

. — ‘6z aUEW

- 4
E~0 3 1+ F2(E) (152
From (44) and (45) it follows
Ny w_ 3 g, & l 2 9p12 A+ F *0)
= T2 3 U (vE IFEN ) 1BV
Ap =T ?:ﬁvfé( ¢ \) 4rr53)

Introducing notation

A= Gim (vEin |} (1—:)\2) (46)

V-0

- Souy 2 9y
and separating the scsle fac_to:r:_ 013’ from \B \ write ?\{:
in the form

O gov|2 AxF *(0) _
=3 LI\ £ :
Ne=3 tmm 127} 1 FLES 47

Expression (47) coincides, but :Eor the lagt factor, by its
form with the "classical" expression (3), which, after elimination
of the angular variables from @ (R) , becomes (with the spin
factoras taken into account)

R . o
'7\?,:; 3 A° 150 I (48)

>
1

Such behavionr of functions- IK (R) corresponds to the
function of oscillator 25— state, which well reproduces
3/2% state of Sne¥* nucleus /25/

17



The similarity between formulae (47) and (48) is due to the
identity of t}:}s methods used to derive them: in both cases the
Bamiltonisn H,=H) +Vo+V,, +Vo  of the effective one—channel
problem is decomposed in two parts. For one of them the eigen-~
value problem is sclved precisely, the other one is taken into
account by somewhat meesms. ~

The relation (48) is based om the partition H, =
= (HO v, ) +(VsVa) » the short-range interaction Vih+Ya
being considered as perturbation in the scattering amplituae/ 27/ -2
The deviations from relation (48) have been studied in detail
only for two body system with Coulomb intersctiom /28, for
arbitrary long-remged potentisl this question wes scarcely
investigated (gee also’zo/&nd references therein).~

Relation (4#7) originates from partition H, =
= (M +Ve V) + Va » where the anti-Hermitian part Va ,
having a separable form, is a perturbation. This relation is
valid everywhere, but in the region of the rearrangement of the

molecular spectrum. The probability of the rearrsngement is
extremely small as it follows from general considerationsj 26/ .
The illustrating numerical caleulation is given in Appendix
Reaction constants

Ap= 130107 ™ en® 51
A = 1.3010717 cx® 5~

were found with formulae {(4) and (46), formulse (20a) =nd (16)
with perameters (21) having been used to extrapolate G (E)
to E =0, The Ao msgnitude is close to A = 1.1-10" en’s™
found in paper 29/ by Padé-approximation of cross section
Snle) to E =0, ,

To calculate integrals F(O) and F'.‘ (5'3\ it is necessary
to find Jost functions {(E) and 'Fr (E) , for potentisls
URY = Ve +Vn and  Uu{R)= Vf‘ +V, » the potentimls differ—

(a9)

) Fote, that the nuclesr potentlal V,, should not necessarily
be small (in particular, nuciear levels of its own sare
possible), and the perturbation theory in the potentiasl ia,
in general, inapplicable,
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ing by their long~ranged terms V. . and Vl"‘ . Jost function
'P’(E) was obtained by numerical  sgolution of the ome—channel
gscattering problem with potential U{R) . Function «’-F ()
was found from the relation

=160 L E (502

where .P (E} 18 Jost function of purely COulomL{H-i-oI problem,
calculated with the algorithm /30/ based on the method of phasge
functions /3", (Here we have taken into sccount that M - megon
involved in t/A+d scattering slightly influences the position and
width of the nucleer dt  resonance,)

The numericel calculation gives (4+F’(0))/(4+F’}(E5)) = 0,93
for M = 0 and 1.1 for 7J = 1, Besides, as one can see from
Teble I, the retio holds

e/ \" = Ao /A
hence, values of {: and ’A,{ found with formulae (47) and
(48) agree within 10% accuracy. -
Qur investigabion shows that when calculating N one can
use formula (48) along with (47), despite the nearthreshold
resonance in the (2a) cross section and the node of the wave

function ’XnU(R5 in the region R<Ka ),

The accuracy of the values 7\?}- is estimated to be about
10%, This uncertalnty includes the experimental errors of cross
section (2) snd the error in their extrapoletion to £ = O.
Besides, when calculating Ny we have kept only the leading
term in the decomposition (29) of 'ﬂ-’"w(r‘ R) . Inclugion of the
remaining terms (the so-called nonadimbatic corrections) would
somehow increase the values of '?\?;. . Further, we have taken
into accownt only the state 07 = 3/2"' I. = 0 dominating in

*) in paper 732/ tne formula was used instead of (3) and (48)
= Ao Jawad 1R R (R, where f,4R, was varied to
check up the stability of results. In reality, there is no
problem of R, choice, 4f one keeps in mind the identity
of reguler solutions Y. (R) end V,a (R} 8t R&R, .

19



reaction (2a). To estimate the contribution from other states is
a special problem,

Mention alseo, that the calculated wvalues 7\{1 corregpond
to the rate of nuclear reaction from the hyper-fine structure
of dt Jur ilevels with total spin of nuclei S = 3/2 /33
This circumstance should be taken imto account when calculating
the M - catalysis process kinetics.

{a}

The shifts A E'("‘ and A&ﬁ- of d{H mesomole-
cule levels due %o nuclear dt interaction are given in
Table 2. The total level shifts Oy = AEGy + BESY 4o
'not exceed 10~ eV for all levels {8

Table 2
The shifts of OH:H molecule levels
L ]
due to OH: nuclear interaction
B | (oo (on (10) 1) (20)
ae -3 -3 5| < 405 v

¥y |{-0,88+10 ~0.74+90 < 10 10 £ 10
ael® -3 -3 -6 - -6

o 0.18+10 Q1410 £ 10 <10 <10
Dy |-0,70.1077 | -0.60.1072 | < 1072 | < 4077 <1070

") (r)

The shifts are given in eV. A€y, - the shift due to

ouclear potential V.. , Ai—‘_(“%r - the shift due to Vg

Afyy = AEYy + AR .

y -
5, The Rate of Reaction tp s>t He+ (A

In our approach the reaction (6) cross section is calculated
with the same formulse as the reaction (2a) cross sectiom is. The
only difference is that one should insert Jost function -P,. ()
of { +d scattering problem into formulae (20a) and (16)
i.nstead of d{ scattering problem Jost function .p(E) . It is
evident that at large energies E 2 1 MeV the difference
between L(E) and «PH (E)  becomes ingignificant snd cross
gections of reactions (2a) and (6) equal each other. However, at

E £ 10 keV this difference is noticeable, because there is no
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W, 1085 Fig. 6.The rates Wy €Yo
\ and W {E)of reactions (6)
13} and (2a) at liquid hydrogen
0 = bhernop- density. Experimental points
) are fro .
104
05| d+t =SHeon
/! N
0 5 0 E. Kev

Coulomb repulsion st RY%QO, = 2.66:10"'fm in tM+dl  aystenm,
The mesns of ~Pr\ () ocaloulation were discussed in the previous
Section.

Figure 6 shows the [- dependence of reaction (6) rate WI"‘

Wr\ = B-in‘\l"\[o (51

{ v is relative -l:M - ol velocity, N, = 4,25010%2 cu™? 18
the liquid Hydrogen density). The sttention should be paid to
the specific minjmom at E 2~ 0.5 keV, At E & 12 keV the
reaction (6) rate W”x 4.9-‘106 5~ atiz1 significantly exceeds
the rate W = 2.7‘105 g1 of reaction (20).

The cobtained results are in good agreemeant with the simple
estimate of nuclear reaction "in flight" rate W,.

W, ?\ (04/056,1 20 1012(31-6;"%1)3z105 g1 .‘

0e5+10

6, Conclusions

The present investigatiom is the first detalled calculation
of nuclear reaction rates from differant(’&u’) states of CH}A

‘molecule, The method developed can be applied to calculatiom
of nuclear reactions rates in other M - molecules.,
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It is shown that formulae (47) and (48) for calculation
rh'{’;f .. are spproximstely equivalent, despite the nearthreshold
resonance. .

Reaction (28) was theoretically studied earlier in the frame.
work of the two-chsnnel potentisl model /2135 in orger to
describe the cross section ©;.(E) in the wide energy region
E £ 5 MeV, the possibility to use the simple effective one-
~channel Hamiltonion being thus excluded.

In the energy region of sHé*(:‘If) resonance (0L E ¢ 200 keW)
we succeded in reproducing reactions (26) and {(2b) cross sections
with the generalized optical potential.

Qur approach,is,in egsense, model independent, in spite of
the particular form (18) of potentisl. It would be, however,
Gesirsble to calculate the rate 7":1\)‘ without concretization
of potential U(R) . The possibility is given, e.g., by
boundary condition model where the set of equations (27) is
solved with boundary conditions et R~ R, following from the
anelysis of reactions {28) and (2b) in the framework of & -
natrix theory/36/.

The authors greately appreclate the help from M.P.Faifman,
L.N,Somov and S.I.Vinitsky end fruitful discussions with R.A.Eram-
zhyan, S.S.Gerstein, Yu.V.Petrov, V.A.B8ergeev and I.S,Shapiro
at different stages of the work.

Appendix

Formulge (44) are velid when there is no reerrengement of
GH:H molecule spectrum. To estimate the probability of
such situation we bhave studied how the energies of d'EH

molecule gtates depend om the depth W, of nuclear
"well” V, .

Figure 7 displays the \, — dependence of the enexrgy &xy
of d{'}/« molecule state ( O =0, U = 1), fouma by
numerical integration of eqs.(27).

The depth \/,, of nuclear potential increasing, the
nuclear quasi-stetionary level L = 64 keV corresponding to
%/2* state of SHe , goes down and at Vo=V the spectrunm
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Fig. 7 The scheme of the rearrsngement of d{'u\ system
spectrum, The position of the levels (3/2% of SHQ*
and (Y =0, T =1) of dim molecule) is
shown versus V, -~ parameter in the potential (18).
The megnitude Vo = 2968,225 essentially differs
from Vo = 2917 from the set (21). The range of
rearrangement region AVo/\/, ~ 1072,

of d{‘}.»\ system rearranges , the "ex"-level 3/2 * of the
nuclear well Vv substitutes the p melecule level ( Y= 0,
Ay = 1), the latter takes the place of ( % =0, A =0Q)
level end this one becomes bound state imn the nuclear well, The
wave functions ‘X v(R) achieve additional nodes inside the
range of nuclear forces (¢ R4 R4 (see Fig,8). The calcula~
tions show that the strong interaction weakly i1nfluences the
pesition of dip molecule levels, but in the close vicinity AV,
of the polnt V,® , where the level shift cem be of the order
of the level energy: |ACyyl~1E€yyl . The calculations show that
the critical reglom is very small AVp/V, ~ 0.01/10° ~ 1072,
Parameter Vg = 2968,225 corresponding to the rearrangement
region essentially differs from this (21), whick provides the
best fit to the experimental cross sections (see Fig.1a and 1b).
The cross sectlons Gy, (B) and Gy (E\ calculated
with formulse (20} at Vo-‘r\!: differ from the experimental
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Yo (R)
3l ‘ dtu (10, vai)

Xiss, (07

Fig. 8 The wave functions of d‘l:}.l system (with potentisl
{18) )} in the rearrangement region. The numbers
correspond to Fig.7. Functions 2 and 3 exceed function
1 by three orders of magnitude, Function 3 (after the
rearrangement) differs from functlon 2 (before the
rearrangenent) by its sign in the region Qfé R,
and by mdditionsl node at R~ 0.7,

ones by two-three orders of magnitude and do not reproduce, in
particular, their resonsnt behaviour, This fact evidences that
the rearrangement of d{tH molecule gpectrum does not-

cccur.

Note that this study has been carried for the nuclear level

of zero width. The rearrangement of dip molecule spectrum in
general case needs additional consideration amd should be

presented elsewhere,
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