

объедИНенный
 ИНСТИТУТ
 Ядерных
 исследований
 дубна

$1353 / 2-81$
E4-80-819
L.N.Bogdanova, ${ }^{*}$ V.E.Markushin,* V.S.Melezhik, L.I.Ponomarev

NUCLEAR SYNTHESIS REACTION
IN THE MUONIC MOLECULE dt μ

Submitted to $\boldsymbol{\text { S }} \Phi$
*Institute for Theoretical and Experimental Physics, Moscow.

1. Introduction

Interest to the muon catalysis of the nuclear synthesis in the mixture of hydrogen isotopes $/ 1-3 /$ has been revived by the intensive theoretical $/ 4-5 /$ and experimental $/ 6 /$ investigations, the possibilities to take the practical advantage of this phenomenon having been discussed /7/. For the detailed descriptin of the μ - catalysis kinetics in ($D_{2}+T_{2}$) mixture it is necessary to know the rates λ_{f} of the nuclear synthesis reaction

$$
\begin{equation*}
d t \mu \xrightarrow{\lambda_{f}}{ }^{4} \mathrm{He}+n+\mu^{-} \tag{1}
\end{equation*}
$$

from the different states ($Y V$) of the rotational and vibrationneal motions of the $d t \mu$ molecule. In solving this problem one uses the experimental data on the reaction $/ 8,9 /$

$$
\begin{equation*}
d+t \rightarrow{ }^{4} \mathrm{He}+n+17.6 \mathrm{MeV} \tag{2a}
\end{equation*}
$$

and the scattering /10/

$$
\begin{equation*}
d+t \rightarrow d+t \tag{ab}
\end{equation*}
$$

Reaction (ia) has been studied in the $d t$ CMS energy region $8 \mathrm{keV}<\mathrm{E}<12 \mathrm{MeV}$. The peculiarity is the nearthreshold resnance in the cross section $\sigma_{i n}(E)$ at energy $E_{R}=64 \mathrm{keV}$ with the halfwiath $\quad \Gamma / 2 \simeq 70 \mathrm{keV}$, the cross section maximum
$\sigma_{\text {in }}^{\text {max }} \simeq 56$ being close to the unitary limit. All the expertmental data suit the hypothesis that at energies $E<200 \mathrm{keV}$ reaction (ia) proceeds from the $d t$ state with the orbital angular momentum of the relative motion $L=0$ and the total angular momentum $J=3 / 2$ through the intermediate excited state of $5_{\text {He }}\left(3 / 2^{+}\right)$. The other states $\left(L=0, \quad J^{J}=1 / 2^{+}\right.$and $L \geqslant 1$) contribute less than 1% in the energy region discussed 19,11 . Ordinarily $/ 1,12,13 /$ the reaction (1) rate is calculated with formula

$$
\begin{equation*}
\lambda_{f}=A_{0}\left|\Psi^{I v}(0)\right|^{2}, \tag{3}
\end{equation*}
$$

where $\Psi^{\top v}(\vec{R})$ is the wave function of the $d t$ relative motin in the mesomolecule $d t \mu$ (with the nuclear $d t$
interaction not taken into account) and A_{0} is the reaction constent

$$
\begin{equation*}
A_{0}=\lim _{v \rightarrow 0}\left(\sigma_{i n} \vee C_{0}^{-2}\right) \tag{4}
\end{equation*}
$$

v being the $d t$-relative velocity and C_{0} - Gamov factor for the S - wave scattering

$$
\begin{equation*}
C_{0}^{2}=\frac{2 \pi \eta}{e^{2 \pi \eta}-1}, \quad \eta=\frac{\alpha C}{v} \tag{5}
\end{equation*}
$$

All the existing estimates $11,12 /$ of the rate λ_{f} were obtained with formila (3) for the $d t \mu$ ground state ($y=\gamma=0$). They, however, cannot be believed without some additional consideration.

First of all, when calculating λ_{f} they usually exploited the quasiclassical approximations for the wave functions $\boldsymbol{y}^{\mathcal{Y} \gamma}(\vec{R})$ inside the nuclear forces range ($0<R \leqslant R \approx 7$ fill). That, as we will see below, is quite inadequate for the excited rotational states with $Y \notin 0$. Besides, in some papers $/ 14 /$ the relevance of formula (3) was doubted because in the region $R \leqslant R_{1}$ the nuclear $d t$ interaction radically changes the wave function
$\Psi^{\text {IV }}(\tilde{R})$. Furthermore, it is not clear in advance to what extent formula (3) can be trusted in case when the reaction cross section is dominated by the nearthreshold resonance with large inelasticity.

In the present paper to calculate the mesic moleeulelevels' shifts and widhs caused by the nuclear $d t$ interaction we have solved the eigen-value problen for the Hamiltonian of $d t \mu$ system. For the calculation of the μ molecule wave functions we have used the adiabatic representation for the three-body problem /15/ and the algorithms developed in papers $/ 16-18 /$. The nuclear $d t$ interaction \widetilde{V}_{1} was chosen in the form which follows from the consideration of the coupled channels problem for $d t \rightarrow n^{4}$ he system. The anti- Hermitian part of \widetilde{V}_{1} has the separable form and negligibly depends on energy near the threshold. The Hermitian part of \tilde{V}_{4} is also a smooth function of energy and can be approximated by a local potential. With the nuclear interaction of the kind we obtained a good deacription of the reaction (2a) and the elastic $d t$ scattering
in the ${ }^{5} \mathrm{He}\left(3 / 2^{+}\right)$resonance region and calculated the widths and shifts $\Delta \varepsilon^{9 \gamma}$ of $d t \mu \quad$ molecule levels $J v$.

In the paper we have also determined the rate of nuclear reaction "in flight", ie., without preceding formation of $d t \mu$ molecule

$$
\begin{equation*}
t_{\mu}+d \rightarrow n+{ }^{4} \mathrm{He}+\mu^{-} . \tag{6}
\end{equation*}
$$

2. The Effective Hamiltonian of $d t$ Interaction

Consider the two -channel problem with the Hamiltonian:

$$
H=\left(\begin{array}{cc}
H_{1}^{0}+V_{1} & V_{12} \tag{7}\\
V_{21} & H_{2}^{0}+V_{2}
\end{array}\right) .
$$

Here H_{1}^{0} and H_{2}^{0}, V_{1} and V_{2} are free Hamiltonians and. interaction potentials in the channels $d t$ and $n^{4} \mathrm{He}$, correspondingly, $\quad V_{12}=V_{21}^{+}$is the potential coupling the channels $d t$ and $n^{4} \mathrm{He}$.

To find the $d t \quad$ scattering amplitude $f^{\prime 1}(E)$ we exploit the method of the "generalized optical potential" /19/ which enables one to reduce the two-channel problem with Hamilton nisan (7) to the one-channel problem with the non-local and energy-dependent Hamiltonian \widetilde{H}_{1} of the form

$$
\begin{equation*}
\tilde{H}_{1}=H_{1}^{0}+V_{1}+V_{12}\left(E-H_{2}^{0}-V_{2}\right)^{-1} V_{21} \equiv H_{1}^{0}+\tilde{V}_{1}, \tag{8}
\end{equation*}
$$

Making use of the spectral representation for the Green function of $n^{4} \mathrm{He}$ channel ${ }^{*}$)

$$
\begin{equation*}
\left(E-H_{2}^{0}-V_{2}\right)^{-1}=\frac{\left(2 m_{2}\right)^{3 / 2}}{\sqrt{n}} \int_{0}^{\infty} \frac{|\varepsilon\rangle\langle\varepsilon|}{E+\Delta-\varepsilon} \sqrt{\varepsilon} d \varepsilon, \tag{9}
\end{equation*}
$$

where $|\varepsilon\rangle$ is the eigen-function of the Hamiltonian $\mathrm{H}_{2}^{0}+\mathrm{V}_{2}$, $\Delta=17.6 \mathrm{MeV}$ the distance between the thresholds $d t$ and $n^{4} \mathrm{He}$, we obtain the following expression for the genera-
*) Here and below we consider the state $J^{\pi}=3 / 2^{+}$with the quantum numbers: $L=0, S=3 / 2$ in $d t$ channel (reducoed mass m_{1}) and $L=2, \quad S=1 / 2$ in $n^{4} \mathrm{He}$ channel (reduced mass m_{2})/11/.
iized optical potential \widetilde{V}_{1} in the physical region of $d t$ scattering ($E=0$ corresponds to the $d t$ channel threshold)

$$
\begin{align*}
& \tilde{V}_{1}(E+i 0)=V_{h}+V_{a}, \\
& V_{h}=V_{1}+\frac{\left(2 m_{2}\right)^{3 / 2}}{\pi} \int_{0}^{\infty} \frac{V_{12}|\varepsilon\rangle\langle\varepsilon| V_{24}}{E+\Delta-\varepsilon} \sqrt{\varepsilon} d \varepsilon, \tag{10}\\
& V_{a}=-i\left(2 m_{2}\right)^{3 / 2}(E+\Delta)^{1 / 2} V_{12}|\varepsilon\rangle\langle\varepsilon| V_{21} .
\end{align*}
$$

The onti- Hermitian part V_{a} of the potential \tilde{V}_{1} is of a separable form. Near the $d t$ threshold at $E \ll \Delta$ the E dependence of V_{a} can be neglected and V_{a} can be written as

$$
\begin{equation*}
V_{a}=-i \beta|\xi\rangle\langle\xi|, \tag{10a}
\end{equation*}
$$

β being the real constant and functions $\langle R \mid \xi\rangle$ being localized inside the range of nuclear forces. As it will be seen below, their specific form is inessential.

The Hermitian part V_{h} of the potential \widetilde{V}_{1} includes, besides the Coulomb repulsion $V_{c}=\alpha / R$, the superposition V_{n} of the diagonal nuclear $d t$ interaction and the Hermitian part of $d t$ interaction aue to the $d t \rightarrow n^{4} \mathrm{He}$ channel coupling. The latter weakly depends on energy E, since in the case of interest $E \ll \Delta$ and E is small compared to the characteristic range of integration $\varepsilon_{0} \sim\left(m_{4} R_{1}^{2}\right)^{-1} \sim 1 \mathrm{MeV}$ in expression (10) for V_{h} ($R_{1} \simeq 7 f(1)$ the range of nuclear interaction in $d t$ channel). In the following we assume that V_{h} can be approximated with local and energy-independent potential $U(R)$.

Partition (10) allows one to express the scattering amplitude $f^{\text {H1 }}(E)$ of the initial two-channel problem in terms of the solutions of the one-channel $d t$
scattering problem with potential $V_{h}=U(R)$. Let known be: Green function $G_{1}=$ $=\left(E-H_{1}^{0}-U\right)^{-1}$, scattering amplitude $f_{L}(E)$, Jost function $f_{L}(E)$ and the regular solution $P_{L E}(R)$ for the partial wave with the orbital angular momentum L. Remind that

$$
\begin{align*}
& \varphi_{L E}(R) \underset{R \rightarrow 0}{\rightarrow} R^{L} \quad f_{L}(E)=\left|f_{L}(E)\right| e^{-i \bar{\delta}_{L}(E)} \\
& \bar{\delta}_{L}(E)=\delta_{L}^{C}(E)+\delta_{L}(E) \quad f_{L}(E)=\frac{e^{2 i \bar{\delta}_{L}(E)}-1}{2 i K} \tag{11a}
\end{align*}
$$

and the normalized solution of the scattering problem is of the form:

$$
(K R)^{-1} X_{L E}(R)=K^{L}\left|f_{L}(E)\right|^{-1} \varphi_{L E}(R) \rightarrow \underset{R \rightarrow \infty}{\rightarrow}(K R)^{-1} \sin \left(K R-\eta \ln 2 K R-\frac{L \sqrt{k}}{2}+\bar{\delta}_{L}\right)(11 b)
$$

where $K=m_{1} v=\left(2 m_{1} E\right)^{1 / 2}$ is momentum in the $d t$ channel, $\delta_{L}^{C}(E)=\arg \Gamma(L+1+i \eta)$ is Coulomb phase shift, $\quad \delta_{L}(E)$ is additional phase shift due to potential V_{n}

With the two-potential formula (see e.g. /19/) scattering amplitude $f^{11}(E)$ can be expressed in terms of the introduced quantities as follows $/ 20 /$ (below we restrict ourselves to the case $L=0$ and suppress the index L):

$$
\begin{equation*}
f^{11}(E)=f-2 m_{1} f^{-2}(E)\left\langle\varphi_{E}\right| V_{a}\left(1-G_{1} V_{a}\right)^{-1}\left|\varphi_{E}\right\rangle . \tag{12}
\end{equation*}
$$

Making use of the separable form (10a) of potential V_{a} we can calculate the matrix element (12) explicitly:

$$
\begin{equation*}
\left\langle\varphi_{E}\right| V_{a}\left(1-G_{1} V_{a}\right)^{-1}\left|\varphi_{E}\right\rangle=\frac{-i \beta\left|\left\langle\varphi_{E} \mid \xi\right\rangle\right|^{2}}{1+i \beta\langle\xi| G_{1}|\xi\rangle} \tag{13}
\end{equation*}
$$

Then the S - matrix element corresponding to the $d t$ scattering can be written as follows:

$$
S^{11}(E)=e^{2 i \delta(E)}\left(1-\frac{4 m_{1} K \beta|f(E)|^{-2}\left|\left\langle\xi \mid \varphi_{E}\right\rangle\right|^{2}}{1+i \beta\langle\xi| G_{1}|\xi\rangle}\right)
$$

Using the spectral representation for the Green function of $d t$ channel

$$
\begin{equation*}
G_{1}(E+i 0)=\frac{\left(2 m_{1}\right)^{3 / 2}}{\pi} \int_{0}^{\infty} \frac{\left|\varphi_{\varepsilon}\right\rangle\left\langle\varphi_{\varepsilon}\right|}{E-\varepsilon+i 0}|f(\varepsilon)|^{-2} \sqrt{\varepsilon} d \varepsilon \tag{15}
\end{equation*}
$$

we rewrite the matrix element S^{11} :

$$
\begin{equation*}
S^{41}(E)=e^{2 i \bar{\delta}(E)} \frac{1-2 m_{1} k \Lambda|f(E)|^{-2}+i F(E)}{1+2 m_{1} k \Lambda|f(E)|^{-2}+i F(E)} \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
& \Lambda=\beta\left|\left\langle\varphi_{E} \mid \xi\right\rangle\right|^{2} \tag{17a}\\
& F(E)=\frac{\left(2 m_{1}\right)^{3 / 2}}{\pi} \int_{0}^{\infty} \frac{\beta\left|\left\langle\varphi_{\varepsilon} \mid \xi\right\rangle\right|^{2}}{E-\varepsilon}|f(\varepsilon)|^{-2} \sqrt{\varepsilon} d \varepsilon . \tag{170}
\end{align*}
$$

At $0<E<200 \mathrm{keV} \quad \Lambda \simeq$ const since in this energy region the regular solution $\varphi_{E}(R)$ depends weakly on energy inside the nuclear forces range.

The integration region in (17 b) can be divided into two parts: $0 \leqslant \varepsilon \leqslant \varepsilon_{0}$ and $\varepsilon_{0} \leqslant \varepsilon<+\infty$ in such a way that at $\varepsilon \leqslant \varepsilon_{0}$ the proximity $\Lambda \simeq$ const is satisfied, while the $E-$ dependence of the integral over the region $\varepsilon_{0} \leqslant \varepsilon<+\infty$ can be neglected:

$$
\begin{equation*}
F(E)=\frac{\left(2 m_{1}\right)^{3 / 2}}{\pi} \Lambda \int_{0}^{\varepsilon_{0}} \frac{|f(\varepsilon)|^{-2} \sqrt{\varepsilon}}{E-\varepsilon} d \varepsilon+F_{0} \tag{17c}
\end{equation*}
$$

(As the numerical calculations show $\varepsilon_{0} \simeq 0.5 \mathrm{MeV}$ is appropriate.)

Thus, to describe the cross sections of the elastic $d t$ scattering and the reaction $d t \rightarrow n$ "He near $d t$ threshold two constants Λ and F_{0} and Just function $f(E)$ for potential $U(R)$ at energies $E<\varepsilon_{0}$ will suffice. The behaviour of $f(E)$ at $E>\varepsilon_{0} \quad$ is irrelevant and we will exploit this circumstance when choosing the potential $U(R)$. As it will be shown in Sect. 3 the knowledge of the quantities Λ, Fo and $U(R)$ is sufficient for calculation of nuclear shifts and widths of $d t \mu$ molecule levels.

We have chosen potential $U(R)$ in the form (see Fig.1):

$$
U(R)=V_{c}+V_{n}=\left\{\begin{array}{cc}
-V_{0}+\frac{m_{1} \omega^{2}}{2} R^{2}, & O \leqslant R \leqslant R_{1} \tag{18}\\
1 / R, & R>R_{1}
\end{array}\right.
$$

provided $U\left(R_{1}\right)=V_{c}\left(R_{1}\right)$. Here and below the system of units $e=\hbar=m_{a}=1\left(m_{a}=m_{\mu} m_{4}\left(m_{\mu}+m_{t}\right)^{-1} * 199.3 m_{e}\right)$ is used. Value of m, and the units of energy ε_{1} and of

F1g. 2a.Cross section $\operatorname{\sigma in}_{\text {in }}(E)$ of $d+t \rightarrow n+{ }^{4}$ Hereaction: $\oint-$ expertment $/ 8 / \boldsymbol{\prime}$ - the survey ${ }^{\prime} /$, theoretical curve was calculated with (20a), (16) at parameters (21) of potential (18).

F1g. 2b. Quantity $\zeta(E)$ (20b) for (2b): experimental points from/20/, theoretical curve was calculated with (20b), (16). $X^{2}=16$ when simultaneous fitting to $\operatorname{Sin}(13$ points) ans ζ (11 points).
length a_{1} equal correspondingly

$$
m_{1}=11.045 m_{a}
$$

$$
\begin{equation*}
E_{1}=m_{0} e^{4 / k}=5.422 \mathrm{keV}, \quad a_{4}=\frac{\hbar^{2}}{m_{0} e^{2}}=2.655 \cdot 10^{-11} \mathrm{~cm} \tag{19}
\end{equation*}
$$

Paraneters $V_{0}, \omega, \Lambda, F_{0}$ were chosen so that the quantities calculated with the formalae ${ }^{*}$)

$$
\begin{align*}
& \sigma_{\text {in }}=\frac{2}{3} \frac{\pi}{k^{2}}\left(1-\left|S^{14}\right|^{2}\right), \tag{20a}\\
& \zeta=\frac{1}{3}+\frac{2}{3}\left|e^{-2 i \eta \ln \sin \theta / 2}-\frac{i}{2 \eta}\left(1-S^{14}\right)\right|^{2} \tag{208}
\end{align*}
$$

give the best fit to the experimental data. Here

$$
\begin{equation*}
\zeta(E)=\frac{d \sigma_{d}(E, \theta)}{d \Omega} /\left.\frac{d \sigma_{c}(E, \theta)}{d \Omega}\right|_{\theta=\pi / 2} \tag{20c}
\end{equation*}
$$

is the ratio of the differential cross aections of the elastic dt scattering and of the Coulomb scattering at $\Theta_{C M}=\pi / 2$. S - matrix element $S^{14}(E)$ was obtained with formulae (16), (17) with Jost function $f(E)$ found from the numerical solution of the onemchannel scattering problem with potential (18). The experimental data are from papers $/ 8-10 /$.

The best fit $\left(X^{2} / n_{D}=16 / 20 ; 24\right.$ experimental points and 4 parameters) to the experimental points $\sigma_{\text {in }}(E)$ (13 points) and $\zeta(E)$ (11 points) in the energy region $0<E<200 \mathrm{keV}$ is achieved with the following parameters (see Fig.2a and 2b):

[^0]\[

$$
\begin{aligned}
& \Lambda=5.45 \cdot 10^{-6}\left(\varepsilon_{1} a_{1} / \hbar\right)=8.34 \cdot 10^{-19} \mathrm{~cm}^{3} \mathrm{sec}^{-1} \\
& F_{0}=0.025 \text { at } \varepsilon_{0}=0.5 \mathrm{MeV} \\
& V_{0}=2917 \varepsilon_{1}=15.82 \mathrm{MeV} \\
& \omega=917 \mathrm{a}_{1}^{-1}=3.45 \mathrm{fm}^{-1} \quad\left(R_{1}=0.0252 \mathrm{a}_{1}=6.70 \mathrm{fm}\right)
\end{aligned}
$$
\]

In Fig. 3 functions $|f(E)|^{2},\left|f(E) C_{0}\right|^{2}$ and $F(E)$ calculated with potential (18) and parameters (21) are presented.

Fig. 3. Functions $|f(E)|^{-2}\left|f(E) C_{0}\right|^{-2}$ and $F(E)$ for potential (18) with parameters (21).

Some remarks about the choice procedure of potential $U(R)$ and constants Λ and F_{0}. For the given shape of the potential $U(R)$ the X^{2} criterium enables one to find potential parameters, however, the shape itself does not follow uniquely from the scattering and reaction data. There exists a set of potentials $U(R)$ having similar Jost functions at $0<E<\varepsilon_{0}$ and, hence, allowing to describe successfully the experimental data on reactions (2), since formulae (16) - (17) involve not the potential but its Jost function $f(E)$. In connection with the said, potential (18) should be regarded as a representative of the definite class of the potentials but not as the true nuclear dt interaction potential, the real form of which is inessential as far as we deal with calculation of the mesic molecule levels' widths.

3. Widths and Shifts of $d t \mu \quad$ Molecule Levels

When finding the shifts $\Delta \varepsilon_{y v}$ and widths $\Gamma^{Y v}$ of $d t \mu$ molecule levels Yo the first problem is to calculate the energy levels E_{B} and the wave functions Ψ_{B} of the mesic molecule with the Hermitian part (10) of the nuclear $d t$ interaction V_{n} taken into account. The interaction Hamiltonian H_{μ} in this case differs from the Coulomb mesic molecular Hamiltonian $H_{\mu}^{\circ}+V_{\mu} / 15,16 /$ by the short-ranged nuclear potential V_{n} (see Fig.1):

$$
\begin{align*}
& H_{\mu}=H_{\mu}^{0}+V_{\mu}+V_{n}, \tag{22}\\
& \left(H_{\mu}-E_{B}\right)\left|\Psi_{B}\right\rangle=0 .
\end{align*}
$$

The energy $E_{B}=\varepsilon_{y \gamma}+\Delta \varepsilon_{y \gamma}^{(n)}$ of the $Y v$ state of $d t \mu \quad$ molecule is measured from the $t^{\prime} \mu+d$ channel thereshold, $E_{y y}$ being the energy of $d t \mu$ molecule level for Hamiltonian $H_{\mu}^{\circ}+{ }_{\mu}$.

The shift $\Delta E=\Delta \varepsilon_{y \gamma}^{(a)}$
and the width $\Gamma=\Gamma^{y v}$ of the energy level E_{B} due to the absorbing potential V_{a} are found from the Schrodinger equation with the Hamiltonian \tilde{H}_{μ} :

$$
\begin{align*}
& \tilde{H}_{\mu}=H_{M}+V_{a}, \\
& \left(\tilde{H}_{M}-E\right)|\Psi\rangle=0, \tag{23}\\
& E=E_{B}+\Delta E-i \Gamma / 2,
\end{align*}
$$

where potential V_{a} is defined by relation (10a).
Equation (23) can be transformed:

$$
\begin{equation*}
|\Psi\rangle=\left(E-H_{\mu}\right)^{-1} V_{a}|\psi\rangle \tag{24}
\end{equation*}
$$

Write the spectral representation of the Green function: $\left(E-H_{M}\right)^{-1}=\sum_{n} \frac{\left|\psi_{B}^{(n)}\right\rangle\left\langle\Psi_{B}^{(n)}\right|}{E-E_{B}^{(n)}}+\frac{\left(2 m_{1}^{*}\right)^{3 / 2}}{\pi} \int_{0}^{\infty} \frac{\left|\psi_{\varepsilon}^{\mu}\right\rangle\left\langle\psi_{\varepsilon}^{\mu}\right|}{E-\varepsilon} \sqrt{\varepsilon} d \varepsilon$,
where $\psi_{B}^{(n)}$ and ψ_{Σ}^{μ} functions of the $d t \mu$
are, correspondingly, the wave molecule state $n=(U \sigma)$ and
($t_{\mu}+d$) system at scattering energy ε, m_{1}^{*} is the reduced mass of ($\quad \mu+d$) system, Not written is the contribution from the continuum of $d \mu+t$ channel. Here we have neglected the contributions from the channels corresponding to high excitations and dissociation of $d \mu$ and $t \mu$ atoms. In the adiabatic representation of the three body problem 115,16/ the wave functions $\Psi_{\mathrm{s}}^{(n)}=\psi_{m_{3}}^{\text {vv }}(\vec{r}, \vec{R})$ of $d t \mu$
molecule states Iv are decomposed over the adiabatic basis ${ }^{121 /:}$

$$
\begin{equation*}
\Psi_{m_{j}}^{Y v v}(\vec{r}, \vec{R})=\sum_{j}^{N_{0}} \phi_{j}(\vec{r}, R) X_{j}^{I v}(R) D_{m m_{j}}^{Y}(\Phi, \theta, 0), \tag{26}
\end{equation*}
$$

where N_{0} - the number of decomposition terms which provides
 In this decomposition functions $\phi_{j}(\vec{r}, R)$ describe the M - meson motion in the state with quantum numbers $j=\left(N l_{m}\right)$ in the field of the fixed at distance R nuclei d and t. The algorithms of their calculation are known ${ }^{21 /}$. The functions $X_{j}^{y v}(R)$ present the relative $d t$ motion. They satisfy the system of differential equations

$$
\begin{gathered}
\left\{\begin{array}{c}
\frac{d^{2}}{d R^{2}}+2 m_{1}\left(\varepsilon_{y v}+\Delta \varepsilon_{y v}^{(n)}-V_{n}(R)-\frac{y(Y+1)-2 m^{2}}{R^{2}}-U_{j j}^{y}(R)\right\} X_{j}^{y v}= \\
= \\
=\sum_{j \neq j}^{N} U_{j j^{\prime}}^{y}(R) X_{j}^{y v}(R) \\
x_{j}^{y v}(0)=0 \quad X_{j}^{y v}(R) \underset{R \rightarrow \infty}{\longrightarrow 0}
\end{array}\right.
\end{gathered}
$$

which follows from Schrödinger equation (22) after the substitution of decomposition (26) and the elimination of the meson coordinates \vec{r} and the angular variables θ, $\dot{\Phi}$ of vector $\vec{R} / 15,16 /$.

To calculate the matrix elements in (24) one has to know functions $\psi_{8}^{(n)}(\vec{r}, \vec{R})$ and $\psi_{E}^{\mu}(\vec{r}, \vec{R})$ in the region $0 \leqslant R \leqslant R_{1} \ll 1$. In the limit $R \rightarrow 0$ functions $\phi_{j}(\vec{r}, R)$ transform to wave functions $\Psi_{\mathrm{Nlm}}(\vec{r})$ of ($\mu \mathrm{H}$ ($)$ mesic atom states $j=(N \operatorname{lm}) \beta_{2}$ defined in the coordinate frame rotating with vector $\vec{R} /$ K2/ , asymptotic of the total wave function becoming
$\Psi_{m_{j}}^{y v}(\vec{r}, \vec{R})=\sum_{R \rightarrow 0}^{N_{0}} \psi_{N l_{m}}(r, \theta, \varphi) R_{N}^{-1} X_{N l_{m}}^{y v}(R) D_{N m_{y}}^{y}(\Phi, \theta, 0)$.
V_{a} being projection operator to the $L=0$ state of the relative $d t$ motion, it is necessary to extract the corresponding part from the wave function (28), what is achieved by transition to the laboratory reference frame $\vec{r}=(r, \theta, \varphi) \rightarrow$ $\vec{r}=(r, \widetilde{\theta}, \tilde{\varphi}) \quad / 22 /$. This transition is given by the following formulae $/ 22 /$

$$
\begin{equation*}
\Psi_{m_{y}}^{y v}(\vec{r}, \vec{R})=R^{-1} \sum_{N \ell} \sum_{m=0}^{\min (\ell, y)} \sum_{L=1 y-l}^{j+l} \sum_{m_{e}=-\ell}^{\ell} C_{l m_{\ell} L m_{L}}^{y m_{y}} . \tag{29}
\end{equation*}
$$

where

$$
\text { . } \Psi_{N \ell m_{2}}(r, \tilde{\vartheta}, \tilde{\varphi}) Y_{L m_{L}}(\theta, \phi) C_{m L}^{\ell J} X_{N \ell_{m}}(R)
$$

$$
\begin{equation*}
G_{m L}^{l y}=(-1)^{l+m} \frac{1+(-1)^{y-l-L}}{\left[2\left(1+\delta_{m 0}\right)\right]^{1 / 2}} C_{l m}^{L 0} y-m \tag{30}
\end{equation*}
$$

Chang-Fano transformation $/ 23 /$ from the rotating to the rest
 -Gordon coefficients ${ }^{24 /}$.

It is important that in the new representation (29) the dependence from the angles θ and ϕ is governed not by the total angular momentum \mathcal{Y} of the three-body system, as it were in the initial decomposition (28), but the orbital angular momentum L of the relative $d t$ motion in the mesic molecule.

The $R \rightarrow 0$ assmptotics of the solutions of the set of equations (27) has been constructed in paper $/ 22 /$ and has the form:

$$
\begin{equation*}
R^{-1} X_{N l m}^{y v}(R)=\sum_{R \rightarrow 0}^{y+l} G_{L=|Y-l|}^{l y} A_{N l}^{\perp y v} \varphi_{L B}^{\mu}(R), \tag{31}
\end{equation*}
$$

where matrices $G_{m L}^{\ell Y}$ are defined by relation (30), $\quad \varphi_{L B}^{\mu}$ is regular solution of the system (27)

$$
\begin{equation*}
\varphi_{L B}^{\mu}(R) \underset{R \rightarrow 0}{\vec{~}} R^{L} \tag{32}
\end{equation*}
$$

and the values of coefficients $\mathfrak{A}_{N} \ell$ are found from relations (31) and (32) with the calculated from eqs.(27) functions $X_{j}^{Y \gamma}(R)$ normalized by the condition:

$$
\begin{equation*}
\sum_{j}^{N o} \int_{0}^{\infty}\left[X_{j}^{Y \gamma}(R)\right]^{2} d R=1 \tag{33}
\end{equation*}
$$

In the sum (31) only the term with $L=0$ should be taken into account, since $V_{a} i s$ the projector to S - state. Using the properties of Clebsch-Gordan coefficients

$$
\begin{equation*}
C_{l m \ell 00}^{J m_{J}}=\delta_{\ell y} \delta_{m_{l} m_{J}} \quad C_{J m J-m}^{00}=(2 J+1)^{-1 / 2}(-1)^{J-m} \tag{34}
\end{equation*}
$$

and orthogonality condition:

$$
\begin{equation*}
\sum_{m} G_{m L}^{l y} G_{m L}^{l^{Y}}=1 \tag{35}
\end{equation*}
$$

we obtain with formulae (29) and (31)

$$
\begin{align*}
& R^{-1} X_{N I m}^{V V V}(R)=G_{R \rightarrow O}^{Y y} A_{N S}^{O N V} Y_{O B}^{M}(E) \text {, } \\
& \Psi_{m_{j}}^{Y / v}(\vec{r}, \vec{R}) \underset{R \rightarrow 0}{ } \sum_{N m} G_{m 0}^{Y Y} \psi_{N J m 3}(r, \tilde{\forall}, \tilde{\varphi}) Y_{00}(\theta, \tilde{\varphi}) R^{-4} X_{N J m}^{M V}(R)= \tag{36}\\
& =\frac{1}{\sqrt{4 N \pi}} \sum_{N} \Psi_{N Y m}(r, \tilde{\theta}, \tilde{\varphi}) \mathscr{H}_{N J}^{N Y N} \varphi_{O B}^{M}(R) . \tag{37}
\end{align*}
$$

Coefficient $\int_{N Y}^{\text {Ny }}$ can be found from relation (31):

$$
\begin{align*}
V f_{N Y}^{M V} & =\left(G_{\infty}^{Y y}\right)^{-1} \lim _{R \rightarrow 0} R^{-1} X_{N Y 0}^{Y V}(R)= \\
& =\sqrt{2 J+1} \lim _{R \rightarrow 0} R^{-4} X_{N y 0}^{Y V}(R) \tag{38}
\end{align*}
$$

From the numerical calculations it follows that coefficients $\mathcal{J p}_{N y}^{p y v}$ at $N=\boldsymbol{Y}+1$ exceed coefficients with $N=\boldsymbol{y}+1$ by an order of magnitude. Thus for the wave function Ψ_{B}
the following expression is valid within $\sim 10 \%$ accuracy:

$$
\begin{equation*}
\psi_{m j}^{y v}(\vec{r}, \vec{R})=\frac{1}{R \rightarrow 0} \frac{1}{\sqrt{4 \pi}} \Psi_{g+1, y m_{3}}(r, \hat{\theta}, \hat{\varphi}) B^{D v} \varphi_{O B}^{M}(R) \tag{39}
\end{equation*}
$$

where we have introduced notation: $\quad B^{J V}=\mathcal{A}_{y+1, Y}^{M v}$.

Function $\Psi T_{\mathcal{E}}^{M} \quad$ in representation (25) is that of the scattering problem $t_{\mu}+d \rightarrow t \mu+d$ at $R \rightarrow 0$ and has the form analogous to (29) and (39) with $X_{l m}^{Y}(K, R)$ substituting $X_{N / m}^{y V}(R)$. Functions $X_{l m}^{y}(K, R) \quad$ of the continuum $\left(\varepsilon=E=K^{2} / 2 m_{1}\right)$ satisfy eqs.(27) with the boundary conditions

$$
\begin{align*}
& x_{\ell m}^{y}(K, R) \underset{R \rightarrow \infty}{\rightarrow} \sin \left(K R-\frac{y_{\pi}}{2}+\delta_{y}\right), \tag{40a}\\
& (K R)^{-1} X_{l m}^{y}(K, R)=\sum_{R \rightarrow 0}^{y_{l} \ell} G_{L=|Y-Q|}^{\ell y} K_{m L}^{L} \|\left._{\mu}(E)\right|_{L E} ^{-1}(R),
\end{align*}
$$

$\varphi_{L E}^{\mu}(R) \underset{R \rightarrow 0}{ } R^{L}$ is the regular solution (27). Jost function $f_{\mu}(E)$ for potential $U_{\mu}(R)=V_{\mu}(R)+V_{n}(R)$ at $L=0$ is defined, similarily to (38)

$$
\left|f_{\mu}(E)\right|^{-1}=\sqrt{2 J+1} \lim _{R \rightarrow 0}(K R)^{-1} X_{y_{0}}^{y}(K, R) .
$$

$$
\text { Using (25), (39), (40) and separable form of } V_{a} \text {, elimi- }
$$

nate the unknown function $|\psi\rangle$ from \mathbb{E}.(24):

$$
i=\frac{\left.\beta\left|\left\langle\varphi_{o B}^{\mu}\right|\right\}\right\rangle\left.|\cdot| \cdot \xi^{2}\right|^{2}}{E-E_{B}}+\frac{\left(2 m_{1}^{*}\right)^{3 / 2}}{\pi} \beta \int_{0}^{\infty} \frac{\mid\left\langle\varphi_{0 \varepsilon}^{\mu} \mid \xi\right\rangle}{E-\varepsilon}\left|f_{M}(\varepsilon)\right|^{-2} \sqrt{\varepsilon} d \varepsilon \text { (41) }
$$

(Here we take into account only the leading term in the spectral representation (25) of the Green function, because the contribution from other $d t \mu$ molecule levels is negligible near the pole $E=E_{B}$.

From eq.(4x) follow the expressions for the shift and width of $d t \mu$ molecule level")

[^1]\[

$$
\begin{equation*}
r=\frac{2 \beta\left|\left\langle\varphi_{O B}^{\mu} \mid \xi\right\rangle\right|^{2} \cdot\left|B^{\text {vv }}\right|^{2}}{1+F_{\mu}^{2}\left(E_{B}\right)}, \Delta E=-\frac{\Gamma}{2} F_{\mu}\left(E_{B}\right), \tag{42}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
F_{\mu}(E)=\frac{\left(2 m_{1}^{*}\right)^{3 / 2}}{\pi} \beta \int_{0}^{\infty} \frac{\left|\left\langle\mathcal{P}_{0 \varepsilon}^{\mu} \mid \xi\right\rangle\right|^{2}}{E-\varepsilon}\left|f_{\mu}(\varepsilon)\right|^{-2} \sqrt{\varepsilon} d \varepsilon . \tag{43}
\end{equation*}
$$

As the calculations show the regular solution $\varphi_{O B}^{\mu}(R)$ for Hamiltonian H_{μ} coincides with the regular solutions $\varphi_{O E}(R)$ and $\varphi_{O E}^{\mu}(R)$ for Hamiltonian H_{1} and H_{μ} at energy E up to 200 keV , the precision being $\sim 10^{-3}$. Taking this fact and relation (17a) into account we obtain as a result:

$$
\begin{aligned}
& \Gamma^{y v}=\frac{2 \Lambda \cdot\left|B^{J v}\right|^{2}}{1+F_{M}^{2}\left(E_{B}\right)} \\
& \Delta \varepsilon_{Y v}^{(a)}=\Delta E=-\frac{1}{2} \Gamma^{M v} F_{M}\left(E_{B}\right)
\end{aligned}
$$

Coefficients $B^{\text {ye }}$ are presented in Table I along with coefficients $B_{0}^{Y V}$ which have been calculated from the system of equations (27) without potential V_{n} of nuclear $d t$ interaction. It is easy to see that coefficients $B^{\text {nv }}$ and $B_{0}^{\text {JV }}$

Table I
The main characteristics of (YV) states and rates of nuclear reaction in $d t \mu$ molecule*)

*) Quantities $B^{y v}$ and $B_{0}^{y V}$ are calculated for potential (18) with parameters (21) and for $V_{n}(R)=0$,respectively, with $N_{0}=42$, including 6 pairs of states $j=(N / m)$ of two-center problem: $15 \sigma_{g}, 2 p \sigma_{u} ; 2 S \sigma_{g}, 3 p \sigma_{u}$; $3 d \sigma_{g}, 4 f \sigma_{u} ; 2 p \pi_{u} ; 3 d \pi_{g} ; 3 p \pi_{u}, 4 d \pi_{g} ;$ $3 d \delta_{s}, 4 f \delta_{\mu}$. Quantities $\lambda_{f}^{\text {wi }}$ and $\lambda_{\text {of }}^{\text {ore calculat- }}$ ed by means of (47) and (48), $\quad A^{\dagger}$ and A_{0} from (46) and (4). $\lambda_{f}^{\infty 0}$ coincides by the order of magnitude with estimates $\lambda \simeq 10^{12} \mathrm{~s}^{-1}$ from 11,121 .
differ by more than an order of magnitude. Figs. 3 and 4 display the functions $X_{N \ell_{m}}^{N v}(R)$ and $\bar{X}_{N \ell_{m}}^{\mathcal{V}}(R)$ calculated from eqs.(27) with potential V_{n} and without it, correspondingly. It is evident that functions $X_{N l m}^{\mathrm{YV}}(R)$ and $\bar{X}_{N \ell m}^{\text {NV }}(R)$ behave in quite different manner. In particular, functions $X_{N \ell m}^{y V}(R)$ have nodes in the region $\quad R<R_{1}{ }^{*}$).

4. Calculation of Rates $\lambda_{f}^{y v}$

In the limit $E \rightarrow 0$ the cross section $\sigma_{i n}(E)$ (20a) can be written in the form

$$
\begin{equation*}
v \sigma_{\text {in }}=\frac{16 \pi}{3} \cdot \frac{\Lambda|f(E)|^{-2}}{1+F^{2}(E)} \tag{45}
\end{equation*}
$$

From (44) and (45) it follows

$$
\lambda_{f}^{v v}=\Gamma^{v v}=\frac{3}{8 \pi} \lim _{v \rightarrow 0}\left(v \sigma_{i n}|f(E)|^{2}\right)\left|B^{y v}\right|^{2} \frac{1+F^{2}(0)}{1+F_{\mu}^{2}\left(E_{B}\right)} .
$$

Introducing notation

$$
\begin{equation*}
A=\lim _{v \rightarrow 0}\left(v \sigma_{\text {in }}|f(E)|^{2}\right) \tag{46}
\end{equation*}
$$

and separating the scale factor a_{1}^{-3} from $\left|B^{V V}\right|^{2}$ write $\lambda_{f}^{\text {IV }}$ in the form

$$
\begin{equation*}
\lambda_{f}^{y v}=\frac{3}{2} \frac{A}{4 \pi a_{1}^{3}}\left|B^{y v}\right|^{2} \frac{1+F^{2}(0)}{1+F_{\mu}^{2}\left(E_{B}\right)} \tag{47}
\end{equation*}
$$

Expression (47) coincides, but for the last factor, by its form with the "classical" expression (3), which, after elimination of the angular variables from $\psi(\vec{R})$, becomes (with the spin factors taken into account)

$$
\begin{equation*}
\lambda_{o f}^{I \gamma}=\frac{3}{2} \frac{A_{0}}{4 \pi a_{1}^{3}}\left|B_{0}^{I \gamma}\right|^{2} . \tag{48}
\end{equation*}
$$

The similarity between formulae (47) and (48) is due to the identity of the methods used to derive them: in both cases the Hamiltonian $\tilde{H}_{1}=H_{1}^{0}+V_{c}+V_{n}+V_{a}$ of the effective one-channel problem is decomposed in two parts. For one of them the eigenvalue problem is solved precisely, the other one is taken into account by somewhat means.

The relation (48) is based on the partition $\tilde{H}_{1}=$ $=\left(H_{4}^{0}+V_{c}\right)+\left(V_{n}+V_{a}\right)$, the short-range interaction $V_{n}+V_{a}$ being considered as perturbation in the scattering amplitude $/ 27 /{ }^{*}$. The deviations from relation (48) have been studied in detail only for two boay system with Coulomb interaction /28/, for arbitrary long-ranged potential this question was scarcely investigated (see also $/ 20 /$ and references therein).

Relation (47) originates from partition $\tilde{H}_{4}=$ $=\left(H_{1}^{0}+V_{c}+V_{n}\right)+V_{a}$, where the anti-Hermitian part V_{a}, having a separable form, is a perturbation. This relation is valid everywhere, but in the region of the rearrangement of the
molecular spectrum. The probability of the rearrangement is extremely smell as it follows from general considerations $/ 26 /$. The illustrating numerical calculation is given in Appendix

Reaction constants

$$
\begin{align*}
& A_{0}=1.3 \cdot 10^{-14} \mathrm{~cm}^{3} \mathrm{~s}^{-1} \\
& A=1.3 \cdot 10^{-17} \mathrm{~cm}^{3} \mathrm{~s}^{-1} \tag{49}
\end{align*}
$$

were found with formulae (4) and (46), formalae (20a) and (16) with parameters (21) having been used to extrapolate $\sigma_{\text {in }}(E)$ to $E=0$. The A_{0} magnitude is close to $A_{b}=1.1 \cdot 10^{-14} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ foumd in paper $/ 29 /$ by Padea-approximation of cross section $\sigma_{\text {in }}(E)$ to $E=0$.

To calculate integrals $F(0)$ and $F_{\mu}\left(E_{8}\right)$ it is necessary to find Jost functions $f(E)$ and $f_{\mu}(E)$, for potentials $U(R)=V_{c}+V_{n}$ and $U_{\mu}(R)=V_{\mu}+V_{n}$, the potentials differ-
*) Note, that the nuclear potential V_{n} should not necessarily be small (in particular, nuclear levels of its own are possible), and the perturbation the oxy in the potential is, in general, inapplicable.
ing by their long-ranged terms V_{C} and V_{μ}. Joist function $f(E)$ was obtained by numerical solution of the one-channel scattering problem with potential $U(R)$. Function $f_{M}(E)$ was found from the relation

$$
\begin{equation*}
f_{\mu}(E)=f(E) C_{c}^{-1} \bar{f}_{\mu}(E) \tag{50}
\end{equation*}
$$

where $\bar{f}_{\mu}(E)$ is Jost function of purely coulomb t $\mu+d$ problem, calculated with the algorithm $/ 30 /$ based on the method of phase functions 131/. (Here we have taken into account that μ - meson involved in $t \mu+\alpha$ scattering slightly influences the position and width of the nuclear $d t$ resonance.)

The numerical calculation gives $\left(1+\Gamma^{2}(0)\right) /\left(1+F_{\mu}^{2}\left(E_{B}\right)\right)=0.93$ for $Y=0$ and 1.1 for $Y=1$. Besides, as one can see from Table I, the ratio holds

$$
\left|B^{y v} / B_{0}^{y v}\right|^{2} \simeq A_{0} / A
$$

hence, values of λ_{f} and $\lambda_{\text {of }}$ found with formulae (47) and (48) agree within 10% accuracy.

Our investigation shows that when calculating $\lambda_{f}^{V V}$ one can use formula (48) along with (47), despite the nearthreshold resonance in the (aa) cross section and the node of the wave function $x^{v v}(R)$ in the region $\left.R<R_{1}{ }^{*}\right)$.

The accuracy of the values $\lambda_{f}^{\eta v}$ is estimated to be about 10%. This uncertainty includes the experimental errors of cross section (2) and the error in their extrapolation to $E=0$. Besides, when calculating $\lambda_{f}^{y v}$ we have kept only the leading term in the decomposition (29) of $f^{\text {Yr }}(\vec{r}, \vec{R})$. Inclusion of the remaining terms (the so-called nonadiabatic corrections) would somehow increase the values of $\lambda_{f}^{\mathrm{sy}}$. Further, we have taken into account only the state $J^{\pi}=3 / 2^{+}, L=0$ dominating in

[^2]reaction (2a). To estimate the contribution from other states is a special problem.

Mention also, that the calculated values $\lambda_{f}^{y \gamma}$ correspond to the rate of nuclear reaction from the hyper-fine structure of $d t \mu$ TV levels with total spin of nuclei $S=3 / 2 / 33 /$. This circumstance should be taken into account when calculating the μ-catalysis process kinetics.

The shifts $\Delta \varepsilon_{y v}^{(n)}$ and $\Delta \dot{E}_{y \delta}^{(a)}$ of diM mesomolecole levels due to nuclear $d t$ interaction are given in Table 2. The total level shifts $\Delta \varepsilon_{y v}=\Delta \varepsilon_{y v}^{(m)}+\Delta \varepsilon_{y v}^{(a)}$ do not exceed $10^{-3} \mathrm{eV}$ for all levels (Iv).

Table 2
The shifts of $d t \mu \quad$ molecule levels due to $d t$ nuclear interaction*)

$(Y v)$	(00)	(01)	(10)	(11)	(20)
$\Delta \varepsilon_{y v}^{(n)}$	$-0.88 \cdot 10^{-3}$	$-0.74 \cdot 10^{-3}$	$<10^{-5}$	$<10^{-5}$	$<10^{-6}$
$\Delta \varepsilon_{v \gamma}^{(a)}$	$0.18 \cdot 10^{-3}$	$0.14 \cdot 10^{-3}$	$<10^{-6}$	$<10^{-6}$	$<10^{-6}$
$\Delta \varepsilon_{v v}$	$-0.70 \cdot 10^{-3}$	$-0.60 \cdot 10^{-3}$	$<10^{-5}$	$<10^{-5}$	$<10^{-6}$

*) The shifts are given in RV. $\Delta \varepsilon_{y v}^{(n)}$ - the shift due to nuclear potential $V_{n}, \Delta \varepsilon_{y v}^{(a)}$ - the shift due to V_{a}, $\Delta \varepsilon_{v v}=\Delta \varepsilon_{v v}^{(n)}+\Delta \varepsilon_{y v}^{(a)}$.
5. The Rate of Reaction $t \mu+d \rightarrow n+{ }^{4} \mathrm{He}+\mu^{-}$

In our approach the reaction (6) cross section is calculated with the same formulae as the reaction (aa) cross section is. The only difference is that one should insert Jost function $f_{\mu}(E)$ of $t \mu+d$ scattering problem into formulae (20a) and (16) instead of $d t$ scattering problem Josh function $f(E)$. It is evident that at large energies $E \geqslant 1 \mathrm{MeV}$ the difference between $f(E)$ and $f_{\mu}(E)$ becomes insignificant and cross sections of reactions (Ca) and (6) equal each other. However, at $E \lesssim 10 \mathrm{keV}$ this difference is noticeable, because there is no

Fig. 6. The rates $W_{\mu}(E)$ (51) and $W(E)$ of reactions (6) and (Ra) at liquid hydrogen density. Experimental points are frow 9 .

Coulomb repulsion at $R>_{r} a_{1}=2.66 \cdot 10^{-11} \mathrm{fm}$ in $t_{\mu}+d$ system. The means of $f_{\mu}(E)$ calculation were discussed in the previous Section.

Figure 6 shows the E - dependence of reaction (6) rate W_{μ}

$$
\begin{equation*}
W_{\mu}=\sigma_{\text {in }} \cdot V \cdot N_{0} \tag{51}
\end{equation*}
$$

(Dis relative tM-d velocity, $\quad N_{0}=4.25 \cdot 10^{22} \mathrm{~cm}{ }^{-3} 18$ the liquid Hydrogen density). The attention should be paid to the specific minimum at $E \sim 0.5 \mathrm{keV}$. it $E=12 \mathrm{kef}$ the reaction (6) rate $W_{M}=4.9 \cdot 10^{6} \mathrm{~S}^{-1}$ still significantly exceeds the rate $W=2.7 \cdot 10^{5} \mathrm{~s}^{-1}$ of reaction (20).

The obtained results are in good agreement with the simple estimate of nuclear reaction "in flight" rate $\mathcal{W}_{\mu} / 1,3 /$

$$
W_{\mu} \simeq \lambda_{f}^{d t_{\mu}}\left(a_{1} / a_{0}\right)^{3} \simeq 1.2 \cdot 10^{12}\left(\frac{2.6 \cdot 10^{-11}}{0.5 \cdot 10^{-8}}\right)^{3} \approx 10^{5} \mathrm{~s}^{-1}
$$

6. Conclusions

The present investigation is the first detailed calculation of nuclear reaction rates from different ($Y_{N} \sigma$) states of dtp
molecule. The method developed can be applied to calculation of nuclear reactions rates in other $\mu \cdots$ molecules.

It is shown that formulae (47) and (48) for calculation $\lambda_{f}^{\lambda_{f}}$ resonance. are approximately equivalent, despite the nearthreshold

Reaction (2a) was theoretically studied earlier in the framework of the two-chonnel potential model $/ 34,35 /$ in order to describe the cross section $\sigma_{i n}(E)$ in the wide energy region $E \leqslant 5 \mathrm{MeV}$, the possibility to use the simple effective one--channel Hamiltonion being thus excluded.

In the energy region of ${ }^{5} \mathrm{He}^{*}\left(3 / 2^{+}\right)$resonance ($0<\mathrm{E}<200 \mathrm{keV}$) we succeded in reproducing reactions (2a) and (2b) cross sections with the generalized optical potential.

Our approach.is, in essense, model independent, in spite of the particular form (18) of potential. It would be, however, desirable to calculate the rate $\lambda_{f}^{y v}$ without concretization of potential $U(R)$. The possibility is given, e.g., by boundary condition model where the set of equations (27) is solved with boundary conditions at $R \sim R_{1}$ following from the analysis of reactions (2a) and (2b) in the framework of R matrix theory $/ 36 /$.

The authors greately appreciate the help from M.P. Faifman, L.N.Somov and S.I.Vinitsky and fruitful discussions with R.A.Eram zhyan, S.S.Gerstein, Yu.V.Petrov, V.A.Sergeev and I.S.Shapiro at different stages of the work.

Appendix

Formulae (44) are valid when there is no rearrangement of $d t \mu$ molecule spectrum. To estimate the probability of such situation we have studied how the energies of $d t M$
molecule states depend on the depth V_{0} of nucleax "well" V_{n}.

Figure 7 displays the V_{0} - dependence of the energy Eyv of $d t \mu$ molecule state $(V=0, V=1)$, found by numerical integration of eqs.(27).

The depth V_{0} of nuclear potential increasing, the nuciear quasi-stationary level $E_{R}=64 \mathrm{keV}$ correaponding to $3 / 2^{+}$state of SHe , goes down and at $V_{0}=V_{0}^{*}$ the spectrum

Fig. 7 The scheme of the rearrangement of $d t \mu$ system spectrum. The position of the levels ($3 / 2^{+}$of $5 \mathrm{He}{ }^{*}$ and ($I=0, v=1$) of $d t M \quad$ molecule $)$ is shown versus V_{0}-parameter in the potential (18). The magnitude $V_{0}^{*}=2968.225$ essentially differs from $V_{0}=2917$ from the set (21). The range of rearrangement region $\Delta V_{0} / V_{0} \sim 10^{-5}$.
of $d t \mu$ system rearranges, the "ex"-level $3 / 2+$ of the nuclear well V_{n} substitutes the μ molecule level ($Y=0$, $v=1$), the latter takes the place of ($y=0, v=0$) level and this one becomes bound state in the nuclear well. The wave functions $X_{j}^{*}{ }_{j}(R)$ achieve additional nodes inside the range of nuclear forces $0<R<R_{1}$ (see Fig.8). The calculatins show that the strong interaction weakly influences the position of $d t \mu$ molecule levels, but in the close vicinity ΔV_{0} of the point V_{0}^{*}, where the level shift can be of the order of the level energy: $\left|\Delta \varepsilon_{y \gamma}\right| \sim\left|\varepsilon_{y \gamma}\right|$. The calculations show that the critical region is very small $\Delta V_{0} / V_{0} \sim 0.01 / 10^{3} \sim 10^{-5}$.

Parameter $V_{0}^{*}=2968.225$ corresponding to the rearrangement region essentially differs from this (21), which provides the best fit to the experimental cross sections (see Fig.1a and Mb).

The cross sections $\sigma_{\text {in }}(E)$ and $\sigma_{e l}(E)$ calculated with formulae (20) at $V_{0}=V_{0}^{*}$ differ from the experimental

Fig. 8 The wave functions of $d t \mu$ system (with potential (18)) in the rearrangement region. The numbers correspond to Fig.7. Functions 2 and 3 exceed function 1 by three orders of magnitude. Function 3 (after the rearrangement) differs from function 2 (before the rearrangement) by its sign in the region $R \leqslant R_{1}$ and by additional node at $R \cong 0.7$.
ones by two-three orders of magnitude and do not reproduce, in particular, their resonant behaviour. This fact evidences that the rearrangement of $d t \mu \quad$ molecule spectrum does not. occur.

Note that this study has been carried for the nuclear level of zero width. The rearrangement of dtw molecule spectrum in general case needs additional consideration and should be presented elsewhere.

References

1. Ya.B.Zel'dovich, S.S.Gerstein. Usp. Fiz. Nauk, 21, 581 (1960).
2. S.S.Gerstein, L.I.Ponomarev. Mesomolecular Processes Induced by \mathscr{I}^{-}and μ^{-}Mesons, in "Muon Physics", V.III, Eds. V.Hughes and C.S.Wu, Academic Press, New York and London (1975).
3. L.I.Ponomarev. Mesic Atomic and Mesic Molecular Processes in the Hydrogen Isotope Mixtures. VI Int. Conf. an Atomic Phys. 17-22 August 1978, Riga. Proceedings, p. 162, z1natne and Plenum Press (1979).
4. S.I.Vinitsky, I.I.Ponomarev, I.V.Puzynin, T.P.Puzynina, L.N.Somov, M.P.Faifman. ZhETF, 74, 849 (1978).
5. S.S.Gerstein, L.I.Ponomarev. Phys. Lett., 228, 80 (1977).
6. V.M.Bystritsky, V.P.Dzhelepov, Z.V.Ershova, V.G.Zinov, V.K.Kepyshev, C.M.Muhamet-Galeeva, V.S.Nadezhdin, L.A.Rivkis, A. I.Rudenko, V.I.Satarov, N.V.Sergeeva, L.N.Somov, V.A.Stolupin, V.V.Fil' chenkov. Pisma v Zhirte, 31, 249 (1980).
7. Yu.V.Petrov. Trudy XIV Zimnei shkoly LIYaF, p.139, 1980. Yu.V.Petrov. Nature, V.285, p. 466, 1980.
8. L.N.Katsaurov. Trudy FTAN, v. 14, p.67, 1965.
9. H.Liskien, A.Paulsen. Nucl. Data Tables, 11, p.569, 1973.
10. Yu.G.Balashko. Trudy FIAN, v. 33,66 , (1965).
11. F.A.A jzenberg-Selove. Nucl. Phys., Az20, N 1, p.1, 1979.
12. J.D.Jackson, Phys. Rev., 106, p.330, 1957.
13. S.Cohen, D.L.Judd, R.J.Riddel. Phys. Rev., 110,p. 1471 (1958). UCRL-8389, UCRL-8390, UCRL-8391, Berkeley, 1959.
14. V.Schröder. Z.Phys., 173,p. 432(1963).
15. M.Born. Gött. Nachrich, 1 (1951).
S.I.Vinitsky, L.I.Ponomarev. Yad. Fiz., 20, 576 (1974). M.P.Faifman, L.I.Ponomarev, S.I.Vinitsky, J. Phys. B9, p.2255, 1976;
L.I.Ponomarev and S.I.Vinitsky, J. Phys. B12, p.567, 1979.
16. S.I.Vinitsky, V.S.Melezhik, L.I.Ponomarev, I.V.Puzynin, T.I.Puzynina, L.N.Somov, N.F.Truskova. 2hETF, 72, 698 (1980).
17. S.I.Vinitsky, V.S.Melezhik, I.V.Puzynin, T.P.Puzynina, I.N.Somov. JINR P5-12787, Dubna, 1979.
18. V.S.Melezhik, I.V.Puzyain, T.P.Puzynina, L.N.Somov. JINR P5-12790, Dubne, 1979.
19. R.Newton. Scattering Theory of Waves and Particles. Mc.Craw-Hill, N.Y., 1966. J.R.Taylor. Scattering Theory. John Wiley \& Sons Inc., NY, 1972.
20. L.N.Bogdanova, V.E.Markushin, I.S.Shapiro. Proceedings of the Int. Symp. on Few Body Problem in Nuclear Physics. June 5-8, 1979. Dubna, 1980 ; JIIR, D4-80-271.
21. I.V.Komarov, L.I.Ponomarev, S.Yu.Slavyanov. Sferoidal'nye i kulonovskye sferoidal'nye funktsii. Moskva, Nauka, 1976.
22. S.I.Vinitsky, V.S.Melezhik, L.I.Ponomarev. JINR P4-80-775, Dubna, 1980.
23. F.S.Chang, U.Fano. Phys. Rev., A6, 173 (1972).
24. D.A.Varshalovich, A.N.Moskalev, V.K.Khersonsky. Kvantovaya teoriya uglovogo momenta. Leningrad, Nauka, 1975.
25. V.G.Neudachin, Iu.F.Smimov. Nuklonnye assotsiatsii v legkikh yadrakh. Moskva, Nauka, 1969.
26. A.E.Kudryavtsev, V.E.Markushin, I.S.Shapiro. ZhETF, 74, 432 (1978).
27. S.Deser, M.J.Goldberger, K.Baumann, W.Thirring. Phys. Rev., 96, 774 (1954).
28. V.S.Popov, A.E.Kudryavtsev, V.D.Mur. ZhETF 72, 1728 (1979). Preprint Irwe-46, 1980.
29. A.Peres. J. Appl. Phys (USA), 50, N 9, 5569 (1979).
30. M.P.Faifman. Yad. Fiz., 26, 434 (1977). J.I.Ponomarev, M.P.Faifman. JINR P4-9960. Dubna, 1976.
31. V.V.Babikov. Metod Pazovykh funktsij v kvantovoi mekhenike. Moskva, Nauka, 1976.
32. E.A.Vesman. Izv. Akad. Nauk Estonskoi SSR. Fizika, Matematika, 17, N 1, 65 (1968).
33. D.D.Bakalov, S.I.Vinitsky, V.S.Melezhik. ZhETF, 79, 1629(1980). 34. B.De Pacio, R.K.Unerjee, J.L.Gammel. Phys. Rev.. 151, 819(1966).
34. K. Wildermuth, Y.C.Tang. A Unified Theory of the Nucleus Vieweg. Bramschweig, 1977.
35. I.Ya.Barit, V.A.Sergeev. Trudy FIAN, 44, 3 (1969).

[^0]: *) Coefficients $2 / 3$ and $1 / 3$ in formalae (20) take into accomat the fact that the cross sections $\sigma_{\text {in }}(E)$ and $\sigma_{e l}(E)$ have been measured for unpolarized d and t, while the S- Eatrix has been calculated for the state with definite total spin of the nuclei $S=3 / 2$.

[^1]: *) This result is valid alwoys except for the case when there exists a narrow nuclear level in the potential V_{n}, its energy being close to the energy of the level in the molecular potential. V_{μ} and hence the rearrangement of the spectrum of $d t \mu$ system occurs /26/. If it is the case, when solving Eq. (41) the dependence. $F_{\mu}(E)$ on E should be taken into account. In $d t \mu$ system such situation is not realized. In more detail this question will be discussed in other paper (see also Appendix).

[^2]: *) In paper $/ 32 /$ the formula was used instead of (3) and (48) $\lambda_{f}=A_{0} / 4 \times a_{0}^{3}\left|R_{0}^{-1} X\left(R_{0}\right)\right|^{2}$, where $R_{0} \leqslant R_{1}$ was varied to check up the stability of results. In reality, there is no problem of R_{0} choice, if one keeps in mind the identity of regular solutions $\varphi_{\text {os }}(R)$ and $\varphi_{08}(R)$ at $R \leqslant R_{1}$.

