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1. Introduction

In the recent paper73

an attempt has been made to describe
the o decay nrocess in the framework of a unified formulation of
reaction theory. This theory unifies the advantages of the shell-
model description of the mother and daughter nuclei and the opti-
-al model describing the motion of the emitted a narticle.

The present paper is aimed at clarifying relations bhetween
the conventional theories and the interpretation of the a decay
process as a special case of the nuclear resonance reaction.

In Sec.2, we give the basic formulas which describe thea-
decay process.

In Sec.3 the integral a width formula is reduced to the
surface formula with the help of usual approximations.

The relation between the resonance states and a form Ffac-
tors is discussed in Sec. 4. In Sec. 5 we analyse the approxima-
tions leading to the one body formulas of the a decay width in the
conventional theory 1-4) | 1wo approximative o width formulas are pro-

posed in Sec. 6. Some conclusions are given in Sec. 7.
2. The a Jecay width

As is well known (see,c.z.,refs.. /) the a decay width is
given by the matrix elements of the total Hamiltonian between the
decaying state |0k> (quasibound) and scattering states [x§>

(final states):

2
Ty = 2:§|<Oklﬂlx§> I « ()

In eq. (1) we denote by index c¢ all the discrete quantum num-

bers for the daughter nucleus and the a - particle. The conti-
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nuous number E pgives the total energy of the system (i.e.,the
sum of the ground states and the excitation energies of the
daughter nucleus and the a particle and also the kinetic energy
e of their relative motion. The normalization of the basic states

l#,> and [xg> is given by

< | 4y, = ékk’ (2)

G | XE> = 8 S(E-EY) (3)

The scattering state |X§> satisfies the integrodifferential equa-

tion

- (A i c
(E-H) | xg --2E<0k.n!xﬁ> |9y > (4)
The solution to eq. (4) may be written in the form:
Ixg> = Ixg, >'>-<°kl Ixg> | & > (s)
E Fio” 7§ Eik
where ixc > is a solution to the homogeneous equation

;0

6
(E-H) | x¢ > =0 "
E

;0

satis{ying the usual boundary conditions for the scattering states
(i.e.,containing an incoming wave in the channel ¢ and outgoing
waves in all the open channels). further,,xg_k > is a particular

solution to the inhomogeneous equation

7)
@1 | Xg,p> = | o G

which ful{ils thc usual boundary conditions for the bound states
(i.e.,vanishes at large distance between the fragments).

The inhomogeneous equation (7) describes the relative mo-
tion of the products of the o decay which is disturbed by the

coupling of the scattering states to quasibound states.

If rearrangement collisions (in which the quantum number of
the scattering state c is changed) are absent and the nondiago-
1al matrix elements between open-channel wave functions vanish, the

scattering states must be orthogonal to the quasibound states

<x§|9k>=0. (8)

Now, using eq. (5) and the orthogonality condition (8) one obtains

the system of algebraic equations

& c -
2::<°KrlHIXE><°k|xE; P et >

o
k' XE;o
k?

(%)

from which the unknown matrix elements <ok]H|x§ > can be deter-
mined. In an important case of an isolated quasiresonance state k,
the sum in eq. (9) contains only one term k’ = k and the correspon-

ding expression for the a decay width becomes

I ,C
r, = 27T[|-——<°k i Xg;0 > l
k . c (10)

‘<°k | X % .

¢ E;k

The scattering states can be written as products of intrinsic

states of the fragments and the radiall@cE > and angular part [Ye>

of the function describing the relative motion

Ixg> = 19, g> (95180210, ()> | ¥, (@)

¢ (11)
=‘@ |c>

>
c,E .
The Hamiltonian H is the sum of the Hamiltonians for the separated
fragments and the Hamiltonian describing the relative motion of the

fragments:

= 12
Ho= g+ By + T+ Vo s (12)




In eq. (12) Tu“ and qu stand for the kinetic and potential energy,
respectively. We assume that the potential energy (integrated over
the internal variables of the fragments ¢ and n) can be approxima-
ted as a sum of the nuclear and Coulomb potentials which depend
only on the relative distance between the centers of mass of the
fragments.

Multiplying eqs. (6), (7) from the left by the channel wave
function |[c> and integrating over £,n and Q2 we obtain the following
differential equations for the radial parts oc,E (r)

(r)w o
(brtee L@k(ru LICka (13)

The definitions are

o c k c (14)
$o(r) = r<c{XE:o> 7°c[r) = xse IXE:k)
overlap integral) 15)
I (r) =r<c | > ( P 8 (
noa’ £ P+1) . .
Lf = - L (= - =) - van(r) (differential operator) (16)
2y drz r2
ma IT\D
g — (reduced mass)
m_ + mD
€ =E - E_ - ED (liCl and En are the eigenenergies of the (17)

fragments).
The procedure of calculating the overlap integral for the Gaussian
2 - . . . . -
[orm') of the intrinsic o particle wave function is given in

10,11)

refs. The solutions to eqs. (13) must satisfy the following

asymptotic conditions:

; ( [ +}
¢2[r=o) = o Qg(r»w) =U_. -n_U (18)

oX(r=0) = o oK (rse) = o, S an

+
where Uc(-) are the outgoing and incoming Coulomb waves, and
n. is the scattering amplitude.
Finally, vsing in eq.(lo) the definitions from eqs.
(14,15), nne comes to the following expression for the o width
N L ) 1 B DR
Ty = 27/ Ck*;——q (20)
c <Ick(r)| @é(r]>. .
Equation (20) is free from the nuclear radius narameter. No boun-
dary conditions at the channel radius was used in deriving eq.
(20). Thus, the present approach is free from the uncertainties

of the R-matrix theery of the o decay.

3. Relation to the shell-model description and R-ma-

trix exnressions

In the microscopic description one may try to approximate
the quasiresonant state &) > by the nuclear shell-model wave func-
N M . % g
tions |¢§ > satisfaying the equation

SM SM

(E - 8Ny j9,°" >=0, (21)

The solution to eq. (21) is the Slater determinant

|6, > = 1 get ¥

- nylydgm, (r;) ,i=1,2,...A, (22)

The shell model overlap integral (see eq.(15))

1/2 19 SM
vy = [y el (23)




approximated in this way is proportional to the expression for

the reduced width Yck(r) introduced by wangz)
SAl _ 2ur : "
By o) = S5 v ) (24) |
; - Y
Assuming that the largest contribution to the matrix element B
Sh . ’ ; 2
< IZQ (r)|¢ 2(r)> in eq. (20) is coming from the surface region

5)

of the nucleus1 ’, one obtains the well-inown formula of the

R-matrix theory

Y,

y 2
¥ ~'6Pc(rc) Yek (rc) 5 K25)

wvhere the penetrability is

T I¢g (rC}|z

P_(r.)- 4—:; ; - - (26)
<13 (r )oK (r)>)

210

2
Table 1. Calculated alpha decay widths for Po and BiZI“ with

eqs.(25.26). The a optical potential is taken from

ref.8°9)
T Fk Fﬂanq rexp- rk Tqang rexP.
£m MeV MeV MeV MeV MeV MeV
7.0 .40 10727 38,307 _sg agm"@ 455 167%°
7.8 18 1728 18 a7
g0 e ant .13 10729
8.5 .3 4o7ER .11 10730
9.0 .37 10732 .33 1073
0.4 LS5 an ¥ a3 107F .29 10733 47 10733 _
10. .90 10732 .73 10737 1

In Table 1 it is shown that the o widths ohtained from eq. (25)
y )
using the classical‘) and the present (approximative) penetrabi-

lities (26) are in very good apreement.

4. The resonance states

The wave function of the parent nucleus can be written in
the general case as

%9 utes (¢
;65> 5 L_-_££L__£.Z fc» (27)

C T

[

where yres
ck

plus the daughter nucleus system. The index k labels the decaying

(r) 1is the resonance wave functions of the a particle

state of the parent nucleus.

The resonance wave functions are usually obtained as
solutions. to the Sturm-lLiouville problem associated with the
radial part of the Schrodinger equation for the a particle in the

field of the daughter nucleus.

2
d res 2. 2y _f(£+1) | res <

2 Uck (r) + L} * hZ (Ac Vnucl(r) i Vcoul(r) r2 {}Uck Lr =2 d28)
dr =

where Kzﬁz = Zuec and

nucl
*eVnuce1 (r) ‘ Vab i
= <C [|e>
coul
Veour (T) v (29)
al

are the nuclear and the Coulomb potentials averaged over the
channel wave function [c >. In eq. (28) the depth of the nuclear
potential lc is chosen as a resonance parameter.

The solution to eq. (28) must satisfy the following

conditions:



http:eqs.(Z5.26

. .
R (r=0) = 0 (30)

Uk (r»=)n G(r) ,

where G(r) is irregular Coulomb functionls).

In order to

compute the resonance functions, one may use the procedure given
in ref.lz) based on numerical solution of the integral form of
the Schrodinger equation.

The number of modes of resonance functions is chosen

according to the harmonic oscillator constraint:

2(N-1) + L =:§ (2(n;-1)+1,) ' (31)
i=1,4
The overlap integral in eq.(15) corresponding to :ores> is
k
cqual to
‘Tes :
I o) =1 <clop® (r)>
(32)
_ Tes
= Uy (rde

The same parameters of the optical potential which determine
the resonance functions are used in eq. (13) for the scattering
wave functions.

The phenomenological depth of the nuclear potential

may also be used as an innut by searching for the resonant depth.

5. One body a width formulas

Inserting in eq. (20) the resonant overlap integral
(32) one body o width formula can be obtained

.b. <
ro b. _ 2

Qs o
o Iy (1)]02(r)> 2

. (33)

[ <I£iir)[¢§(r)>

In table 2 the numerical values obtained by this formula (one

level k one channel c¢) are compared with those piven by the

Breits) and Peshbach4) one hody formulas
. hv , Vo= EES (34)
WP (r) | Uy o
3 ] 4B A5k AW (#3 | TS (x5 )2
rp = ﬁﬁ coul c nuc} : ck . (35)
b <ulpt(n) | uRs (1>

Table 2. The one body a widths of the polonium isotopes

Nucleus e_(MeV) [Ip(MeV) rp(MeY) 15" (tev)

Po?®* 5 370  .5318 10725 /3317 10725 .3318 10723
Po?® 5 218 3339 20720 .5329 107%0 .5327 10°%6
Po?C® 5 108  .1374 10726 .1374 10726 .1374 10726
po?10 5,220 .1766 10725 .1768 10725 1767 10725
P04 7,680 .1432 10715 .1431 10713 .1433 10713

il

Analysing these values we have concluded that all the three for-
mulas (33), (34) and (35) give with high accuracy the same values.
It is interesting to mention that inserting the many body shell
model overlap integral in the Mang formula (25) for the a width

by the one body resonant overlap intepral (32), the Breit formula

can be easily obtained.

6. Two approximative o width formulas

For small values of the differential operator Lr (i.e.y

the difference between the kinetic and potential enercies of the




Table 3. Alpha widths calculated with eqs. (20) and (37)

ucleus € 3 S il
MZV H:i 125 MZS uiﬁx”

2 i

Ri210 4,973 109.581 .63 1070 17 1073% 55 10729
piPll o goy 107.035 .26 10722 .95 10723 .35 10723
ro?%4 5 401 111.510 .27 10727 .15 107%% .33 10727
ro?0® 5 249 111.060 .10 0728 36 10728 29 10728
Po208 . 5 139 110.565 .15 1071?16 10729 .52 10729
p?® 5 530 109.682 .22 10728 .74 107%% .33 10728
At207 5 797 110.597 .10 10728 .50 10740 63 10726
At?0% 5 .80 110.108 .43 10727 .26 10-47 .10 10726
At?10 5 557 109.956 .50 10728 .55 10728 ;6 10728

the other parameters of the optical potential are taken

from ref.ls) (set A).

particle vanishes) the solution ¢§(r) to eq. (13) becomes pro-
portional to the overlap integral Ick(r)
1

X -
el et T (). (36)

Of course, equality (36) is satisfied exactly for the classical
turning points and approximately for the points situated around

them. Inserting ¢E in eq. (20) we obtain a simple « width

formula

-

—

<1 (1) [92(r)> |

<Ick(r)llck(r)>

(37)

T = ZnZE:si
=

in which the overlap integral Ick can be chosen from eq. (23)

or eq. (32).

Table 3 presents the a width values obtained from eq.(37)

with the shell-model overlap integrals (oscillator basis).

We may observe that the exact (T) and approximative
(F) values of the a vidths are slightly different. We note
that in the last case the computer time is two times shorter

than in the (ormer.

7. Conclusions

In the framework of unified formulation of reaction
theory the a width has been determined by using the prefor-
mation factors and the o optical potential. Finally, the «
width problem has been reduced to solve (numerically) an un-
complicated system of differential equations.

Therefore the calculation does not become more dif-
ficult as is usual. Also it is shown that it is preferable to
use an approximative expressions for a width which requires a
short computational time. The calculated a widths in the many
body apprecach are in good agreement with the experimental data,
if the optical pctential with the parameters fitted by the low
energy « scattering is used. From the present analysis of the
many body and one body aspects of the a decay it is possible to

obtain directly the a spectroscopic factors.
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