

сообщвиия обиединвиного ииститута ядерных исследований
 аубна

$$
23 / 11-81
$$

E4-80-735

R.Schmidt, J.Teichert*

A CLASSICAL STATISTICAL MODEL OF HEAVY ION COLLISIONS.

II. Description of the

Computer Code TRAJEC

[^0]
1. INTRODUCTION

In the first paper ${ }^{/ 1 /}$ we presented a classicai statistical model of heavy ion collisions. In this model the relative motion of two ions is described by Newton-type equations of motion including frictional forces. The mass transfer between the two nuclei is included and treated dynamically. The deformation energy is taken into account by modifying the exitchannel interaction potential. In the model the statistical fluctuations around the classical mean values of the trajectory are taken into account and obtained from a linear FokkerPlanck equation in the phase space of the collective degrees of freedom. The solution of the Fokker-Planck equation is a Gaussian with mean values as they follow from the solution of the Newton-type equation. For the second moments a coupled set of first order differential equations has been derived. It must be solved simultaneously with the Newton-type equations. We assume that relative motion and mass transfer are statistically uncorrelated. The total distribution function can be used to calculate various multi-differential cross sections of deep inelastic reaction products.

The basic formulas as well as the parameters of the model are summarized in ref. ${ }^{/ 1 /}$. In this paper we describe the computer code TRAJEC which represents the numerical realization of the model in ref. ${ }^{1 / \prime}$.
2. DESCRIPTION OF THE PROGRAM

The FORTRAN code contains tha main program TRAJEC and 34 SUBROUTINEs and FUNCTIONs. A summary of the UP's is given in the Table. We use the predictor-corrector method by Milne and Hamming $/ 2 /$ to solve the system of coupled differential equations. The service program library of the computer has to contain the UP's GRAPH1 (function plot) and GAUSSl (integration procedure). In the main program the whole input and output is carried out.

The input data contain the reaction characteristics (mass and charge numbers of projectile and target and bombarding energy) and some control integers for the print options, step widths and ranges for the calculation of the multiple diffe-

Table
SUBROUTINEs and FUNCTIONs

FUN)
RUNKU	
HAMM	solution of the differential equations
FE	$)$)
DEF	\} deformation
DEFF	\} deformation
VPR	proximity potential
FPR	derivation of the proximity potential
VCOUL	Coulomb potential
FCOUL	derivation of the Coulomb potential
VPOT	total potential
POTENT	potential print
GRAZIN	integration of the Coulomb trajectory
STIF	stiffness tensor
STICK	sticking form factor
PT	θ-distribution
PZ	Z_{1}-distribution
PZT	Z_{1}, θ-distribution
PETZ	$\mathrm{E}, \mathrm{Z}_{1}, \theta$-distribution
PEZ	E, Z_{1}-distribution
PET	E., θ-distribution
RINT 1...RINT6	integration SUBROUTINEs
MATRA)
MATRB	\} .
MATRC	. mass transfer
MASSET)
TRACO	mass transport coefficients
GRAPH 1	deflection function plot*
GAUSS 1	integration SUBROUTINE*

* The TRAJEC deck does not contain this UP's. They have to be within the service library of the computer.
rential cross sections. In a standard run the model parameters are fixed in the program corresponding to the values given in eq. (15) in ref. $/ 1 /$, although there exists a possibility to change the radial friction strength. In this case the tangential friction strength and the deformation parameter are calculated in the program according to eq. (16) in ref./1/. The equations of motions are solved for different relative angular
momenta L with the step widths of $\Delta L=2$, starting with the grazing angular momentum ℓ_{gr} and terminating with the critical angular momentum for fusion. The maximal value of the grazing angular momentum that can be used in the program is restricted to $600\left(\ell_{\mathrm{gr}} \leq 600\right)$.

Two main different types of calculations are possible and controled by the input integer IS (cf. input, card 2). If this control integer is equal to zero ($\mathrm{IS}=0$) the Newtontype differential equations are solved only. The results of such a calculation (interaction time, deflection angle, turning point, radial and tangential energy loss, deformation energy, total kinetic energy loss, kinetic energy in the exit channel, scission radius, mean values of the mass and charge of the projectile like reaction-product, variance of the element distribution) can be printed as function of the initial relative angular momentum (cf. output). If the control integer IS is equal to one (IS=1) the code solves, in addition to the Newton-equations, the coupled set of 13 first order differential equations for the second moments. This exceeds the running time considerably and is needed only in the cases where differential cross sections should be calculated.

Typical examples of input data sets for both types of calculations are presented in section 5 .

3. INPUT

Card 1 IP1, IP2, IP3,IP4 (print options) FORMAT (4I5)
IPI $=1$, print the time dependence of the classical trajectory after each tenth time integration step. In a standard run $\mathrm{IP} 1=0$. If TP1 $=-1$ the calculation stops. (cf.card 3,5)
IP2 $\quad=1$, print the results of the classical trajectory calculation (interaction time, turning point, energy loss,..., cf.output) for each initial angular momentum.
IP3 $=1$, the deflection function is plotted. IP4 $=1$, the program prints the proximity potential and the Coulomb potential.
If the integers $\operatorname{IP} 1$, IP2, IP3, IP4 are put equal to zero the corresponding prints are not carried out.
Card 2 IC, NN, IR, IT, ID, IS, IFF, IW, IEL, IEZ (control integers) FORMAT (1015)
IC $\quad=0$, program calculates Coulomb trajectories. $=1$, standard run. (cf. card 4).
IR $\quad=0$, calculation without radial friction. $=1$, standard run.
IT $\quad=0$, calculation without tangential friction. $=1$, standard run.
ID $\quad=0$, calculation without deformations. =1, calculation with deformations. $=0$, calculation without fluctuations, only the classical trajectory is calculated. $=1$, calculation of fluctuations, cross sections are calculated.
IFF $=2$ in any case.
IW $\quad=0$, calculation of $\mathrm{d} \sigma / \mathrm{d} \Omega$.
$=1$, calculation of $\mathrm{d} \sigma / \mathrm{d} \Omega$ and $\mathrm{d}^{2} \sigma / \mathrm{dEd} \theta$. $=2$, calculations of $\mathrm{d} \sigma / \mathrm{d} \Omega, \mathrm{d}^{2} \sigma / \mathrm{dEd} \theta$ and $\mathrm{d}^{3} \sigma / \mathrm{dEd} \theta \mathrm{dZ}{ }_{1}$.
IEL $\quad=0$, calculation without mass transfer. $=1$, with dynamical mass transfer. (The calculation of $\mathrm{d} \sigma / \mathrm{dZ}_{1}$ and $\mathrm{d}^{2} \sigma / \mathrm{d} \theta \mathrm{dZ} \mathrm{I}_{1}$ is carried out if also $1 S=1$).
If $I W=2$ the value of IEL should be chosen to be equal one (IEL=1).
IEZ $\quad=0$, no calculation of $d^{2} \sigma / \mathrm{dE}_{1} \mathrm{dZ} \mathrm{I}_{1}$.
$=1$, calculation of $\mathrm{d}^{2} \sigma / \mathrm{dE}_{1} \mathrm{dZ}_{1}^{1}$.
E_{1} represents the total kinetic energy loss. If IEZ $=1$ the value of IEL should be chosen to be equal one (IEL=1).
Card $3 \mathrm{~A}, \mathrm{~A} 2, \mathrm{Z} 1, \mathrm{Z2}$ (masses and charges) FORMAT (4F10.2)
A1 projectile mass number A_{1}
A2 target mass number A_{2}
Z1 projectile charge number Z_{1}
22 target charge number Z_{2}
If $\mathrm{Al}=-1$, a new run is created beginning with the reading of the card 1 (cf. cards 1,5).
Card 4 DELTA (radial friction strength)
FORMAT (F10.2)
DELTA radial friction strength a_{R} *
This card is needed only if $\mathrm{NN}^{=}=1$.

[^1]Card 5 ELAB (laboratory energy)
FORMAT (F10.2)
ELAB laboratory energy of the projectile $E_{\text {lab }}$ in MeV.
If $E L A B=-l_{n}$, a new run is created beginning with the reading of the card 3 (cf. cards 1,3).

Card 6 LMAXE, IEMIN, IEMAX, IEDEL (LMAXE is the maximal angular momentum and IEMIN, IEMAX, IEDEL control the energies at which $\mathrm{d}^{2} \sigma / \mathrm{d} \theta \mathrm{dE}$ and $\mathrm{d}^{3} \sigma / \mathrm{d} \theta \mathrm{dEdZ} \mathrm{A}_{1}$ are printed).
FORMAT (415)
LMAXE grazing angular momentum $\ell_{g r}$ in units of n .
LMAXE is also used as maximal angular momentum for the calculation of $\mathrm{d} \sigma / \mathrm{d} \Omega, \quad \mathrm{d}^{2} \sigma / \mathrm{d} \theta \mathrm{dE}$ and $\mathrm{d}^{3} \sigma / \mathrm{d} \theta \mathrm{dEdZ} \mathrm{I}_{1}$. If $L M A X E=-1, \ell_{g r}$ is calculated within the program according to
$\ell_{g r}=\frac{r_{0}\left(A_{1}^{1 / 3}+A_{2}^{1 / 3}\right)+0.5 . \mathrm{fm}_{1}}{\lambda} \sqrt{1-\frac{\mathrm{V}_{\mathrm{CB}}}{\mathrm{E}_{\mathrm{CM}}}}$
with the center of mass energy E_{CM}, the Coulomb barrier $V_{C B}$ and $\lambda=\left(2 \mu \mathrm{E}_{\mathrm{CM}}\right)^{-1 / 2}$ and $\mathrm{r}_{0}=1.2 \mathrm{fm}$. IEMIN minimal value of the exit kinetic energy $\mathrm{E}_{\text {min }}$ for the calculation of $\mathrm{d}^{2} \sigma / \mathrm{d} \theta \mathrm{dE}$ and $\mathrm{d}^{3}{ }_{\sigma}^{\min } / \mathrm{d} \theta \mathrm{dEdZ}{ }_{1}$.
IEMAX maximal value of the exit kinetic energy $\mathrm{E}_{\text {max }}$ for the calculation of $\mathrm{d}^{2} \sigma / \mathrm{d} \theta \mathrm{dE}$ and $\mathrm{d}^{3} \sigma / \mathrm{d} \theta \mathrm{dEdZ} \mathrm{I}_{1}$.
IEDEL energy step width $\triangle E$ for the calculation of $\mathrm{d}^{2} \sigma / \mathrm{d} \theta \mathrm{dE}$ and $\mathrm{d}^{3} \sigma / \mathrm{d} \theta \mathrm{dEdZ} Z_{1}$.
The value of (IEMAX - IEMIN)/IEDEL must be integer. and smaller than 15.

Card 7 LMAXZ, IZMIN,IZMAX,IZDEL (control the maximal angular momentum and the charge numbers at which the charge distribution is printed).
FORMAT (4I5)
LMAXZ maximal angular momentum $\ell_{\text {max }}^{z}$ for calculating $\mathrm{d} \sigma / \mathrm{dZ}_{1}$ and $\mathrm{d}^{2} \max _{\sigma} / \mathrm{d} \theta \mathrm{dZ}_{1}$.
TZMIN minimal charge number $Z_{\min }$ for calculating $\mathrm{d} \sigma / \mathrm{dZ}_{1}, \mathrm{~d}^{2} \sigma / \mathrm{d} \theta \mathrm{dZ} \mathrm{I}_{1}$ and $\mathrm{d}^{3} \sigma / \mathrm{d} \theta \mathrm{dEdZ}_{1}$.
IZMAX maximal charge number $\mathrm{Z}_{\text {max }}$ for calculating $\mathrm{d} \sigma / \mathrm{dZ}_{1}, \mathrm{~d}^{2} \sigma / \mathrm{d} \theta \mathrm{dZ}_{1}$ and $\mathrm{d}^{3} \sigma / \mathrm{d} \theta \mathrm{dEdZ} \mathrm{I}_{1}$.
IZDEL charge step width ΔZ for calculating
$\mathrm{d} \sigma / \mathrm{dZ}_{1}, \mathrm{~d}^{2} \sigma / \mathrm{d} \theta \mathrm{dZ}_{1}$ and $\mathrm{d}^{3}{ }_{\sigma /} / \mathrm{d} \theta \mathrm{dEdZ}_{1}$. This card is needed only if IEL=1. The value of (IZMAX - IZMIN)/IZDEL must be integer and smallex than 10.

Card 8 IELMIN, IELMAX, IELDEL (control the total kinetic energy loss at which $\mathrm{d}^{2} \sigma / \mathrm{dE}_{\mathcal{Q}} \mathrm{dZ}_{1}$ is printed) FORMAT (3I5)
IELMIN minimal value of total kinetic energy loss $T_{K E L} \min$ for calculation $d^{2} \sigma / \mathrm{dE}_{\ell} \mathrm{dZ}_{1}$. ($E_{\mathcal{q}}$ has the meaning of TKEL).
IELMAX maximal value of total kinetic energy loss TKEL $_{\text {max }}$ for calculating $\mathrm{d}^{2} \sigma / \mathrm{dE}_{\ell} \mathrm{dZ}_{1}$.
IELDEL total kinetic energy loss step width ΔE for calculating $d^{2} \sigma / d E_{\ell} d Z_{1}$.
This card is needed only if IEZ=1. The value of (IELMAX - IELMIN)/IELDEL must be integer and smaller than 15.

The simplest data set contains five cards (card 1,2,3,5,6). After the run the input of a new data set can be performed. The new input begins with card 5. That is if one wants to repeat the calculation for the same target-projectile combination but at other bombarding energy as in the preceding run. If at card $5 E L A B=-1$, the new data set begins with card 3. In this case one wants to calculate another reaction but with the same print options and control integers as in the preceding run. If at card $3 \mathrm{Al}=-1$, the input of the new run begins with card 1 . If at card 1 IPl=-1 the calculation stops.
4. OUTPUT

In any case the following quantities are printed: $\mathrm{Al}, \mathrm{A} 2, \mathrm{Z} 1, \mathrm{Z} 2$ target radius R_{2} calculated according to $R_{2}=1.128 \mathrm{fm} \mathrm{A}_{2}^{1 / 3}\left(1-0.786 \mathrm{~A}_{2}^{-2 / 3}\right)$
R12 radius R_{12} according to $R_{12}=R_{1}+R_{2}$ reduced mass number μ / AMU^{2}
RO parameter r_{0} in the proximity potential ($\mathrm{r}_{0}=1.17 \mathrm{fm}$)
parameter k in the Coulomb potential $\mathrm{V}_{\mathrm{c}}(\mathrm{k}=0.15)$ * parameter n in the Coulomb potential $\mathrm{V}_{\mathrm{c}}(\mathrm{n}=2.8)^{*}$

RB
DELTA
dELTAT
ALPHA
RREAC Coulomb barrier V_{B} barrier radius R_{B} radial friction parameter a_{R} tangential friction parameter a_{θ} deformation parameter α. interaction radius $R_{\text {int }}$
If IP4=1 the proximity V_{p} and the Coulomb potential V_{c} are printed in the range of 0 to 20 fm .

The following quantities are the results of a classical trajectory calculation. They are printed in a table for each initial angular momentum ℓ_{i} only if IP2=1.

L
TAU
SIGMA RETURN
LFIN
ELOST - R
ELOST-T
ELOST-D
ELOST-SUM
EFIN
RSCIS
A1
21
CHIZZQ
LCR
initial angular momentum ℓ_{i}
mean interaction time ${ }^{r}$ int
deflection angle θ
classical turning point $R_{\text {ret }}$
final angular momentum ℓ_{f}
radial energy loss $\Delta \mathrm{E}_{\mathrm{R}}$
tangential energy loss $\Delta \mathrm{E}_{\mathrm{t}}$
deformation energy loss ΔE_{d}
sum of energy losses $\Delta \mathrm{E}$
final kinetic energy E_{f}
scission radius R_{sc}
mean mass number in the exit channel $\left\langle A_{1}\right\rangle$
mean charge number in the exit channe $1\left\langle Z_{1}\right\rangle$
variance of the charge distribution $\sigma_{Z}^{2} Z$
critical angular momentum for fusion (LCR is printed in any case).

If IP3=1 the plot of the deflection function follows the preceding table.

$$
V_{c}(r)= \begin{cases}\frac{1}{4 \pi \epsilon_{0}} \frac{\mathrm{Z}_{1} \mathrm{Z}_{2} e^{2}}{\mathrm{r}}, & \mathrm{r}>\mathrm{R}_{12} \\ \mathrm{~V}_{0}-k \mathrm{r}^{n}, & \mathrm{r}<\mathrm{R}_{12}\end{cases}
$$

with

$$
V_{0}=\frac{3 \epsilon^{2}}{5 r_{0}}\left(\frac{\left(Z_{1}+Z_{2}\right)^{2}}{\left(A_{1^{2}}+A_{2}\right)^{1 / 3}}-\frac{Z_{1}^{2}}{A_{1}^{1 / 3}}-\frac{Z_{2}^{2}}{A_{2}^{1 / 3}}\right)
$$

and the parameters k and n.

After this plot the differential cross sections are plotted, starting with $d \sigma / d \Omega$ that is given separately for positive and negative deflection angles. Then differential cross sections are plotted with an angle step width of $\Delta \theta=10^{\circ}$ and cross sections of positive and negative angle scattering are summed. The step width $\Delta \theta$ for the calculation of the cross sections $\mathrm{d}^{2} \sigma / \mathrm{dEd} \theta$ and $\mathrm{d}^{3} \sigma / \mathrm{dEd} \theta \mathrm{dZ}$, can be changed only within the program.
5. TWO EXAMPLES OF DATA SHEETS

1) Calculation of a classical trajectory (IS $=0$). The calculation should be performed for the ${ }^{86} \mathrm{Kr}+{ }^{166} \mathrm{Er}$ reaction with bombarding energies $\mathrm{E}_{\mathrm{lab}}=515 \mathrm{MeV}$ and 650 MeV . The standard model parameters are used. Mass transfer and deformation energy are included. The value of the grazing angular momentum should be calculated within the program. The output contains besides the standard quantities the interaction potential and the plot of the deflection function.

Card	1	FORMAT (41.5)	
01	1		
Gard	2	FORMAT (1015)	
10	1	11	$\begin{array}{llllll}0 & 2 & 0 & 1 & 0\end{array}$
Card	3	FORMAT (4F10.2)	
86.	166.	36.	
Card	5	FORMAT (F10.2)	
515.			
Card	6	FORMAT (I5)	
-1			
Card	5	FORMAT (F10.2)	
650.			
Card	6	FORMAT (I5)	
-1			
Card	5	FORMAT (F10.2)	
-1.			
Card	3	FORMAT (F10.2)	
-1.			
Card	1	FORMAT (I5)	
-1			

2) Calculation of cross sections (IS=1). The calculation should be performed for the reaction ${ }^{86} \mathrm{Kr}+{ }^{166} \mathrm{Er} \quad\left(\mathrm{E}_{1 \mathrm{ab}}=\right.$ $=515 \mathrm{MeV}$) with the standard model parameters including mass transfer and deformation energy. The grazing angular momentum is 213. The output does not contain the interaction potential
and the plot of the deflection function. Besides the results of the classical trajectory the cross sections $d \sigma / d \Omega$,
$\mathrm{d} \sigma / \mathrm{dZ}, \mathrm{d}^{2} \sigma / \mathrm{d} \theta \mathrm{dE}, \mathrm{d}^{2} \sigma / \mathrm{dEdZ}_{1}$ and $\mathrm{d}^{3} \sigma / \mathrm{d} \theta \mathrm{dEdZ}_{1}$ are calculated.

Card 1 FORMAT (4I5)
$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$
Card 2 FORMAT (10I5)
$\begin{array}{llllllllll}1 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 1 & 1\end{array}$
Card 3 FORMAT (4F10.2)
86. 166. 36. 68.

Card 5 FORMAT (F10.2)
515.

Card 6 FORMAT (4I5)
$213 \quad 200 \quad 340 \quad 20$
Card 7 FORMAT (4I5)
$213 \quad 30 \quad 48 \quad 2$
Card 8 FORMAT(3I5)
$0 \quad 120 \quad 20$
Card 5 FORMAT (F10.2)
-1.
Card 3 FORMAT (F10.2)
-1.
Card 1 FORMAT (I5)
-1

REFERENCES

1. Schmidt R., Teichert J. JINR, E4-80-520, Dubna, 1980.
2. Haming R.W. Numerical Methods for Scientists and Engineers. McGraw-Hill, New York, 1962.

[^0]: * Technische Universität Dresden, Sektion Physik 8027 Dresden, DDR.

[^1]: to eq. (16) in ref. ${ }^{1 / 1}$.

