$80-720$
C $346,3 \mathrm{~B}$

объединвнный ииститут ядерных
 исследований
 дубна

$958 / 1-81$
 ЭКЗ. 4ИT. 3AคA E4-80-720

D.D.Bakalov, M.P.Faifman, L.I.Ponomarev, S.I.Vinitsky
μ-CAPTURE
AND ORTHO-PARA TRANSITIONS
IN MESIC MOLECULE PP μ

Submitted to ЖЭТФ

1. Introduction

The reaction of μ-capture by hydrogen nuclei

$$
\begin{equation*}
\mu^{-}+p \rightarrow n+v_{\mu} \tag{1}
\end{equation*}
$$

is important for determining the weak interaction constants (see reviews $/ 1,2 /$ This fact has first been indicated in refs. ${ }^{13,4 / \text {. }}$ The se papers also pointed out a strong dependence of reaction (1) on mutual muon and nuclear spin orientation, which was then thoroughly investigated in refs. $/ 5 /$.

It is well known that the μ-mesic atom is formed in the singlet (total spin $F=0$) and triplet ($F=1$) is -states with the probabilities $1 / 4$ and $3 / 4$, respectively. The calculated rates of μ-capture (1) in these two states are strongly different $16 /: \Lambda_{s}=659 \mathrm{~s}^{-1}, \Lambda_{t}=14.6 \mathrm{~s}^{-1}$ and much lesser than the decay rate of a free muon $\lambda_{0}=0.45510^{6} \mathrm{~s}^{-1}$.

The observed rate of μ-capture Λ_{μ} in hydrogen depends on the rates of different mesic atomic and mesic molecular processes (their scheme is shown in fig.i) and on the experimental

Fig.1. Scheme of mesic atomic and mesic molecular processes accompanying $\quad \mu$-capture by hydrogen nuclei.
conditions, in particular on the relative hydrogen density $\varphi=N / N_{0}$, where $N_{0}=4.2510^{22} \mathrm{~cm}^{-3}$ is the density of liquid hydrogen, and N is the experimental density of hydrogen. All the rates of mesic moleaular processes are proportional to φ : $\begin{aligned} \lambda_{a} & =\lambda_{a}^{0} \varphi, \lambda_{p}=\lambda_{p}^{0} \varphi, \lambda_{p p \mu}=\lambda_{p p \mu}^{0} \varphi_{\text {where }}^{0} \lambda_{a}^{0} \approx 10^{11} \mathrm{~s}^{-1}, \\ \lambda_{p}^{0} & \approx 1.7 \cdot 10^{10} \mathrm{~s}^{-1}, \lambda_{p p \mu}^{0}\end{aligned}$ $\lambda_{p}^{0} \approx 1.7 \cdot 10^{10} \mathrm{~s}^{-1}, \lambda_{p \rho \mu}^{0} \approx 2.2 \cdot 10^{6} \mathrm{~s}^{-1} 17,81$.

The observed rates vary considerably with φ :
a) At $\varphi<10^{-5}$, when.$\lambda_{P} \ll \lambda_{0}$, the statistical population of the hyperfine structure of levels (h.f.s.) of the $p \mu$-mesic atoms is conserved and the rate of μ-capture is given by

$$
\begin{equation*}
\Lambda_{\mu}=\frac{1}{4} \Lambda_{s}+\frac{3}{4} \Lambda_{t} \approx \frac{1}{4} \Lambda_{s} \tag{2}
\end{equation*}
$$

b) If $10^{-4}<\varphi<10^{-2}$, then $\lambda_{P} \gg \lambda_{0}$ and $\lambda_{p p_{\mu}} \ll \lambda_{0}$. Under these conditions as has first been shown in ref. /9/, the process $P \mu(F=1)+P \rightarrow \rho \mu(F=0)+\rho$ leads to the total depolarization of spins of the $\rho \mu$-mesic atoms, but one can still neglect the formation of the ppu-molecules; therefore the rate of μ-capture is equal to $\Lambda_{\mu} \approx \Lambda_{s}$, i.e., four times as large as the value in (2a), which corresponds to the statistical population of levels of the hyperfine structure of $p \mu$ atoms $/ 9 /$. The experiments

$$
\text { confirm this prediotion in aocordance with the (} V-A \text {) }
$$ theory of weak interaction /4/

c) At $\varphi \sim 1$ the $\lambda_{p p \mu} \gg \lambda_{0}$ condition is fulfilled and reaction (1) proceeds from the bound state of the $p \rho \mu$ mesio molecule. As has been shown in ref. $/ 12 /$, the $p p \mu$ mesic molecule is formed in the rotational excited orthostate $w 1$ th orbital momentum
$r=1$ and total nuclear spin $I=1$. In the nonrelativistic approximation the electromagnetic ortho-para transitions ($J=1$ $I=1) \rightarrow(J=0, I=0)$ from the excited orthostate of the $p \rho \mu$-mesic molecule to the ground parastate are striotly forbidden by the selection rule $\Delta I=0 / 12 /$. In the absence of the ortho-para transitions, $1, e_{0}$, when $\lambda_{0 p} \ll \lambda_{0}$, the rate $\Lambda_{o m}$ of μ-capture in the $\rho p \mu$-mesic moleoule is three tians as large as the rate (2a) $112 /: \Lambda_{o m} \approx \frac{3}{4} \Lambda_{S}$. Taking into account also the difference in the wave functions of the $p p \mu$ mesic molecule and $p \mu$ mesio atom, the rate $\Lambda_{o m}$ in the
orthostate of the ppM mesic molecule can be represented in the form $/ 13 /$:

$$
\Lambda_{\mu}=\Lambda_{o m}=2 \gamma_{0}\left(\frac{3}{4} \Lambda_{s}+\frac{1}{4} \Lambda_{t}\right)
$$

where γ_{0} is the ratio of the μ^{-}meson density in the proton In the orthostate of the $p p \mu$ mesic molecule to the μ - density in the $\rho \mu$ atom. The experiments performed in liquid hydrogen $/ 14,15 /$ and in bubble chambers $/ 16 /$ on the whole confirm formula (20).

Obviously, the validity of formula (20) depends on the value of $\lambda_{0 p}$. It follows from the recent experiments $/ 17 /$ that $\lambda_{o p} \leqslant 5 \cdot 10^{4} 5^{-1}$ in accordance \quad with the previous estimates $114,15 /=\lambda_{o p} \leqslant 0.1 \lambda_{0}$, i.e., equation $\Lambda_{\mu} \approx \Lambda_{o m}$ is true with the accuracy $O\left(\lambda_{o p} / \lambda_{0}\right)$ ai only. Hence, for a precise determination of the rates Λ_{s} and Λ_{t} from the measurements of Λ_{μ} in ilquid hydrogen, one should first calculate the values of $\lambda_{o p}$ and γ_{0}.

In this paper we present the calculations of the rate of the ortho-para transition in the $p p \mu$ mesic molecule on the basis of a relativistic treatment of the thresmbody system as in refs. $/ 18,19 /$. The paper also gives the precise caloulations of the factors γ_{0} and γ_{p} and considers the kinetics of μ-capture at different hydrogen densities.

2. Energy Levels and Wave Functions of the $p p \mu$ Mesic Molecule

In the nonrelativistio approximation the bound states of the $p \rho \mu$ molecule are specified by the set of quantum numbers $/ 18 /$

$$
\begin{equation*}
\left\{n_{1} n_{2} m p, v J m_{J}, \lambda\right\} \tag{3}
\end{equation*}
$$

where $\left[n_{1} n_{2} m p\right]$ are the parabolic quantum numbers oharacterising the motion of μ^{-}-eton around the protons, v is the vibrational quantum number specifying the relative motion of protons, J is the total orbital momentum of the threembody system, m_{J} is its Z-acis projection, $\lambda=+(-1)^{3}$ is the to -
tail parity of the threembody system, and P is the parity with respect to the inversion of μ^{-}-meson coordinates. Most interesting are the states of the $p P \mu$ mesic molecule which correspond to motion of μ^{-}-meson with zero quantum numbers $\left[n_{1} n_{2} m p\right]=[000 \mathrm{~g}]$ and positive parity $p=g$ ($1 . e_{0}$, ground state). Then mesic molecule can be formed either in ($J=0, v=0$) or ($J=1, v=0$) states with binding energies $-\varepsilon_{s v}$ (reckoned from the energy level $E_{a}=-2528.52 \mathrm{eV}$ of the ground state of the $p \mu$ mesic atom) $\quad \varepsilon_{00}=-253 \mathrm{eV}$ and $\varepsilon_{10}=-107 \mathrm{eV}$, respectively $/ 20 /$.

The interaction of proton spins $\quad \vec{S}_{a}, \quad \vec{S}_{\rho}$ and of $\mu-$ $\underset{\vec{r}}{ } \quad \overrightarrow{S_{\mu}}$ with each other and with the orbital momentum \vec{J} of the system results in a fine and hyperfine splitting of the nonrelativistic energy levels $\varepsilon_{J V}$ of the mesic molecule pp $\mu / 18-19 \%$ which is schematically represented in fig. 2 .

Fig. 2. Scheme of h.f.s. energy levels of PpM molecule and ortho-para transitions between them. From the state $\mathrm{F}=0$ of the PM -atom the $\mathrm{PP} \mu-$ molecules are formed only in the states $n=1$ and $n=3$. The rate $\lambda_{o p}$ is practically determined by the or thopara transitions from these states (see eqs. (33)-(35)).

Table 1

Main characteristics of stationary states $|n\rangle$ of the h.f. structure of pp μ mesic moleoule

4

$\varepsilon_{J V}(\mathrm{eV})$	n	j	N^{*}	J	S	I	λ	$\varepsilon_{n}(e v)$	$W_{s}^{(n)}$	$W_{t}^{(n)}$	$\beta_{1 / 2}^{(n)}$	$\beta_{1 / 21}^{(n)}$	$\beta_{3 / 21}^{(n)}$
$\varepsilon_{00}=-253$	0	1/2	1	0	1/2	0	+	0	1	1	1	0	0
$\varepsilon_{10}=-107$	1		1	1	1/2	1	-	-0.0905	0.3330	0.0371	0	0.9996	-0.0286
	2	1/2	2	1	3/2	1	-	0.0427	0.0002	0.1481	0	0.0286	0.9996
	3	3/2	1	1	1/2	1	-	-0.0924	0.6667	0.0741	0	0.9999	-0.0095
	4	$3 / 2$	2	1	3/2	1	-	0.0468	0.0001	0.2963	0	0.0095	0.9999
	5	5/2	1	1	3/2	1	-	0.0463	0	0.4444	0	0	1

*) Numeration of states Introduced in ref. /19/.

In this case the states of the ppu mesic molecule are specified by the set of quantum numbers

$$
\begin{equation*}
n=\left\{n_{1} n_{2} m g, v J S I, \gamma g_{2} \lambda\right\}, \quad n_{1}=n_{2}=m=v=0 \tag{4}
\end{equation*}
$$

where I, S and y are the quantum numbers of the total spin of nuclei, total spin and total momentum of the PPM mesic molecule, respectively,

$$
\begin{equation*}
\vec{I}=\vec{S}_{a}+\vec{S}_{\ell}, \quad \vec{S}=\vec{I}+\overrightarrow{S_{\mu}}, \quad \vec{\jmath}=\vec{S}+\vec{J} \tag{5}
\end{equation*}
$$

(the quantum numbers J and J from the set (4) will be sometimes denoted by the state index $\left.J=J^{(n)}, J=J^{(n)}\right)$. According to the Pauli prinoiple the following relation takes place

$$
\begin{equation*}
P=\lambda(-1)^{I}=(-1)^{I+I} \tag{6}
\end{equation*}
$$

In what follows it is convenient to introduce a new numeration n of the states (4), which is given in tabl. 1 with the energies ξ_{n} of these states (see also fig.2). This table also gives the populations $W_{n}(F)$ of these states, which correspond to the formation of the mesio molecule in the state n in collisions of protons of H_{2} molecules with $\rho \mu$ mesio atoms in states with a total spin F /18,19/

$$
\begin{equation*}
(p \mu)_{F}+H_{2} \rightarrow\left[(p p \mu)_{n} p \in\right]^{+}+e . \tag{7}
\end{equation*}
$$

In the relativistic case the quantities \mathcal{J}, γ_{z} and λ are conserved, while the quantum numbers n_{1}, n_{2}, m, P, J, S and I are "good" only approximately, slnce the operators corresponding to them do not commute with the Familtonian of the system. Acoordingly, the wave funotion $\Psi_{n}(\vec{z}, \vec{R})=\langle\vec{z}, \vec{R} \mid n\rangle$ of the PPM mesio moleoule in the state $|n\rangle$ can be represented as an expansion over the adiabatio basis /21/

$$
\Psi_{n}(\vec{\imath}, \vec{R})=R_{\substack{n_{1} n_{2} m p \\ J S I}}^{-1} \varphi_{n_{1} n_{2} m p}(\xi, \eta ; R) Y_{m J S I}^{J J_{x} \lambda}(\Phi, \theta, \varphi) X_{n_{1} n_{2} m p J S I}^{(n)}(R)
$$

(with summation indices P, J, I obeying eq. (6)),

$$
\begin{align*}
& D_{m m_{J}}^{J \lambda}(\phi, \theta, \varphi)=\left\{\frac{2 J+1}{16 \pi^{2}\left(1+\delta_{m 0}\right)}\right\}^{1 / 2}\left\{(-)^{m} D_{m m_{J}}^{J}(\phi, \theta, \varphi)+\right. \tag{8}\\
& \left.+\lambda(-1)^{\mathrm{J}} D_{-m m_{y}}^{\mathrm{J}}(\Phi, \theta, \varphi)\right\}^{1 / 2} \\
& e_{S}^{S I}=\sum_{\zeta_{\mu} \zeta_{a}}\left\langle I\left(J-S_{\mu}\right) S_{\mu} \zeta_{\mu} \mid\left(I S_{\mu}\right) S S\right\rangle . \\
& \cdot\left\langle S_{a} \zeta_{a} S_{b}\left(5-\zeta_{\mu}-\zeta_{a}\right) \mid\left(S_{a} S_{b}\right) I\left(5-\zeta_{\mu}\right)\right\rangle \text {. } \\
& \text { - } e_{s_{\mu}}^{s_{\mu}} e_{s_{a}}^{s_{a}} e_{s_{b}}^{s_{k}}, \quad s_{b}=\zeta-\zeta_{a}-s_{\mu} \\
& {\left[\vec{S}^{2}-S(S+1)\right] e_{3}^{S I}=\left[\vec{I}^{2}-I(I+1)\right] e_{3}^{S I}=\left(S_{z}-3\right) e_{3}^{S I}=0} \\
& \zeta=\zeta_{a}+\zeta_{c}+\zeta_{\mu}
\end{align*}
$$

Here we use the following notation:
$\varphi_{n_{1} n_{2} m p}(\xi, \eta ; R) \quad$ are the solutions of the Coulomb two -center problem of quantum mechanics /21/, whose dependence on the angle of rotation φ around the axis \vec{R} is included in the Wigner D-funotion $/ 22 / D_{m m_{5}}^{J}(\phi, \theta, \varphi) ; \quad \Theta$ and Φ are the spherical coordinates of the vector \vec{R} connecting the nuclei of the ppM molecule; $\xi=\frac{z_{a}+z_{l}}{R}$ and $z=\frac{z_{a}-z_{b}}{R}$, where z_{a} and Z_{8} are the distances between μ^{-}meson and protons a and $b ; e^{\frac{s_{\mu}}{s_{\mu}}}, e_{\frac{s_{a}}{s_{a}}}$ and $e^{s_{b}}$ sore constant spinors
of $\operatorname{spin} S_{\mu}, S_{a}$ and $S_{p} ; e_{y_{2}-m_{j}}^{S I}$ is a spinor of $\operatorname{spin} S$, constructed according to the coupling scheme (5);
$\left\langle S\left(J_{2}-m_{J}\right) J m_{3} \mid(S I) J J_{z}\right\rangle$, etc., are the Clebsch--Gordian coefficients; all the spinous refer to the laboratory system of coordinates in which the vector $\vec{R} \quad$ is determined.

The wave functions $\Psi_{n}(\vec{z}, \vec{R})$ satisfy the Sohrödinger equation

$$
\begin{equation*}
\left(H^{n z e l}+V^{\text {spin }}-\xi_{n}\right) \Psi_{n}(\vec{z}, \vec{R})=0 \tag{9}
\end{equation*}
$$

Where the nonrelativistio Hamiltonian $H^{\text {nrel }}=H^{\text {rel }}(\vec{z}, \vec{R})$ has been determined in ref. $/ 23 /, V^{s p i n}=V^{s p i n}(\vec{r}, \vec{R})$ is the operator of the spin interaction $/ 18 /$ and ξ_{n} is the stationary state $|n\rangle$ energy level reckoned from the nonrelativistio value of $\varepsilon_{\mathrm{Jv}}$ (see table. 1).

In what follows all the values will be given in units $e=\hbar=m_{a}=1, m_{a}^{-1}=m_{\mu}^{-1}+M_{p}^{-1}$, where $m_{\mu}=206.769 \mathrm{me}$
and $M_{p}=1836.152 \mathrm{~m}_{\mathrm{e}}$ are the μ^{-}meson and proton masses and m_{e} is the electron mass /24/. Let us introduce also an abrevtated index of summation $\delta=\left(n_{1} n_{2} m p J S I\right)$ - Hence, equation (9), upon substituting into it expansion (8) and averagang over the coordinates $\xi, \eta, \varphi, \theta, \phi$, gets the form

$$
\begin{equation*}
\sum_{j^{\prime}}^{n_{0}}\left\{H_{j j^{\prime}}^{\lambda}(R)+V_{j j^{\prime}}^{j \lambda}(R)-\xi_{n} \delta_{j j^{\prime}}\right\} R^{-1}{ }_{j j^{\prime}}^{(n)}(R)=0 \tag{20}
\end{equation*}
$$

The effective potential s of this system of equation

$$
\begin{align*}
& H_{j j}^{\lambda}(R)=\delta_{I I^{\prime}} \delta_{S S^{\prime}} \delta_{I I^{\prime}} \delta_{m_{5} m_{5}} \tag{II}\\
& -\int d \tau d \Omega g_{m m_{J}}^{J \lambda}(\phi, \theta, \zeta)^{\varphi} \varphi_{n_{2} n_{2} m p}(\xi, \eta ; R) H^{n r e l}(\vec{z}, \vec{R}) \varphi_{n_{2} n_{2}^{\prime} m^{\prime} p^{\prime}}(\xi, \eta ; R) D_{m m_{I}}^{J \lambda}(\phi, \theta, \eta) \\
& d \tau=\frac{R^{3}}{8}\left(\xi^{2}-\eta^{2}\right) d \xi d \eta, \quad d \Omega=\sin \theta d \theta d \Phi
\end{align*}
$$

$$
\begin{aligned}
V_{j j^{\prime}}^{\partial \lambda}(R) & =\int d \Omega d \tau \mathscr{y}_{m J S I}^{*} y_{2} \lambda \\
& (\phi, \theta, \varphi) \varphi_{n_{1} n_{2} m p}(\xi, \eta ; R) . \\
\cdot & V^{s p i n}(\vec{z}, \vec{R}) \varphi_{n_{1}^{\prime} n_{2}^{\prime} m^{\prime} p^{\prime}(\xi, \eta ; R)} y_{m^{\prime} \Psi^{\prime} s^{\prime} I^{\prime}}^{\partial J_{2} \lambda}(\phi, \theta, \varphi)
\end{aligned}
$$

have been oalculated in reps. /25/ and /18,19/.
Expansion (8) contains "large" and "small" components. Large components are specified by the values of quantum numbers

$$
\begin{equation*}
J=J^{(n)}, \quad I=I^{(n)}, \quad P=g \tag{12}
\end{equation*}
$$

and in the nonrelativistic limit have the form

$$
\begin{aligned}
& \text { the nonrelativistic limit have the form } \\
& x_{n_{1} n_{2} m p J S I}^{(n)}(R) \approx x_{n_{1} n_{2} m g}^{(n)}(R) \beta_{S I}^{(n)} \delta_{\rho g} \delta_{J J}(n) \delta_{I I}(n)
\end{aligned}
$$

(12a).

The functions $X_{n_{1} n_{2} m g}^{(n)}(R)$ are determined from the system of equations (10) with the nonrelativistic Hamiltonian $H_{j j}^{\lambda}(R)$ at $J=J^{(n)}$, and the amplitudes $\beta_{S I}^{(n)}$ are calculated from the swoulcr equation arising after averaging of eq. (10) over the functIons $X_{n_{1}, n_{2} m g}^{(n)}(R) / 19 /$ (see table).

Small components arise due to relativistic corrections V spin to the Hamiltonian $H^{\text {nrel }}$ in the nonrelativistic limit they vanish. At least one of the conditions (12a) is not fulfilled for them.

In further calculations we shall keep in expansion (8) only two functions of the adiabatic basis: $\varphi_{g}=\varphi_{000 g}(\xi, \eta ; R)$ and $\varphi_{k}=\varphi_{000 u}(\xi, z ; R)^{x)}$. Omitting in this expansion the indices $n_{1}=n_{2}=m=0$, we get the expression
x) Such an approximation provides an accuracy of the calculation of the functions $X_{j}^{(n)}(R)$ not worse than 10% in the whole interval of varying R, that is sufficient for evaluating the ortho-para transitions rate in the $p p \mu$ mesic molecule with the same aocuraoy. To calculate γ_{0} and γ_{P} with an accuracy of $\sim 10^{-3}$, it is sufficient to use ~ 20 functions $\varphi_{j}(5, \eta, R)$.

$$
\begin{equation*}
\Psi_{n}(\vec{r}, \vec{R})=R^{-1} \sum_{\rho J S I} \varphi_{p}(\xi, \eta ; R) Y_{J S I}^{J J Z \lambda}(\Phi, \theta, \varphi) X_{p J S I}^{(n)}(R) . \tag{8a}
\end{equation*}
$$

Omitting also the arguments of the functions, expansion (Ba) pan explicitly be written as follows ($y_{z}=-y, \cdots, y$)

$$
\begin{equation*}
\text { for } n=0 \quad\left(J^{(n)}=0, \quad 7^{(n)}=1 / 2\right) \tag{Bb}
\end{equation*}
$$

$$
\Psi_{n}=R^{-1}\left\{\varphi_{g} y_{01 / 20}^{1 / 2 y_{z}+} X_{g \circ 1 / 20}^{(n)}+\right.
$$

Pox $n=1,2,3,4$. $J^{(n)}$ (1) $\frac{1}{2} 1 \quad$ (n) $23 / 21$

$$
\left.+\varphi_{n}\left[y_{01 / 21}^{1 / 2 y_{z}+} x_{u 01 / 21}^{(n)}+y_{23 / 21}^{1 / 2 y_{2}+} x_{u 23 / 21}^{(n)}\right]\right\}
$$

for $n=1,2,3,4 ; \quad\left(J^{(n)}=1, J^{(1)}=y^{(2)}=1 / 2, J^{(3)}=J^{(4)}=3 / 2\right)$

$$
\begin{equation*}
\Psi_{n}=R^{-1}\left\{\varphi_{g} \cdot\left[y_{11 / 21}^{\partial J_{z}-} X_{g 11 / 21}^{(n)}+y_{13 / 21}^{\partial J_{z}-} X_{g 13 / 21}^{(n)}\right]+\right. \tag{8c}
\end{equation*}
$$

$$
\begin{aligned}
& \left.+\varphi_{u}\left[y_{11 / 20}^{\partial J_{z}-} x_{u 11 / 20}^{(n)}+(\text { terms with } J=3)\right]\right\} \\
& \left(J^{(5)}=1 \quad y^{(5)}=5 /\right)
\end{aligned}
$$

$$
\text { for } n=5 \quad\left(J^{(5)}=1, \quad y^{(5)}=5 / 2\right)
$$

the equation

$$
X_{g}^{(n)}=X_{000 \mathrm{~g}}^{(n)}(R) \quad \text { are oaloulated from }
$$

$$
\begin{align*}
& \left\{\frac{d^{2}}{d R^{2}}+2 M \varepsilon_{J v}-\frac{J(J+1)}{R^{2}}-2 M V_{g}(R)\right\} X_{g}^{(n)}(R)=0 \tag{13}\\
& J=J^{(n)}, \quad X_{g}^{(n)}(0)=X_{g}^{(n)}\left(R_{m}\right)=0, \quad R_{m}=20
\end{align*}
$$

Which is the one-ilevel approximation of the system (10) ${ }^{x}$.
Small components are calculated from inhomogeneous equations Which are obtained from system (10) in the first perturbation order x) ${ }_{\text {moe }}$ functions determined from this equation differ by $\sim 1 \%$ only from the corresponding functions calculated from the complete system of equations (10) at $n_{0}=20 / 26 /$. Note, that the relatiFistic corrections to large components (12) do not exceed 0,1\%.

$$
\begin{gather*}
\left\{\frac{d^{2}}{d R^{2}}+2 M\left(\varepsilon_{J v}+\varepsilon_{n}\right)-\frac{J(I+1)}{R^{2}}-2 M V_{u}(R)\right\} X_{u J S I}^{(n)}(R)= \tag{14}\\
=V_{u J S I}^{(n)}(R) X_{g}^{(n)}(R) \\
X_{u J S I}^{(n)}(0)=X_{u J S I}^{(n)}\left(R_{m}\right)=0, \quad R_{m}=20
\end{gather*}
$$

In equations (13) and (14) the potentials $V_{g}(R)$ and $V_{u}(R)$ represent the well-known symmetric and antisymmetric terms of the molecular 10 n with the diagonal adiabatic corrections to motion of nuclei $/ 23,26 /$.

The effective potentials

$$
\begin{aligned}
& V_{u 01 / 21}^{(0)}(R)=V_{u 01 / 21, g 01 / 20}^{j \lambda}(R)=V_{1}^{(f)} \\
& V_{u 23 / 21}^{(0)}(R)=V_{u 23 / 21, g o 1 / 20}^{j \lambda}(R)=V_{2}^{(f)} \\
& V_{u 11 / 20}^{(n)}(R)=V_{u 11 / 0, g 11 / 21}^{j \lambda}(R) \beta_{1 / 21}^{(n)}+V_{u 11 / 20, g 1 / 21}^{j \lambda_{2} \lambda}(R) \beta_{3 / 21}^{(n)}=V_{n}^{(i)} \\
& \text { and the functions } X_{n J S I}^{(n)}(R):
\end{aligned}
$$

$$
\begin{aligned}
& X_{u 01 / 21}^{(0)}(R)=X_{1}^{(f)}, \quad X_{u 23 / 21}^{(0)}(R)=X_{2}^{(f)} \\
& X_{u 11 / 20}^{(n)}(R)=X_{n}^{(i)}, \quad n=1,2,3,4 .
\end{aligned}
$$

are plotted in figs. 3-5. For comparison we also plot the large" components

$$
\begin{equation*}
X_{g}^{(0)}(R)=X_{0}^{(f)} \quad \text { and } \quad X_{g}^{(n)}(R)=X_{0}^{(i)}, n=1,2,3,4 \tag{16b}
\end{equation*}
$$

The solution of eqs. (13) and (14) was obtained by means of the algorithms /27/ constructed on the basis of the continuous analog of the Newton method $/ 28 /$. The corresponding boundary value problems were solved in the interval $R=\left[0, R_{m}\right]$ with step $\Delta R=0.1$ with boundary conditions $x_{j}^{(n)}(0)=x_{j}^{(n)}\left(R_{m}\right)=0$ at $R_{m}=20$. The functions $X_{k}^{(f)}$ and $X_{n}^{(i)}$ thus obtained are then used to calculate the rate $\lambda_{0} p$ of ortho-para transition in the $p p \mu$ mesic molecule.

Fig.3. Dipole moment $D(R)$ and effective potentials in eq. (13) and (14) for the nonrelativistio $\left(V_{g} \equiv V_{g}(R)\right.$, $V_{u} \equiv V_{u}(R)$) and relativistic $\left(V_{n}^{(i)}, V_{k}^{(f)}\right)$
3. Calculation of the Rates $\lambda_{0 p}(F)$ of the ortho-para Transition in the $p p \mu$ Mesic Meleoule

The mesic molecules ppM are formed in reaction (7) in ortho $(29,30 / \mathrm{J}=1, I=1)$ and para- $\quad J=0, I=0$) states with the rates $/ 29,30 \% \mathrm{x})$ (at the density N_{0} of If quid hydrogen nuclei)

$$
\lambda_{p p \mu}^{\text {orth }}=2.2 \cdot 10_{s^{-1}}^{6}, \quad \lambda_{p p \mu}^{\text {para }}=0.72 \cdot 10^{4} \mathrm{~s}^{-1}
$$

respectively.

Following reaction (7) with the rate $\lambda_{\text {ex }}$ there occurs the charge exohsage
${ }^{x}$ The rate $\lambda_{p p \mu}^{\text {para }}$ is onloulated socoxding to the algorithm of ref. $/ 30 /$. It is determined by the 20 -transition from the $-s$ scattering states of the system $p \mu+p$ to the bound state ($I=0, v=0$) of the $p p \mu$ mesic molecule.

$$
\left[(p p \mu)^{+} p e\right]^{+}+H_{2} \xrightarrow{\lambda_{e x}}\left[(p p \mu)^{+} p 2 e\right]+H_{2}^{+} .
$$

an estimate $\lambda_{\text {ex }} \sim 10^{13} s^{\prime}$, $1 . e_{.}, \lambda_{e_{x}} \gg \lambda_{0} \gg \lambda_{0 p}$ follows from the results of paper $/ 31 /$ for the analogous reaction $H_{2}^{+}+H_{2} \rightarrow H_{2}+H_{2}^{+}$. Thus, the ortho-para transition proceeds in the system $\left[(\rho p \mu)^{+} \rho 2 e\right]$. In the nonrelativistic limit dipole ortho-para transitions in the pp μ mesic molecule from any of the orthostates $n=1,2,3,4,5$ to the ground parastate $n=0$ are forbidden by the selection rule

Fig.4.5. "Large" and "small" components of the wave functions (16) describing the relative motion of nuclei in the initial (i) and final (f) states of $p p \mu \rightarrow$ molecule.
$\Delta I=0$. However, as one can see from expansion (8) the valuelof small oomponents of the excited states $n=1 \div 4$ coinoides whith the value I of the large component of the ground state $h=0$ and the values of their orbital momentus J differ by unity (according to formula (6) their parities p and λ also differ). The same relation oxdsts between anall components of the ground state $n=0$ and large oomponents of the excited states $n=1,2,3,4$ of the ppM mesio molecule X. Just these oross" oombinations between large and amall oomponents of the relativistio ware functions of the pp, mesio molecale allow intense kiotransitions $(J=1, I=1) \rightarrow$ $\rightarrow(J=0, I=0)$ with oonersion of an eleotron acoording to the scheme in fig. 2.

The initial population ρ_{n} of the states $|n\rangle$ of the hyperfine struoture of the $P P \mu$ mesio moleoule

$$
\begin{equation*}
\rho_{n}=C_{s} W_{s}^{(n)}+C_{t} W_{t}^{(n)} \tag{18}
\end{equation*}
$$

is expressed in terms of the oonoentration C_{s} and C_{t} of $p \mu$ mesic atoms in the singlet ($F=0$) and triplet ($F=1$) states, reapeotiTely, $\left(C_{s}+C_{t}=1\right)$ and by the quantities $W_{s}^{(n)}=W_{n}(F=0)$ and $W_{t}^{(n)}=W_{n}(F=1)$, whose numeriog values are given in tabl.1. Here $W_{n}(F)$ are nothing but the inftial populations of the $P p \mu$ moleoule states $|n\rangle$ when the latter are formed in oollisions of H_{2} nuolel with $p \mu$ atoms in singlet ($F=0$) ox triplet $(F=1)$

The rate $\lambda_{\text {op }}$ of the orthomara transition is deternined by the partial rates $\lambda_{o p}^{(n)}$ of transitions from the initial (i) states ($n=2,2,3,4$) to the final one (f),$n=0$:

$$
\begin{equation*}
\lambda_{o p}=\sum_{n=1}^{4} \rho_{n} \lambda_{o p}^{(n)} . \tag{1.9}
\end{equation*}
$$

x) The dipole transition from the state $n=5$ to $n=0$ is forbidien by the selection rules $\Delta y=0, \pm 1$; therefore we shall not consider it in what follows.

The probability $d \lambda_{o p}^{(n)}$ of the oxtho-para transition (17) with the ems sion of an electron with momentum in the interval $(\vec{q}, \vec{q}+d \vec{q})$ is equal to

$$
\begin{gather*}
d \lambda_{o p}^{(n)}=\frac{2 \pi}{\hbar} \delta\left(E_{f}-E_{i}\right) d \vec{q} \cdot \frac{1}{2 J^{(n)}+1} \cdot \sum_{\partial_{n}^{(n)}} \sum_{\partial_{E}^{(0)}} \tag{20}\\
\cdot \sum_{\partial E^{(n)}} \sum_{J_{\vec{*}}^{(o)}}\left|\int d \vec{R} d \vec{z} d \vec{\rho} \Psi^{*(t)}(\vec{z}, \vec{R}) \psi^{*(f)}(\vec{\rho}) \hat{H}_{i n t} \psi^{(i)}(\vec{\rho}) \Psi^{(f)}(\vec{z}, \vec{R})\right|^{2}
\end{gather*}
$$

Where $\Psi^{(f)}(\vec{r}, \vec{R})=\Psi_{0}\left(r\right.$ and $\Psi^{(i)}(\vec{z}, \vec{R})=\Psi_{n}(\vec{z}, \vec{R})$ are the wave
functions of the ground $n=0$ and excited $n \neq 0$
states of the PP μ mesic molecule, determined by relations (8), ε_{0} and ε_{n} are their energies reckoned from the nonrelativistio values of the energy $\varepsilon_{j v}$ of states $|n\rangle, E_{t}=\varepsilon_{10}+\varepsilon_{m}+\varepsilon_{I}$, $E_{f}=\varepsilon_{00}+\varepsilon_{0}+q^{2} / 2 m_{e}$, and $-\varepsilon_{I}=15.4$ iv is the electron binding energy in the H_{2} molecule, \vec{q} is the momentum of the conversion electron

$$
\begin{align*}
q & =\left[2 m_{e}\left(\left|\varepsilon_{00}+\varepsilon_{0}\right|-\left|\varepsilon_{10}+\xi_{n}\right|-\left|\varepsilon_{I}\right|\right)\right]^{1 / 2} x \tag{21}\\
& \approx\left[2 m_{e}\left(\left|\varepsilon_{00}\right|-\left|\varepsilon_{10}\right|-\left|\varepsilon_{I}\right|\right)\right]^{1 / 2}
\end{align*}
$$

$\hat{\rho}$ is the rotor connecting the center of mass of the $p p \mu$ molecule and the electron.

The ware functions of the elsotron in the initial and final states have the following form, (in units $\left.e=\hbar=m_{e}=1\right)^{/ 30 /}$,

$$
\begin{aligned}
& \psi^{(i)}(\vec{\rho})=\left[\frac{Z_{0}^{3}}{2 \pi(1+\Delta)}\right]^{1 / 2}\left(e^{-Z_{0} \rho}+e^{-Z_{0}\left|\vec{\rho}-\vec{R}_{p}\right|}\right)(22 a) \\
& \psi^{(f)}(\vec{\rho})=\frac{3 i}{4 \pi q} e^{-i \sigma_{1}} R_{q 1}(\rho) \cos \theta_{q \rho} \\
& R_{q 1}(\rho)=\frac{2}{3} q^{2}\left[\frac{2\left(1+2^{2}\right)}{1-e^{-2 \pi / 2}}\right]^{1 / 2} \cdot \rho F(2+i \hbar, 4,2 i q \rho)
\end{aligned}
$$

where Z_{0} and Z^{*} are the effective charges of the coulomb centers in the molecular complex [($\left.P P \mu)^{\dagger} p 2 e\right]$, whin aotomine the
electron ware functions in the initial and final states, respectively; \vec{R}_{p} is the vector connecting the $p p \mu$ center of mass with the other nucleus of the molecular complex, $\theta_{q \rho} \rho$ is the angle between the vectors \vec{q} and $\vec{\rho}$. In this paper we use the filowing values of the electron wave function parameters (22) /30/

$$
\begin{equation*}
Z_{0}=1.19, \quad R_{p}=1.40, \quad \Delta=0.677, \quad Z^{*}=1 \tag{23}
\end{equation*}
$$

The interaction operator describing dipole ortho-para transitions has the form 130 \%

$$
\hat{H}_{i n t}=-e^{2}\left(1+\frac{m_{\mu}}{m_{\mu}+2 M_{p}}\right) \frac{\vec{\imath} \vec{\rho}}{\rho^{3}}
$$

After integrating over the variables $\vec{\rho}, \vec{z}, \vec{R}$ and momentum \vec{q}, we get the following expression for the rates x)

$$
\begin{align*}
\lambda_{o p}^{(n)} & =\frac{8 \pi}{3}\left(\frac{m_{e}}{m_{a}}\right)^{2}\left(1+\frac{m_{\mu}}{m_{\mu}+2 M_{p}}\right)^{2} \cdot \frac{Z_{o}^{3}}{1+\Delta} q^{-1}|I(q)|^{2}\left|T_{n o}\right|^{2} \cdot \frac{m_{e} e^{4}}{\hbar^{3}}= \tag{25}\\
& =C_{q}\left|T_{n o}\right|^{2}, \quad C_{q}=1.39 \cdot 10^{12} \mathrm{~s}^{-1}
\end{align*}
$$

$$
\begin{align*}
& \text { Here } \\
& \begin{aligned}
I(q) & =\int_{0}^{\infty} d \rho R_{q 1}(\rho) e^{-Z_{0} \rho}+\frac{1}{2} \int_{0}^{\infty} d \rho R_{q 1}(\rho) \int_{-1}^{1} d \cos \theta_{\rho R_{p}} e^{-Z_{0}\left|\vec{\rho}-\vec{R}_{p}\right|} \\
\left|T_{n 0}\right|^{2} & =\frac{1}{2 J^{(n)}+1} \sum_{\partial_{z}^{(n)}} \sum_{J_{z}^{(0)}}\left|\rho M_{n 0}\right|^{2} \\
\int M_{n 0} & =\int d \vec{R} d \vec{z} \Psi_{n}^{*}(\vec{z}, \vec{R}){q_{3}} \Psi_{0}(\vec{z}, \vec{R})
\end{aligned} \tag{26}
\end{align*}
$$

where ${ }^{x}$)

$$
r_{3}=\frac{R}{2} \xi \eta \cos \theta-\frac{R}{2} \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \sin \theta \cos \varphi
$$

$x)_{\text {The value of }} q^{-1}|I(q)|^{2}$ is oaloulated in atomic units, and $\left|T_{n o}\right|^{2}$ is in units $e=\hbar=m_{a}=1$.
$x x$) The second term in the rah. side of eq. (28) can be neglected in the two -level approximation adopted here, as far as its matrix elements between the basis functions (8) vanish for $m=m^{\prime}=0$.

Using the Wigner-\$okart theorem, we have

$$
\begin{equation*}
M_{n o}=\left\langle\gamma^{(n)} J_{z}^{(n)} 10 \mid\left(J^{(n)} 1\right) J^{(0)} J_{\pi}^{(0)}\right\rangle \delta_{J^{(n)} f_{z}^{(0)}} \overline{\mathscr{M}}_{n 0} \tag{29}
\end{equation*}
$$

and upon substituting this expression into relation (27a), we get

$$
\begin{aligned}
& \left|T_{n 0}\right|^{2}=\frac{2 J^{(0)}+1}{2 g^{(n)}+1} \cdot \sum_{f_{k}^{(n)}}\left(\begin{array}{lll}
g^{(n)} & 1 & g^{(0)} \\
z_{z}^{(n)} & 0 & -J_{z}^{(n)}
\end{array}\right)\left|\bar{M}_{n 0}\right|^{2}= \\
& =\frac{2 J^{(0)}+1}{2 g^{(n)}+1} \frac{1}{3}\left|\bar{M}_{M_{0}}\right|^{2}=\frac{2}{3} \frac{1}{2 g^{(n)}+1}\left|\bar{M}_{n 0}\right|^{2},
\end{aligned}
$$

where $\left(\begin{array}{llc}y^{(n)} & 1 & j^{(0)} \\ y_{z}^{(n)} & 0 & -J_{i}^{(n)}\end{array}\right)$ is $3 j$-Wigner coefficient $/ 32 /$.
Using explicit expressions (sb) and (80) for the functions we get

$$
\text { for } \begin{align*}
& n=1,2 \quad\left(y^{(n)}=\frac{1}{2}\right) \\
& \overline{S M}_{n 0}=-\frac{1}{\sqrt{3}} \int_{0}^{\infty} d R D(R)\left\{X_{u 11 / 20}^{(n)}(R) X_{g 01 / 20}^{(0)}+\right. \tag{31}\\
&\left.+X_{g 11 / 21}^{(n)}(R) X_{u 01 / 21}^{(0)}(R)-X_{g 13 / 21}^{(n)}(R) X_{u 23 / 21}^{(0)}(R)\right\}= \\
&=-\frac{1}{\sqrt{3}}\left\{D_{n}+\beta_{1 / 21}^{(n)} \bar{D}_{1}-\beta_{3 / 21}^{(n)} \vec{D}_{2}\right\}
\end{align*}
$$

for $n=3,4 \quad\left(y^{(n)}=3 / 2\right)$

$$
\begin{aligned}
\overrightarrow{J M}_{n 0} & =-\sqrt{\frac{2}{3}} \int_{0}^{\infty} d R D(R)\left\{X_{u 11 / 20}^{(n)}(R) X_{g 01 / 2}^{(0)}+\right. \\
& \left.+X_{g 11 / 21}^{(n)}(R) X_{u 01 / 21}^{(0)}(R)+\frac{1}{\sqrt{10}} X_{g 13 / 21}^{(n)}(R) X_{u 23 / 21}^{(0)}(R)\right\}= \\
& =-\sqrt{\frac{2}{3}}\left\{D_{n}+\beta_{1 / 21}^{(n)} \bar{D}_{1}+\frac{1}{\sqrt{10}} \beta_{3 / 21}^{(n)} \bar{D}_{2}\right\} .
\end{aligned}
$$

Here we introduce the notation

$$
\begin{array}{ll}
D_{n}=\int_{0}^{\infty} d R X_{0}^{(f)}(R) D(R) X_{n}^{(i)}(R), & n=1,2,3,4 \tag{32}\\
\bar{D}_{k}=\int_{0}^{\infty} d R X_{k}^{(f)}(R) D(R) X_{0}^{(i)}(R), & k=1,2 .
\end{array}
$$

$$
D(R)=\int d \tau \varphi_{g}(\xi, z ; R) \frac{R}{2} \xi z \varphi_{u}(\xi, \eta ; R) .
$$

The dipole moment $D(R)$ presented in fig. 3 has been oaloulated in refs. $/ 25 /$ and tabulates in ref. ${ }^{133}$. The values of D_{n} and \bar{D}_{k} calculated by formulae (32) wi th the wave functions given in figs. 4 and 5 , are equal to

$$
\begin{array}{ll}
\text { re equal to } & \bar{D}_{1}=-2.0 \cdot 10^{-4} \\
D_{1}=-2.5 \cdot 10^{-4} & \bar{D}_{2}=1.5 \cdot 10^{-6} \\
D_{2}=9.0 \cdot 10^{-6} & -4 \tag{33}
\end{array}
$$

 we finally get

$$
\begin{array}{ll}
\bar{M}_{10}=2.6 \cdot 10^{-4} & \vec{M}_{20}=-1.0 \cdot 10^{-6} \tag{34}\\
\bar{M}_{30}=3.7 \cdot 10^{-4} & \bar{M}_{40}=4.2 \cdot 10^{-6} .
\end{array}
$$

Then in accordance with formulae (18), (19), (25) and (30) we get

$$
\begin{equation*}
\lambda_{o p}^{(1)} \approx \lambda_{o p}^{(3)}=3.2 \cdot 10^{4} \mathrm{~s}^{-1}, \quad \lambda_{o p}^{(2)} \approx \lambda_{o p}^{(4)} \sim 10^{2} \mathrm{~s}^{-1} . \tag{34a}
\end{equation*}
$$

The rate $\lambda_{o p}$ averaged over the initial distribution ρ_{n} is equal to

$$
\begin{equation*}
\lambda_{o p}=\sum_{n=1}^{4} \rho_{n} \lambda_{o p}^{(n)}=\left(C_{s} \cdot 3.2 \cdot 10^{4}+C_{t} \cdot 0.35 \cdot 10^{4}\right) \mathrm{s}^{-1} . \tag{35}
\end{equation*}
$$

4. Rates $\Lambda_{o m}$ and $\Lambda_{p m}$ of Muon-Capture Prom ortho- and parastates of the $P P \mu$ Mesic Molecule
The μ-capture rates $\Lambda_{\text {om }}$ and $\Lambda_{p m}$ from ortho- and parastates of the $p p \mu$ mesic molecule are usually expressed in terms of the rates Λ_{s} and Λ_{t} of μ-capture from the singlet and triplet states of the $p \mu$ mesic atom

$$
\begin{equation*}
\Lambda_{s}=\Lambda_{-} P_{a}, \quad \Lambda_{t}=\Lambda_{+} P_{a} \tag{36}
\end{equation*}
$$

where $\Lambda_{ \pm}=\Lambda_{\sigma}$ are the reaction constants, corresponding to the singlet (-) and triplet (+) states of the $p \mu$ mesic atom and P_{a} is the muon density atom (in units $e=\hbar=m_{a}=1$)
in the proton in the $p \mu$ -

$$
\begin{equation*}
P_{a}=\left|\Psi_{1 s \sigma_{g}}(0)\right|^{2}=\frac{1}{\pi} \tag{37}
\end{equation*}
$$

The rates $\Lambda_{\mu}^{T V}$ of μ_{10}-capture from the state ($J v$) of the pp μ mesic molecule: $\Lambda_{\text {om }}=\Lambda_{\mu}^{10}$ and $\Lambda_{\rho m}=\Lambda_{\mu}^{00}$ are expressed in terms of the constants Λ_{6} by the formulae

$$
\begin{align*}
& \Lambda_{o m}=2 \sum_{n=1}^{5} \sum_{\sigma} \rho_{n} \Lambda_{\sigma} P_{n \sigma} \tag{38}\\
& \Lambda_{p m}=2 \rho_{0} \sum_{\sigma} \Lambda_{\sigma} P_{o \sigma} \tag{39}
\end{align*}
$$

where ρ_{n} are defined in eq. (18) and

$$
\begin{equation*}
P_{n \sigma}=\int d \vec{R} d \vec{z} \delta\left(\vec{z} \pm \frac{\vec{R}}{2}\right) \Psi_{n}^{*}(\vec{z}, \vec{R}) \Pi^{F_{\sigma}} \Psi_{n}(\vec{z}, \vec{R}) \tag{40}
\end{equation*}
$$

are the muon densities in the proton of the $p p \mu$ mesic molecule In the state $|n\rangle$ in the case of parallel ($F_{\sigma}=F_{+}=S_{a}+S_{\mu}=1$) or antiparallel ($F_{\sigma}=F_{-}=S_{a}-S_{\mu}=0$) spins and

$$
\begin{equation*}
\Pi^{F_{\sigma}}=\sum_{F_{z}=-F_{\sigma}}^{F_{\sigma}} e_{F_{z}}^{F_{\sigma}} \otimes e^{* F_{\sigma}} \tag{41}
\end{equation*}
$$

is the projector onto states with a fixed value $F_{\sigma}=S_{a}+\sigma S_{\mu}=S_{a}+\frac{\sigma}{2}$.

$$
e_{F_{z}}^{F_{\sigma}}=\sum_{s_{\mu}=-1 / 2}^{1 / 2}\left\langle S_{a}\left(F_{z}-s_{\mu}\right) S_{\mu} s_{\mu} \mid\left(S_{a} S_{\mu}\right) F_{\sigma} F_{z}\right\rangle e_{F_{z}-S_{\mu}}^{s_{a}} e_{s_{\mu}}^{s_{\mu}}
$$

By substituting expansion (8) for the functions $\Psi_{n}(\vec{z}, \vec{R})$
into (40), neglecting small components and replacing in (8) the coupling scheme (5) by the scheme

$$
\begin{equation*}
\vec{F}=\vec{S}_{a}+\vec{S}_{\mu}, \quad \vec{S}=\vec{F}+\vec{S}_{b}, \quad \vec{J}=\vec{S}+\vec{J} \tag{43}
\end{equation*}
$$

we are led to the following expression:

$$
\begin{equation*}
P_{n \sigma}=\frac{1}{\pi} Q_{\sigma}^{(n)} \gamma^{J v}, \quad Q_{\sigma}^{(n)}=\sum_{S}^{1}\left(\sum_{I} \beta_{S I}^{(n)} \alpha_{I F_{\sigma}}^{S}\right)^{2} \tag{44}
\end{equation*}
$$

Here

$$
\begin{align*}
\alpha_{I F_{\sigma}}^{S} & =\left(e_{5}^{* S I} \cdot e_{5}^{s F_{\sigma}}\right)=(-1)^{S_{8}+S_{\mu}+I+F_{\sigma}} \tag{45}\\
& \cdot\left\{(2 I+1)\left(2 F_{\sigma}+1\right)\right\}^{1 / 2}\left\{\begin{array}{lll}
S_{a} & S_{B} & I \\
S & S_{\mu} & F_{\sigma}
\end{array}\right\}
\end{align*}
$$

are the coefficients recouping of schemes (5) and (43), $\left\{\begin{array}{ll}S_{a} & S_{b} \\ S & S_{\mu} \\ S & F_{\sigma}\end{array}\right\}$ are the $6 j$-symbols $/ 32 /$ of Wigner,

$$
\begin{equation*}
e_{s}^{S F_{\sigma}}=\sum_{S_{8}=-S_{8}}^{S}\left\langle F_{\sigma}\left(\xi-s_{8}\right) S_{8} s_{l} \mid\left(F_{\sigma} S_{8}\right) S \zeta\right\rangle e_{s-s_{e}}^{F_{\sigma}} e_{s_{8}}^{S_{b}} \tag{46}
\end{equation*}
$$

The ratio ${ }^{S_{8}} \gamma^{T V}$ of μ^{-}-meson densities in the proton in the $p p \mu-$ molecule and in the $p \mu$-atom (the so-alled γ-factors of the states $|n\rangle=|J v\rangle$) may be expressed in the following way:

$$
\begin{equation*}
\gamma^{J V}=\frac{1}{2} \int_{0}^{\infty} d R\left\{\sum_{n_{1} n_{2}} N_{n_{1} n_{2} \circ g}(R) X_{n_{1} n_{2} \circ g}^{J v}(R)\right\}^{2} \tag{47}
\end{equation*}
$$

where $N_{n_{1} n_{2} \circ f}(R)$ are the normalization coefficients of the two-center functions, determined by the relations

$$
\begin{aligned}
& \varphi_{n_{1} n_{2} o g}(\xi, \eta ; R)=N_{n_{1} n_{2} o g}(R)\left[l_{o n_{1}}(\xi ; R) \Xi_{o q}(\eta ; R)\right. \\
& \Gamma I_{o n_{1}}(1 ; R)=\Xi_{o n_{2} g}(\pm 1 ; R)=1 \\
& \int d \tau\left[\varphi_{n_{1} n_{2} m p}(\xi, \eta ; R)\right]^{2}=1 .
\end{aligned}
$$

When calculating $\gamma^{J V}$ from (47), $n_{1} \leqslant 3, n_{2} \leqslant 3,1 . e ., 1 n$ expansion (8) for the function $\Psi_{n}(\vec{z}, \vec{R}), 20$ states of the discrete spectrum of the two -center problem have been used. The contribution of the highest states of the discrete spectrum and of the continuous spectrum of the twomenter problem does not exceed 5.10-4 /18/. According to our calculations

$$
\begin{align*}
& 2 \gamma_{0}=2 \gamma^{10}=1.009 \pm 0.001 \tag{47a}\\
& 2 \gamma_{p}=2 \gamma^{00}=1.143 \pm 0.001
\end{align*}
$$

Table 2

x) Calculated on the basis of the results of ref. /39/.

In table. 2 our values of γ-factors are compared with the results of previous papers $/ 34-39 /$.

Taking into account the relations (36)-(40) and (44)

$$
\begin{aligned}
& \Lambda_{o m}=\sum_{n=1}^{5} \rho_{n} \Lambda_{o m}^{(n)}, \Lambda_{o m}^{(n)}=2 \gamma_{0} \Lambda^{(n)} \\
& \Lambda_{p m}=2 \gamma_{p} \Lambda^{(0)}
\end{aligned}
$$

where

$$
\Lambda^{(n)}=\Lambda_{s} Q_{s}^{(n)}+\Lambda_{t} Q_{t}^{(n)}, \begin{align*}
& n=0,1, \ldots, 5 \tag{50}\\
& Q_{s}^{(n)}+Q_{t}^{(n)}=1 .
\end{align*}
$$

Using the values of $\beta_{S I}^{(n)}$ given in table 1 and the coefficients (45) we get

$$
\begin{array}{ll}
Q_{s}^{(0)}=0.2500 & Q_{s}^{(3)}=0.7499 \\
Q_{s}^{(1)}=0.7494 & Q_{s}^{(4)}=0.0001 \tag{51}\\
Q_{s}^{(2)}=0.0006 & Q_{s}^{(s)}=0 .
\end{array}
$$

Taking into acoount that the rate of formation of $P P \mu$ molecules $\left(\lambda_{p p \mu}^{\circ}=2.210^{6} \mathrm{~s}^{-1}\right)$ is negligibly small in comparison With the rate of transition of $p \mu$-atom into the singlet state ($\lambda_{p}^{0}=1,710^{10} \mathrm{~s}^{-1}$) one can assume with an accuracy of $\sim 10^{-4}$ that $C_{s}=1, c_{t}=0$.

Bearing this in mind, we finally have

$$
\begin{align*}
& \Lambda_{o m}=0.756 \Lambda_{s}+0.253 \Lambda_{t} \tag{52}\\
& \Lambda_{p m}=0.286 \Lambda_{s}+0.857 \Lambda_{t}
\end{align*}
$$

Our formulae coincide with an accuracy of $\sim 10^{-2}$ with the results of Halpern/34/

At the values of $\Lambda_{S}=659 \mathrm{~s}^{-1}$ and $\Lambda_{t}=14.6 \mathrm{~s}^{-1} / 6 / \mathrm{Fe}$ have from (52)

$$
\begin{equation*}
\Lambda_{o m}=502 \mathrm{~s}^{-1}, \Lambda_{p m}=201 \mathrm{~s}^{-1} \tag{53}
\end{equation*}
$$

Now let us take into aocount the effect of the ortho-para transitions on the observed value of the μ-capture rate Λ_{μ} in the pp $\mu \rightarrow$ moleoule.

5. Kinetics of μ-Capture in Hydrogen

The system of equations describing the kinetios of the processes which are schematically given in fig. 1 , has the form

$$
\begin{aligned}
& \quad-\frac{d N_{1}}{d t}=\lambda_{1} N_{1}, \quad-\frac{d N_{3}}{d t}=\lambda_{3} N_{3}-\lambda_{P P \mu}\left(N_{1}+N_{2}\right) \\
& -\frac{d N_{2}}{d t}=\lambda_{2} N_{2}, \quad-\frac{d N_{4}}{d t}=\lambda_{4} N_{4}-\lambda_{o p} N_{3} \\
& -\frac{d N_{n}}{d t}=\Lambda_{t} N_{1}+\Lambda_{s} N_{2}+\Lambda_{o m} N_{3}+\Lambda_{P m} N_{4}
\end{aligned}
$$

$$
N_{1}(0)=\frac{3}{4} \frac{\lambda_{a}}{\lambda_{0}+\lambda_{a}}, \quad N_{2}(0)=\frac{1}{4} \cdot \frac{\lambda_{a}}{\lambda_{0}+\lambda_{a}}, \quad N_{3}(0)=N_{4}(0)=N_{n}(0)=0
$$

Here N_{2} and N_{1} are the numbers of mesic atoms in the singlet and triplet 1 S -states, respectively; N_{3} and N_{4} are the numbers of mesic molecules $P P \mu$ in the ortho- and para-states x), N_{n} is the number of neutrons formed in reaction (1), and the following notations are used:

$$
\begin{align*}
& \lambda_{1}=\lambda_{0}+\lambda_{p}+\lambda_{P P M}+\Lambda_{t} \tag{54b}\\
& \lambda_{2}=\lambda_{0}+\lambda_{P P M}+\Lambda_{s} \\
& \lambda_{3}=\lambda_{0}+\lambda_{0 p}+\Lambda_{0 m}, \quad \lambda_{4}=\lambda_{0}+\Lambda_{p m}
\end{align*}
$$

The solution of system (54a) an be represented in an analytical form at any value of $\varphi=N / N_{0}$. The general solution, however, is given by cumbersome formulae, so let us treat some partioular cases.

If $1 \geqslant \varphi \geqslant 2 \cdot 10^{-3}$, i.e., at hydrogen pressure $P>1$ atm. the following relations are valid:

$$
\begin{align*}
& C_{s} \approx 1, C_{t} \approx 0 \tag{55}\\
& \lambda_{p} \gg \lambda_{P P \mu}, \lambda_{0} ; \quad \lambda_{a} \gg \lambda_{0} ; \\
& \lambda_{o p}, \lambda_{p P \mu} \gg \Lambda_{s}, \Lambda_{t}, \Lambda_{o m}, \Lambda_{p m}
\end{align*}
$$

and the general solution is essentially simplified. The time distribution of neutrons in reaction (1) in this case has the form

$$
\begin{align*}
& \frac{d N_{n}}{d t}=e^{-\lambda_{0} t}\left\{\Lambda_{p m}+\frac{\lambda_{p p \mu}\left(\Lambda_{o m}-\Lambda_{p m}\right)}{\lambda_{p p \mu}-\lambda_{o p}} e^{-\lambda_{o p} t}+\right. \tag{56a}\\
& +\left[\Lambda_{S}-\frac{\lambda_{p P \mu}}{\lambda_{p P \mu}-\lambda_{o p}} \cdot\left(\Lambda_{o m}-\frac{\lambda_{o p} \Lambda_{p m}}{\lambda_{p p \mu}}\right)\right] e^{-\lambda_{p p \mu} t}
\end{align*}
$$

$\left.{ }^{x}\right)_{\text {Strictly speaking, instead of one equation for }} \quad N_{3} \equiv N_{3}(t)$ it is necessary to consider five equations ($n=1, \ldots, 5$) $-\frac{d N_{3}^{(n)}}{d t}=\left(\lambda_{0}+\lambda_{o p}^{(n)}+\Lambda_{o m}^{(n)}\right) N_{3}^{(n)}-\rho_{n} \lambda_{P P M}\left(N_{1}+N_{2}\right)$, where $N_{3}^{(n)}=\rho_{n} N_{3}$. However, according to definitions (19) and (49) and to the normalization relation $\sum_{n} \rho_{n}=1$ this set is equivalent to the given equation for $N_{3}(t)$.
and the integral yield of neutrons is equal to x)

$$
N_{n}(\infty)=\frac{\Lambda_{S}}{\lambda_{0}+\lambda_{p p \mu}}+\frac{\Lambda_{0 m}}{\lambda_{0}+\lambda_{0 p}} \cdot \frac{\lambda_{p p \mu}}{\lambda_{0}+\lambda_{p q \mu}}+\frac{\Lambda_{p m}}{\lambda_{0}} \cdot \frac{\lambda_{p p \mu}}{\lambda_{0}+\lambda_{p p \mu}} \cdot \frac{\lambda_{0 p}}{\lambda_{0}+\lambda_{0 p}}(56 \mathrm{~b})
$$

The observed capture rate is equal to

$$
\Lambda_{\mu}=\lambda_{0} N_{n}(\infty)=\Lambda_{S} \cdot \frac{\lambda_{0}}{\lambda_{0}+\lambda_{p p \mu}}+\frac{\lambda_{p P \mu}}{\lambda_{0}+\lambda_{p p \mu}} \cdot \frac{\lambda_{0}}{\lambda_{0}+\lambda_{0 p}} \cdot\left(\Lambda_{o m}+\Lambda_{p m} \cdot \frac{\lambda_{0 p}}{\lambda_{0}}\right)
$$

At the density of $11 q u i d$ hydrogen $(\varphi=1)$ when $\lambda_{p p \mu} \gg \lambda_{0 \rho} / 40 /$
the time distribution of neutrons from reaction (1) has the form

$$
\begin{equation*}
\frac{d N_{n}}{d t}=e^{-\lambda_{0} t}\left\{\Lambda_{p m}+\left(\Lambda_{o m}-\Lambda_{p m}\right) e^{-\lambda_{o p} t}\right\} \tag{57}
\end{equation*}
$$

Using the rates (35 (\quad (53) and the value $\lambda_{p p \mu}^{0}=2.510^{6} \mathrm{~s}^{-1}$ averaged over the data of different experiments ($\lambda_{p, p \mu}^{0}=2.55 \pm 0.18$ $\left.142 /, \lambda_{p p \mu}^{\circ}=2.74 \pm 0.25 / 43 \%, \lambda_{p p \mu}^{\circ}=2.34 \pm 0.17 / 44 /\right)$, we obtain at the density of liquid hydrogen:

$$
\Lambda_{\mu}=509 \mathrm{~s}^{-1}
$$

6. Conclusion

The results obtained in this paper an be used for planning different types of experiments $/ 40 \%$ on μ-capture by hydrogen nuclei and for their theoretical analysis $/ 41 /$.

When calculating the rate $\lambda_{o p}$ the main sources of errors are the choice of the simplest expression (22) for the wave functions describing motion of the bound and conversion electrons and the use of the two -level approximation in expansion (8) over the adiabatic basis. $4 l l$ these errors do not exceed 10% of the obtained value $\bar{x})_{\text {Since }} \lambda_{p p \mu}^{P^{\text {ara }}} / \lambda_{p P \mu}^{o r t h o} \approx 3 \cdot 10^{-3}$, within the accepted approximations (55), we neglected the production of the $P P M$ molecules in the parastate in the reaction (7).
$\lambda_{o f}=3.2 \cdot 10^{4} s^{-1}$ and can be removed if necessary. When calculating y^{\prime}-factors (47a), an expansion over 20 states of the discrete spectrum of the two-center problem was used, that allowed one to find the values of F_{0} and if with an accuracy of $\sim 10^{-3}$. Note, that the relativistio oorrections to the ware functions of the mesic molecule may be $\sim 10^{-3}$ and should be taken into account in further more precise calculations of 5 -factors.

The main sources of errors in determination of the value Λ_{s} from Eq. (56c) is the uncertainty of the $p \rho \mu$-formation rate $\lambda_{p^{\mu}}$, whioh is known now with the accuracy of about 10\%. The authors are grateful to Drs.V.S.Melezhik and T.P.Puzynina for help and to Professors A.Bertin, G.Bardin, J.Duclos, R.A. Eramzhyan, S.S.Gershtein, A.Vitale, J.Martino and E.Zavattini for stimulating discussions.

Referenoes

1. Zavattini E. Muon Capture", in Muon Physios"eds. V.W.Hughes and C.S.Wu, V.II, p. 219, Academio Press, New York and London, 1975.
2. Balashor V.V., Korenman G.Ya., Bramzhyan R.A. Meson Capture by Atomic Nuclei", M., Nauka, 1978.
3. Bernstein J., Lee T.D., Yang C. N., Primakofe H. Phys.Rev., 1958, 11I. p. 313.
4. ZeI'dovich Ya.B., Gershtein S.S. Zh.Eksp.Teor.Fiz., 1958, v.35, p.821.
5. Primakoff H. Rev.Mod.Phys.1959, 31, p.802; MElementary Particle Aspeots of Muon Decay and Muon Capture", in Muon Physios", Eds. V.W. Hughes and C.S.Tu, V.II, p.3, Lcademio Press, New York and London, 1975.
6. Santisteban, 4., Pascual R. Nucl.Phys., 1976, 4260, p. 392.
7. Gershtein S.S., Ponomarev L.I. Mesomolecular Processes Induced by μ^{-}and π^{-}mesons", in Muon Physics", V .III, p.141, Eds. Y. T. Hughes and C.S.Wu. Aoademic Press, New York and London, 1975.
8. Ponomarev L.I. Mesio Atomio and Mesio Molecular Processes in the Hydrogen Isotops Mixtures", VI Int. Conf. on Atom.

Phys. Riga 17-22 August, Proc. p.182, Z1natne Riga and. Plenum Press, New York - London, 1978.
9. Gexshtein S.S. Zh.Exp. Teor.Fiz.,1958, 34, p.463; Zh.Exp.Teor. Fiz., 1958, 34, p.993.
10. Alberigi A.Quaranta, Bertin A., Matone G., Palmonari F. Torelli G., Dalplaz P., Placol A., Zavattini E. Phys.Rev., 1969, 177, p. 2118.
11. Eystritsky B.M., Dzhelepov V.P., Ermolov P.F., Oganesjan K. O., Omel'yanenko $\mathrm{M}_{*} \mathrm{~N}_{*}$, Parokhovoy S.Yu., Roganov V.S., Rudenko A.I., Fil' ohenkor V.V. Zh.Exp.Teor.Fie., 1974, 66, p.43.
12. Zel'dovich Ia. B., Gershtein S.S. Zh. Eksp. Teor.Fiz., 1958, V.35, p. 649 .
13. Weinberg S. Phys.Rev.iett., 1960, 4, 7.575.
14. Bleser R.J., Lederman L.M., Rosen J.I., Rothberg J.B., Zavattini B. Phys.Rev.Lett., 1962, 8, p288.
 Meyer S.L., Rosen J.L., Wang I.-T. Phys.Rev. , 1963, 132, p. 2664.
16. Bertolini E., Citron A., Gialanella G., Fooardi S., Mukhin A., Rubbia C., Saporetti F., Proc. Int.Conf. High Knergy Phys., CERN, Geneva, 1962, p.421. Hildebrand R.H., Doede J.H. 1bid., p. 418. Doede J.H., H1ldebrand R. Proc. Int.Conf. Fundamental Aspects. Weak Intex., Brookhaven, Upton, New Yorik, 1963, p. 277 (BNL report 837).
Focardi S., Gialanella G., Rubbia C., Saporetti F., 1bid., p.278(BNL rep. 837).
17. Bardin G., Duolos J., Magnon A., Martino J., Riohter Ao, Zavattini E., Bertin A., Picoinini M., Vitale A., Measday D. Preprint CFRN-EP/80-129, 1980.
18. Bakalov D.D., Vinitsky S.I. Preprint JINR, P4-2 2736, 1979; Yad.Fiz., 1980, V .32, p.720.
19. Bakal ov D.D., Vinitsiky S.I., Melezhik V.S. Preprint JIKR, P4-13039, Dubna, 1980; Zh. Eksp.Toor.F1z., 1980, r.79, p.1629.
20. Vinitsicy S.I., Melezhik V.S., Ponomarev L.I., Puzynin I.V., Puzynina T.P., Somot L.N., Truskova N.F. 3h.Eksp.Teor.Fiz., 1980, 79, p. 698.
21. Komarov I. V., Ponomarev L.I., Slavganov S.Yu. Spheroidal and Coulomb Spheroidal Funotions. M., Nauka, 1976.
22. Sitenko A.G., Tartakovsky V.K. Lecture Notes in Nuclear Theory, p.226, M., Atomizdat, 1972. N1elson H. H. Encyclopedia of Phys. V. 37, part 1, p.187, Springer-Verlag, Berlin, 1959.
23. Vinitsky S.I., Ponomarev L.Io, Yad.Fiz., 1974, v. 20, p. 576. 24. Review of Partioale Properties, Partioal Data Group, 1978.
25. Ponomarev L.I., Puzjnina T.P., Truskova N.F. J.Phys. , 1978, Bll, p. 3861 ; Ponomarev L.I. Puzynina T.P., Somov L.N. J.Phys., 1977, Bl0, p. 1335.

Ponomarev L.I., Slavyanov S. Yu., Somov L.N. Preprint JINR, P4-1.3028, Dubna, 1980.
26. S.I.Vinitsky, Ponomarev L.I. 2h. Bksp.Teor.Fiz., 1977, 72, p.1670.
27. Puzynin I.V., Puzynina T.P., In: "Algorithms and Programs", KFKI-74-34, p.93, Budapest, 1974.
28. Ponomarev L.I., Puzjain I. V*, Puzynins T.P. J. Comput. Phys. 1973, 13, p.I.
29. ZeI'dorich Ya. B., Gerstein S.S. Usp.Fiz.Nauk, 1960, 71, p. 581. 30. Ponomarev L.I., Felfman M.P. Zh.Eksp.Teor.Fiz., 1976, 71, p.1689.
31. Erseev A.V., Radzig A.A., Smirnor BeM. Zh.Eksp.Teor.Fiz. 1979, 77, p. 560.
32. Messiah A. Quantum Mechanics, Nauka, M., 1979,v.2, p.74.
33. Ramaker D.E., Peek J.M., Atomic Data, 1973, 5, 167.
34. Halpern 4. Phys.Rev., 1964, Al35, p. 34; Phys.Rev., 1968, 174, p.62.
35. Wessel W.R., Philipson P., Phys.Rev.Lett., 1964, 13, p. 23.
36. Kabir P.K. Z.Phys. 1966, 191, p.447.
37. Carter B.P. Phys.Rev., 1966, 141, p. 863.
38. Patterson M.R., Beker R.L. Thesis, ORNL-TM-1850, Oak Ridge Nat.Lab., 1967.
39. Cohen S., Judd D.L., R1ddel R.J. Phys.Rev., 1960, 119, p. 397.
40. Zavattini k. "On Muon Capture" in "Exotio Atoms", Eds. Plorentini G. and Torelli G. ist Course Int. School of Physics on Exotic Atoms, p.3, Erice, 24-30 April, 1977.
41. Dogotar G.B., Eramzhyan R.A. Yad.Flz., 1977, V. 25, p.I042.
42. Conforto G., Rubbia C., Zavattini E., Nuovo Cim. 1964, v. 33, p.1001.
43. Budyashov Yu.G., Ermolov P.F., Zinov V.G., Konin A. D., Mukhin A.I., Oganesyan K.0., JINR P15-3964, Dubna, 1968.
44. Hystritsky V.M., Dzhelepor V.P., et al., Zh.Eksp.Tөor.Fiz., 1976, v.70, p.1167; English transl. Sov.Phys.-JETP, 1976, v.43, p.606.
45. Kolos W., Aota Phys.Acad.Sci.Hung. 1969, V.27, p.241.
46. Ferrante G., Geracitano R., Cascio L.Lo, Phys.Rev., 1976, v.14, p.558.

