


1. Most approaches to the theory of elastic plon—nucleus
scattering have used a certain form of the multiple scattering
theory (MST)“1/ in which the nuclear target is treated as
a system containing elementary subsystems (i.e., nucleons).
The basic physical quantity calculated in MST is the submat-
rix T, of the general scattering matrix T,which describes the
elastic scattering chanmnel. For calculation of the matrix T,
one usually introduces the idea of a theoretical optical po-
tential 1™/, The optical potential is expressed in terms of
the basic pion-nucleon collision matrix.

In general, the optical potential is a non-Hermitian ope-
rator. Its non-Hermitian part arises due to the contribution
of possible inelastic channels to the elastic one. In practi-
cal construction of the optical potential one wusually makes
a set of approximatioms, like the impulse, the approximation
linear with respect to the g —nucleon t-matrix, and so on. .
The optical potential thus calculated leads to the scattering
amplitude which does not satisfy the general requirements /4,57
following from the unitarity condition. Therefore, there
arises a complicated problem of studying the content of the
non-Hermitian part of the optical potential 87,

In the description of = -nucleus interaction one must very
carefully take into account the unitarity condition, because
the pions can be absorbed in nuclear matter (unlike, e.g.,
the nucleons). So, if any theory of = -nucleus scattering
even at the potential level leads to the nonunitary scat-
tering amplitude, then the problem of incorporation of the
absorption in such a scheme canmnot be resclved in a consistent
way*.In this situation it will be helpful to apply to the ap-
proach of description of ~-nucleus elastic scattering recent-
ly presented in 7/ This approach is based on the so-called
method of evolution with respect to coupling constant {CCE)
(see review /8/y Tt is important that in the CCE method one
can directly derive an equation for the phase. shifts and bind-
ing energies. In this aspect the CCE-approach ig similar to,

‘

*This remark has nothing to do with the analysis of the
»d -scattering based on the Faddeev equations where this prob-
lem can be solved exactly.



the well-known phase function method in potential scattering
theory /9.10/,0ne of the main results of /7/ is the construction
of a new iteration scheme for the calculation of the z-nuc-
leus scattering amplitude. In this scheme, in contrast to the
MSTfjf the scattering matrix is unitary of each stage of suc-
cessive approximations. The analysis of the simplest example
of low-energy md -scattering given in /7 shows a fast con-
vergence of this iterative series for the nd ~scattering
length to its exact value obtained by solving the Faddeev
equations.

The calculation procedure of the 7 —nucleus phase shiftg
given in “?/is applicable to the description of processes of
the quasi two-particle nature, i.e,, to the low-energy region.
The present paper is aimed at generalizing the approach given
in’?/ to arbitrary energies of the projectile. As in’7/, we
shall present here the nonrelativistic variant of the theory.

In Sec.? we present the basic equation of the CCE-method.
In Sec.3 the calculational scheme of the submatrix T, is
constructed. In full analegy with the optical model method
in the MST"1%/ we show that in the present approach the many-
body problem of » -nucleus scattering can be reduced to the
two-body one. In Sec.4 the pi-nucleus phase shifts in the
first-order with respect to the so-called two~particle pi-
nucleon y-matrix is obtained. Tn the present approach this
approximation corresponds to the first-order optical potential
in MST'1'% | The spin-isospin structure of the problem and
the static limit of the theory is discussed in Sec.5. It is
shown that the pi-nucleus phase shifts can be expressed in
terms of the pi-nucleon ones. In Sec.6 we discuss the results.

2. In the problem of ~-nuclear interaction with the pheno-
menological #N-potential considered in the framework of the
CCE method the Hamiltonian for the system is 7/,

A
H=H_+V ), Ugiglui, (1)

where Hy is the free Hamiltonian; vV describes the NN-inter-
action; U!  the pion interaction with an i -th nucleon, and
A plays the role of the plon-nucleon coupling constant. The
parameter A is taken unity at the end of calculations.

We shall assume the solution of the pure nuclear problem
with the Hamiltonian

h=Hy+ V (2)



to be known. So, the system evolution in coupling constant
from A=0 with the = -nuclear interaction switched-off to the
realistic value A=1 must be considered.

Let eigenfunctions of H(1) be |u>,fv>  etc., and matrix
elements of the potential U over them U ,. etc. The scat-
tering S-matrix of the transition from state je> to |¥>
(see ref. /8/) obeys the equation:

885 ..gi¥s U SE -E ), E =E , (3)
dx wv o  bo ov g v g v
with the boundary conditiom: 8, (A=0)=5,, . For the T-matrix

defined on the isoenergetic surface EufoL: by the relation:
8, =8,y +2(E, ~E )T,
the equation is:
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with the boundary condition T, =0) =0. The potential matrix

element U.W in (3) and (&) ogeys the relation:

LUy -30 U (—E— s A ()
. #, HeooV E“—Eoniﬁ “E -E _+1
The boundary condition for U , at A=0 is the matrix ele-
ment of the potential U over the eigenfunctions of Hamiltonian
h(2). The energies E, ., is the exact eigenvalue of H
defined by the known equation dE /d.\=U# .

In’"/ some iteration procedure for solving eq. (5) was de-
veloped. The expansion of U, obtained in/7/ can be pre-
sented in the form:

v

-2ri 2T U 8(E -E ) (4)
: o o ov [+ v

U, W=, 1Ty, >, (6)

where the operator U(\) is

U(A):ni la >, 0 <ml, (N
A A A
0 W=32ul W+ T X fdr x
oy M 1dj=1 g (8)
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The vector states |y, > , |§, >ete.,and |m>, [n>5 in egs.
(6) and (7) are, respectively, eigenfunctions of the Hamilto-
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nian h (2) and the free Hamiltonian HO The eigenfunctions
and the eigenvalues of the channel Hamiltonian (Hqy+AU)  are
dencted by Latin indices. The ué {A) is the exact two-body
matrix element of the pion interaction with an i -th nucleon.
The remaining nuclear nucleons are supposed to be free. Below
we shall call this object briefly as a two-body u -matrix. It
obeys an equation like (5) and on the isocenergetic surface
E,=E_ defines the pi-nucleon phase shifts by the relation *.

1
5(k) ==me (k) favte W, (9
2 0 mn
where |m>=|<,-k >, |n>=[", =X’>  are solutions of the two-
body scattering problem, 22(K3=px/2ﬂz is the level den-

sity, p, the reduced mass, x and X* are momenta in the c.m.s.
before and after colllslon(K=EK1 %]« In (8) we present
oply two first iterations. One can ea511y calculate the next
ones. Graphlcally the iteration series (8) 1is given in
Each term in (8) is Hermitian and has correct analytic pro-
perties with respect to energy variables.

Let us obtain now some useful in the future représentations
of the 8- and T-matrices. In view of (6) the matrix elements
S“V and T#Vcan be presented in the form:

SW (A)Eop# [SE, My >, TFV(A)=< g;” | TE Ay > (10)

on the iscenergetic surface E=E =E . Substituting (6) and
(10) into eqs. (3) and (4) gives the equatlons for the opera-
tors § and T:

dS(E,A)/dh = ~ 201 8(B, )8 (E~n) T), S
dT(E,A) /dr <=0 Q) —20iT(B,1)8 (E-h) G0, (12)

with the boundary conditions S(E A= 0)—Iand T(E A=0) =0. Here
we take into account the completeness of the set of vector
states (> and their independence of . The Hamiltonian h is
defined in (2).

Eqs. (11) and (12) can be solved by iteration method ex-
panding operators § and T in powers of the interaction opera-
tor U:

*Here and in Secs.3-5 we omit indices of the momentum,
spin,... in relations like (9). The braces in (9) denote an
appropriate partial harmonics of the matrix element.
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2 A - L
S(E.A} =T, expl 21 [ &\ S(E-W TG, (13)
0

n A A . '
T(E,A) =-T, [d\ UQ, Yexpl-2ni f A, 8(E=m)UQ I, (14)
0 A

where T, is the operator anti-ordering with respect to the
variable X1/ Under this symbol the arguments A of the opera—
tors must increase from left to right. Operators S, T and U
are defined in the space of eigeyfunctions of the channel
Bamiltonian h(2). In this space S is a unitary operator owing
to (13) where operators h and U are Hermitian. It should be
noted that its unitarity is conserved in the framework of ite-
ration procedure (8).

3. The calculation of the phase shifts by eq. (9) is appro-
priate in the case of two-particle scattering '8/  This was
used in ref.’?’ in the study of low-energy pion-nucleus scat-
tering. But in the general case the calculation of the pi—nuc—
leus phase shifts by an equation like (9) is invalid. This
can be easily seen from the r.h.s. of eqs. (3) and {4), where
the summation goes over all possible = -nucleus system states
at a given energy. Here we present a generalization of a simple
relation like (9) to the case of the multichannel problem.

We introduce now a more detailed npotation for the meson-—

S

nucleus states: |Y>=|k,n>, where k labels the meson momen-
tum {(in the pi-nucleus c¢.m.) and n labels the properly anti-
symmetrized nuclear state (n=0,1,2,...; n=20 denotes the

ground state). Our goal is to investigate the elastic scatter—
ir_}_g process, i.f_:., th_g transitions from state L]?, 0> to the
k", 0>, where k and k”are the pion momenta before and after
collision. To do this, let us intrpduce the projection opera-
tor for the ground nuclear state P={0><0] and the projection
operator @=1-P =3 |n><n|. Then the operators S, and T4
corresponding to "#? elastic channel can be defined as fol-
lows: ‘ .

§0=f’§§ . .and "-Tomf"’l:lg o ‘ (15)<

Let us also introduce a new effective operator .Uo that
must define 5 and T, matrix by the following equations:

%§O(E,A)=—?ni§0(E‘,A)6(E-h)lgﬁld(E,.)\‘), o (16)
At @) == Ty ) -2 T BN E-1)F T, (BA), )



with the boundary conditions %0(,\:0) =T and fn(h =0) =0,
Thus, the intermediate states in (16) and (17) are restricted
by P to be the nuclear ground state only. Consequently, (16)
and (17) are simply two-body scattering equations for the
pi-nucleus system in the CCE-approach. The formal solution

of eqs. (16) and (17) can be obtained from (13) and (14) by
replacing U by PU,, 1.e.,

, A “a
S (E.X) =T, exp[—2frifd)\16(E—h) PU (E,A). (18)
0

The effects of nuclear excitations are incorporated into
the definition of the effective operator Ug. By the direct
substitution one can verify that the relations (15) will be
satisfied by solutions of eqgs. (16) and (17} if ﬁO(E,A)
obeys the equation:

By =0 +24i§ 5B To@® -n)@ T, (19)

where the operator §.' inverse to 8 is:
A
a- -1 . LR
SgHE.A) =T, exp[2nr1Ofdz\IS(E-—h)POUO(E,)\)].

The symbol TXl is the operator "ordering" with respect .
to A.Under it the arguments of the operators decrease from
left to right, Operators U and T are defined respectively in
(7) and {14). In the matrix form eq. (19) is as follows:
dk
<K, 000 (K% 0>=<k,0[ G|k, 0>+201 £ [ —k x
0 nd0  (2r)3
-
dky 20812 k. 0T k. o8 -E_(k.))<k,,n|0|K", 0>
x <k,0[8; [k, ,0><k, 0Tk, 0>8 (E(k) =B (k,)) <k,, V>,
(2r) 3 (20)

. where E(k) =E(k") =k %/2) -« is the collision energy in
the pi-nucleus center-of-mass system, ~¢, 1is the nuclear ground
state energy, N denotes the reduced mass and En(k)=k2/2m-en
(h=123,..), where - ¢, 1s the energy of the n-th excited
nuclear state.

By egs. (16)-(20) the many-body scattering problem is re-
duced to the two-body ocne. Thus, if one passes from these
operator equations the matrix ones, as it has been done in
(20), and makes a partial wave decomposition, then one gets
the following simple relation for the pi-nucleus phase shifts:



i - - >
5k) =-ne (k) [dat<k, 0 U (B, A k", 0>, (21}
' [

where ¢ (k)=M.k/2z 2 denotes the level density, % is the re-
duced plom-nucleus mass, and k, k* are the momenta of pion
before and after scattering.

Eq. (19) can be solved by iteration method by expanding
§,(&, 1) in powers of the known operator U . Two first terms
of this series are:

Fal A’ ~ ~ A
G, =T -27i far, T 3E-1QT (). (22)
0

For the phase shifts (21) in this approximation we get:

1 - ~ -
B(k) =~7e , (&) fdAl<k,0[UANK", 0> -
o]
* 4w 5 (23)
& <ko0iBa K" 0> x

A
-2ri X dr
T n>90 ({ 1 f (271’)

x <k, n|TM K", 0> 8(E® -E k"),

(with the same notation as in (20)).

From eq. (19) it follows that ﬁo_yoperator is in_general
the non-Hermitian operator. Hence, §,(18) is the non~unita-
ry operator. The non-Hermitian part of U, represents the
contribution of imelastic to the elastic channel (by virtue
of @ in (19)). However, the contribution of the second term
in the r.h.s. of eqs. (19), (20) and (22) disappears when the
projectile canmot excite any nuclear state, i.e., k2<v2m(eo-eih
where - ¢y is the first nuclear excited state energy. At this
limit Uy =U becomes the Hermitian operator and S, the uni-
tary one. Consequently, in the low-energy limit the two-body
unitarity condition is justified in our approach. As the pion
energy will increase the second term in the r.h.s. of (19},
(20) and (22) will give a contribution. In this way, the ima~
ginary part of the phase shift arises.

4. Tn view of the basic expansion (8) of U it is natural
to obtain a similar expansion for the phase shifts directly:

b)) = 3 & Mg, (24)
n=1
where N denotes the power of the two-body u -matrix. One can
easily get the expressions for 50 by substituting (8) into
(23) and grouping terms at a given power of u -matrix.
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Here we shall consider the first term §'P ). 1In the
first approximation for the nucleus phase shifts uging anti-
symmetrized target wave function we have

1 - >
5 D) =—Anme (k) [dr i<k, Ofu "MK, 051, {25)
0
where the two-body u-matrix ul()):
wlW= 3 [a> ul W) <m|, (26)
n,m 0 "nm 0

describes the piom interaction with the first nucleon.

The matrix element in (25) has the same structure as the
first-order optical potential (see refs.’!" ). The latter
arises from substitution of the two-body t-matrix for the
u -matrix. In order to compute this matrix elements, it is
advantageous to introduce the Jacobi coordinates:

-

> A P
R . Wt I
" A~n+1 A-n
- A-n—1 (27)
P = 2 Ok . n=1,2, .., A~1;
i m= 0 A—m
- i?.o ﬁ’o -+ A - = -+
D0=m(‘-m—'-—m—-), Poamiikm, P=Py+ky,
] R -+ - —-
where k, labels the pion momentum, ky kg, ky label the

nucleon momenta. Thus p, in (27) denotes the relative pion-

nucleus momentum, p, the relative momentum of the first nuc-—
leon and the remaining (A-1) nucleons, etc. In the # ~nucleus

¢.m. system the total momenta P=0 and the wave functions

in (25) are as follows:

- ‘g —b(m) - -+ = -
Cmlke0>=@r)"8 @ "k) g (B Py, D (28)

A—l)'

To express the two-particle matrix element in (26), we in-
troduce the Jacobi coordinates corresponding to scheme
{(A-1),¢1,0)). In this scheme the relative plon-first nucleon
momentum and the momentum of this pair relative to the re-
maining (A~1) nucleons are defined as:

-+ - - > -»
> ' k - P kg+ k
Rmplde oy @i, (ot o 011 (29)
M m : (A-DM M + m



where the reduced masses are: p =mM/(m+ M) MIA_i =
—b

= (A~ 1)M(m+ M)/ {m+AM}, the momentum P, =' 'z k and the remain-
=2

1ng nucleon Jacobi coordinates p g:Pgres Pag are defined

in (27). In these variables for the two—boby matrix element

ul we have:
nm K

al ) = (@28 @MagMy My s«
ni
(30)
o @) ® 3(*(“) pmy
i=2 1

The sum in (26) means the 1ntegrat10n over the momenta of
articles in intermediate states *
P ©Z=(2m)” 3Af n ap’ (m)

Using (28) and (30), the matrix element in (25) is:

el 0 1n ool BB p (o Azlp e A-1 o
<k,0lu” W1]k" 0> f(zn)f% 00 P kP > %
' (31)
x<l_(+—m31u(4\)lk-"-~m§>,
where the overlap function Fg, is:
dp > >
(pp) f——?h bzl s .pg.- DY, ("7 ,--~,p ) 32
(emy3  (2m)?3

and the parameter w=m/(M+m). In (31) and (32) the summation
over spin-isospin variables is also implied. The spin-isospin
structure of the problem will be discussed in Sec.5.

The expression (31) contains the small parameter « =0.13.
Let the static limit of theory ‘*/ be w-0. In this limit
{(31) becomes:

<E,0 ut W R, 05 =<k u) [B*> p (@ | (33)

where

*This is correct if the pion-nucleon "bound-states" (iscbar)
are not taken into account.



pP@=/ 1 —Ly*@ p,..0, ) x (34
=1 (g8 O 12 A-1 }
A1 2
x4, + GPy Py y )

is the nuclear form factor, g=K-k’ denotes the transfer

momentum. Note that the two—body u matrix in (33) is defined
on the isoenergetic surface (|k}=|k’|). Substituting (33) into
(25) gives the following expression for the phase shifts:

1
5N oy =~Ame (®)1p(@ [ar<k|u)|K*>. (35)
0

5. The spin and iscspin dependence of the pion-nucleon two-
body u-matrix can be expressed in terms of spin and isospin
operators:

Og=1, O =tr, Oy=ion, Og=ilem s, (36)

where 1.5 is the nucleon spin operator, t and %r? are the
meson and nucleon isospin operators and unity vector

f=[ Kx<‘1/(k+-k ). Thus,we can isolate the spin and isospin depen-—
dence of u by writing:

-+, 3 - -
<K|UMWNK™>= 3 <clu Wc>0, . (37)
a=0

The matrix elements u, are expressed in terms of the spin-
dependent u; and spin-independent ui operators at a given
isotopic #N<-state I=1/2,i3/2 as

<k [ugW e > =L 2<d|u® 20 | 07> <xful 2 W71,
3 c c

(38)

<Ku W8> = LR W Re> - <R a2 2> 1.

Similar expressions for U, , arise from that of g4 by

substitution of ul forul,

In view of (37) for (33) we have:

- . - 3 d nd
<k, 0julM|k,0>= 20<k. 0lu, Wk", 0>p (0, (39)
_ Pt
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with the nuclear form factors:

pey

= A-1 dp; > -+
- il i " - A__I-& s -
Pq (D .o _—"(2;?)3% Py Py Py )0, 400, TGPy P s (4O)

In (40) the nuclear ground state wave functions are assumed
to contain the spin-isospin part of the whole pion—nucleus
system wave functious.

Let us consider now the pion scattering on nuclei with
zeroth total spin and isospin. In this case the isospin i%7,
spin-flip @.R®) and spin-isospin flip ZR)(@E7) terms do not
contribute to (39). Hence, in view of (38), the pion—nucleus
phase shifts (35) are:

1 > -
507 () == Are () 1o @ gd:\[%<k|u30/2(z\){k’> .

(41)
. -
+—1§<kiu1;2(,\)|k’>}§L, L=0,12,...,

where pg, (?1) is the Fourlier transform of the nuclear density,
the symbol [1(x)} _1 [axP () £(x) where PL (x) are Le
L 2_1 L
SN
gendre polynomials, X =k-k’.

Pion-nucleus phase shifts (41) can be expressed in terms of
the elementary pion-nucleon ones, To do this, it is necessary
to make the partial wave decomposition of the matrix elements
in {41). This decomposition is given for each meson-nucleon
isospin state (labelled by I) as:

— 1 -, . 1 ¢
k Mk >= X = kk;A) P 8).
< |uc Wik > E,jzfté—(]+ 5 )ul‘i ( L(cos

The nuclear form factor p(a) can also be expanded in partial
waves:

p(Q) = % @ +1p, (&) P, (eos0),

where cos@ =K.K’. Substituting these expressions intoc (41) and
integrating over variable A with the help of the basic rela-
tion (9) we obtain the desired result:

Al
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51 m s Lf!

1 2 '
k =) ) k
L - # g’ ,Ja:f+1(J+ 2 {U 00 pe,() 8
(42)
- R o872 1/2
where sl ‘denotes pion—nucleon phase shifts in each eigen-

channel JG f.j),the pion-nucleus and pion-nucleon reduced mas-—
ses are, respectlvely,jﬂ and p. The éxpression (42) is quite
similar to that of the first order optical poteﬁtlal (see,

e.g., (2.36) in ref. ?2/). The latter arlses from (42) by sub-
stitution of collision matrix t%. for 82 . The pi-nucleus
c.m. scattering amplitude is constructed bk summing the con-
tributions from various partial waves

() =L 3 (2L + 1) explis L®]sin(@ ()P (eos0).
The differential cross section is then do/ A0 = | £(O)] 2.

6. The main result of the present paper is the system of
equations (16)-(21) for the calculation of pion-nucleus phase
shifts. In full analogy with the optical model method in the
multiple scattering theorvy ‘1'% it reduces in the CCE~approach
the many-body problem of the pi-nucleus scattering to the
two-body one. By eq. (21} partial phase shifts are defined
through the matrix element of the effective interaction ope-
rator U,. It obeys the exact equation (19) and Pplays here
the role of the optical potential.

- The considered here method of solution of a glven'equa—
tions-tonsists in expansion in powers of the two-body pi-
nucleon matrix u.One may believe in a relatively fast conver-—
gence of these iteration series. Indeed, each term of the basic
expansion (8) has correct analytic properties with respect to
energy variables and is Hermitian. On the other hand, the
higher terms of this series the further singularities of § -
matrix which give a subsequently decreasing contribution 8,
The consideration of simplesgt examples of pd- and npd -scat-
tering discussed in/7.8/ supports this expectation.

In Secs. 4 and 5 we have considered in detail the first order
approximation to pi-nucleus phase shifts. Tn this approxima-
tlon partlal phases are expressed through the matrix element
<k, 0|3 ul lk‘, 0> 1mllar in its structure to the first-
order Bptlcal potential /1-47, Unllke the latter we must know
it only on the energy shell (Ik]*Lk |7. Hence, with the present
approach, there is no an important problem of the off-shell

3
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continuation of this matrix element. We show here (42) that

the pi-nucleus phase shift can be expressed in terms of ele-
mentary pion-nucieon ones. This admits the semi-phenomenolo-
gical analysis of pi-nucleus scattering in the present approach
based on the experimentally defined #N-phase shifts and nuc-
lear form factor. Results of such a description of experimen-
tal data will be presented in a subsequent paper.

The author is grateful to V.B.Belyaev, D.A.Kirzhnitz and
R,A.Eramzhyan for helpful discussions and support.
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