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1. Most approaches to the theory of elastic pion-nucleus 

scattering have used a certain form of the multiple scattering 

theory (MST) Ill in which the nuclear target is treated as 

a system containing elementary subsystems (i.e., nucleons). 

The basic physical quantity calculated in MST is the submat­

rix T0 of the general scattering matrix T,which describes the 

elast~c scattering channel. For calculation of the matrix T 0 

one usually introduces the idea of a theoretical optical po­

tentia111-41. The optical potential is expressed in terms of 

the basic pion-nucleon collision matrix. 

In general, the optical potential is a non-Hermitian ope­

rator. Its non-Hermitian part arises due to the contribution 

of possible inelastic channels to the elastic one. In practi­

cal construction of the optical potential one usually makes 

a set of approximations, lik,e t,he. impulse, the approximation 

linear with respect to the rr -nucleon t -matrix, and s.o on. 

The optical potential thus calculated leads to the scattering 

amplitude which does not satisfy the general requirements 14,5/ 

following from the unitarity condition. Therefore, there 

arises a complicated problem of studying the content of the 

non-Hermitian part of the optical potential 161 . 

In the description of "-nucleus interaction one must very 

carefully take into account the unitarity condition, because 

the pions can be absorbed in nuclear matter (unlike, e.g., 

the nucleons). So, if any theory of rr -nucleus scattering 

even at the potential level leads to the nonunitary scat­

tering amplitude, then the problem of incorporation of the 

absorption in such a scheme cannot be resolved in a consistent 

way*. In this situation it will be helpful to apply to the ap­

proach of descri~tion of rr-nucleus elastic scattering·recent-

1y presented in 71 . This approach is based on the so-called 

method of evolution with respect to coupling constant (CCE) 

(see review 181 ) • It is important that in the CCE method one 

can directly derive an equation for the phase.shifts and bind­

ing energies. In this aspect the CCE-approach is similar to. 

*This remark has nothing to do with the analysis of the 

rrd -scattering based on the Faddeev equations where this prob­

lem can be solved exactly. 
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the well-known phase function method in potential scattering theory 19,101.0ne of the main results of 171 is the construction of a new iteration scheme for the calculation of the rr-nuc­leus scattering amplitude. In this scheme, in contrast to the MST 111, the scattering matrix is unitary of each stage of suc­cessive approximations. T4e analysis of the simplest example of low-energy ~rd -scattering given in 171 shows a fast con­vergence of this iterative series for the rrd -scattering length to its exact value obtained by solving the Faddeev equations. 
The calculation procedure of the "-nucleus phase shifts given in 11 1is applicable to the description of processes of the quasi two-particle nature, i.e., to the low-energy region. The present paper is aimed at generalizing the approach given in.!? I to arbitrary energies of the projectile. As in 17 1, we shall present here the nonrelativistic variant of the theory. In Sec.2 we present the basic equation of the CCE-method. In Sec.3 the calculational scheme of the submatrix T0 is constructed. In full analogy with the optical model method in the HST 1141 we show that in the present approach the many­body problem of "-nucleus scattering can be reduced to the two-body one. In Sec.4 the pi-nucleus phase shifts in the first-order with respect to the so-called two-particle pi­nucleon u -matrix is obtained. In the present approach this approximation corresponds to the first-order optical potential in MST 11 -41 The spin-isospin structure of the problem and the static limit of the theory is discussed in Sec.5. It is shown that the pi-nucleus phase shifts can be expressed in terms of the pi -nucleon ones. In Sec. 6 we discus's the results. 

2. In the problem of rr-nuclear interaction with the pheno­menological rrN -potential considered in the framework of the CCE method the Hamiltonian for the system is 171 : 

(I) 

where H0 is the free Hamiltonian; V describes the NN -inter­action; U1 , the pion interaction with an i -th nucleon, and A plays the role of the pion-nucleon coupling constant. The parameter A is taken unity at the end of calculations. We shall assume the solution of the pure nuclear problem with the Hamiltonian 

(2) 
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to be known. So, the system evolution in coupling constant 
from .\=0 with the rr-nuclear interaction switched-off to the 
realistic value A=1 must be considered. 

Let eigenfunctions of H(1) be 1~>, \v>, etc., and matrix 
elements of the potential U over them U p;v, etc. The scat­
tering S-matrix of the transition from state lp;> to lv> 
(see ref. 181 ) obeys the equation: 

..'!_g ~-2rri }2 S U 8(E -E ), E ~E , 
d.\ fLV rJ JLU ov rJ lJ p. v 

(3) 

with the boundary condition: S (A~O) ~ 8 v 

defined on the isoenergetic su~face EJL~Ifv 
For the T -matrix 

by the relation: 

S -8 +2rri8(E -E ) T 
JLV JLV JL V JLV 

the equation is: 

..i...T =-U -2rri :l: T U 8(E -E ) 
d,\ #LV JLV rJ J.lO 'OV U V 

(4) 

with the boundary condition T )A= 0) '""0. The potential matrix 
element u~v in (3) and (4) oteys the relation: 

...2...u - :s u u < 1 + 1 ). (5) 
dA ~v a ~a av E -E -18 "E -E +11l 

fJ.U 1/rJ 

The boundary condition for U p.v at A:.: 0 is the matri-x ele-
ment of the potential U over the eigenfunctions of Hamiltonian 
h{2); The energies Ep.,v,u. is the exact eigenvalue of H 
deflned by the known equatton dE~ /dA ~ U ~~ . 

In 111 some iteration procedure for solving eq. (5) was de-
veloped. The expansion of U p.v obtained in 17/ can be pre-
sented in the form: 

u~v <Al" <</J~IilC.\l\</Jv >, 

where the operator U(.\) is 

il (A)~ }2 In > 0 < ml , 
0 nm 0 n,m 

A A 
0 (A) = :E u1 (A) + :E 

nm t:z:t nm i~j=t 

x u 1 (A ) ul (A ) ( 
1 

+ --=-1----,,-) + .... 
•• 1 •m 1 E -E -Ill E -E +i1l 

n s m s 

(6) 

(7) 

(8) 

The vector states \</1~> , \</Jv >,etc., and lm>o, ln> 0 in eqs. 
(6) and (7) are, respectively, eigenfunctions of the Hamilto-
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nian h (2) and the free Hamiltonian H0 . The eigenfunctions 
and the eigenvalues of the chann~l Hamiltonian (H 0+AU) are 
denoted by Latin indices. The U 1 

(,\) is the exact two-body 
matrix element of the pion inter~~tion with an i -th nucleon. 
The remaining nuclear nucleons are supposed to be free. Below 
we shall call this object briefly as a two-body u -matrix. It 
obeys an equation like (5) and on the isoenergetic surface 
En =Em defines the pi-nucleon phase shifts by the relation*: 

1 
8(,}=-rr, (,) (d.\lu (A)I, (9) 

2 0 mn 

where lm>=l;,-i!>, ln>=li!", -it"> are solutions of the two­
body scattering problem, ~ (K} =11K/21r 2 is the level den­
sity, p., the reduced mass, K and it" are momenta in the c.m.s. 
before and after collision (K,.,.I~I = 1~"1· In (8) we present 
only two first iterations. One can easily calculate the next 
ones. Graphically the iteration series (8) is given in 171 

Each term in (8) is Hermitian and has correct analytic pro­
perties with respect to energy variables. 

Let us obtain now some useful in the future representations 
of the S-and T-matrices. In view of (6) the matrix elements 
S and T can be presented in the form: j'lV j'lV 

s (Al=<.P IS(E,A)I<fr >, T (A)-<.P IT(E,Ali.P > (10) Jl.V J1 V fl.V J1 V 

on the isoenergetic surface E=Eil =Ev. Substituting (6) and 
(10) into eqs. (3) and (4) gives the equations for the opera­
tors 8 and T: 

dS(E,Al/M ~ -21TiS(E,Alo(E-h) U(Al, 

dT(E,A)/dA ~-U(Al -2rriT(E,A)o(E-h) U(A), 

(I I) 

(12) 

with the boundary conditions S(E,A~O)~f and T( E,A-0) -0. Here 
we take into account the completeness of the set of vector 
states I~> and their independence ofA. The Hamiltonian h is 
defined in (2). 

Eqs. (II) and (12) can be solved by iteration method ex­
pand;_ng operators S and T in powers of the interaction opera­
tor U: 

*Here and in Secs.3-5 we omit indices of the momentum, 
spin, •.. in relations like (9). The braces in (9) denote an 
appropriate partial harmonics of the matrix element. 
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A A • 
S(E,A)- TA exp[ -2rri f d.\ o(E -h) U(A )] , 

0 1 1 
( 13) 

,.. .\ >.. ,.. 

T(E,A) --TA jcl.\
1 

U(A1 )exp[-2rri f d.\ 2o(E-h)U(A 2)], (14) 

o A1 
where TA is the operator anti-ordering with respect to the 

variable A 111! Under this symbol "the arguments .\ of the opera­

tors must increase from left to right. Operators S, f and U 
are defined in the space of eigenfunctions of the channel 

Hamiltonian h(2). In this spac~ S is a unitary operator owing 

to (13) where operators h and U are Hermitian. It should be 

noted that its unitarity is conserved in the framework of ite­

ration procedure (8). 

3. The calculation of the phase shifts by eq. (9) is appro­

priate in the case of two-particle scattering/BI_This was 

used in re£. 171 in the study of low-energy pion-nucleus scat­

tering. But in the general case the calculation of th€ pi-nuc­

leus phase shifts by an equation like (9) is invalid. This 

can be easily seen from the r.h.s. of eqs. (3) and (4), where 

the summation goes over all possible n- -nucleus ·system states 

at a given energy. Here we present a generalization of a simple 

relqtion like (9) to the case of the multichannel problem. 

We introduce ·how a more de-tailed llotation for the meson-

nucleus states: I!Jt>sjk, n>, Where k labels the meson momen-

tum (in the pi-nucleus c.m.) and n labels the properly anti­

symmetrized nuclear state (n"" 0,1, 2, ... ; n, 0 denotes the 

ground state). Our goal is to .investigate_ the elastic scatter­

ing process, i.e., the trarlsitions fr,om st3te jk, O>· to the 

\k', 0>, where k. and k'are the pion momenta before and after 

collision. To do this, let us int~9duce the projection opera­

tor for the ground nuclear state P=\ 0><0'\ and the· projection 

operator Q=l-P- l \n><nj. Then the operators §0 and T 0 
corresponding to n~O elastic channel can be defined as fol­

lows: 

anct \ -PTP. (15) 

Let us also introduce a new effective operator U 0 that 

must define § 0 and T 0 matrix by th~ following equations: 

d A ' A ' 

d,\S 0 (E, A) ~-2rri S0(E,A)o(E-h) PU0 (E:, A), (16) 

( 17) 
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with the boundary conditions '80 (A-O) -f and T0 (A -0) :0. 
Thu~, the intermediate states in (16) and (17) are restricted 
by P to be the nuclear ground state only. Consequently, (16) 
and (17) are simply two-body scattering equations for the 
pi-nucleus system in the CCE-approach. The formal solution 
of eqs. (16) and (17) can be obtained from (13) and (14) by 
replacing U by PU 0 , i.e., 

~ A AA 
S0 (E,A)-T,\ exp[-2rrifd-\

1
8(E-h) PU 0 (E,,\)]. (18) 

0 

The effects of nuclear excitations are incorporated into 
the definition of the effective operator U0 . By the direct 
substitution one can verify that the relations (IS) will be 
satisfied by solutions of eqs. (16) and (17) if U0 (E,,\) 
obeys the equation: 

where the operator S ;t inverse to 80 is: 
,\ 

s~1 (E,A)=T:1 exp[2rri fd-\ 18(E-h)P 0U0 (E,-\)]. 
0 

( 19) 

The symbol TA1 is the operator "ordering" with respect • 
to .\.Under it the arguments of the operators decrease from 
left to right. Operators U and Tare defined respectively in 
(7) and (14). In the matrix form eq. (19) is as follows: 

where E(k)- E(k') =k 2j2l!l-, 0 is the collision energy in the pi -nucleus center-of-mass system, -E 
0 is the nuclear ground 

state energy, m denotes the reduced mass and En (k) =k2/2lli-En 
(n = 1,2,_3, ... ), where -! n is the energy of the n-th excited 
nuclear state. 

By eqs. (16)-(20) the many-body scattering problem is re­
duced to the two-body one. Thus, if one passes from thes.e 
operator equations the matrix ones, as it has been done in 
(20), and makes a partial wave decomposition, then one gets 
the following simple relation for the pi-nucleus phase shifts: 
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' 
1 ..., "' ...., 

8(k) --rr<A(k) Jdld<k,OIU 0 (E,/..)Ik', 0>, (21) 

0 

where ' (k) -m·k/2rr 2 denotes tll,e Jevel density, )11 is the re­
duced pton-nucleus mass, and k, k' are the momenta of pion 

before and after scattering. 
Eq. (19) can be solved by iteration method by expanding 

u
0

(E, ,\.) in powers of the known operator U(7). Two first terms 

of this series are: 

1\ (A)- U(A)- 2rri J dil 1 U(il1 lli(E- h)QU (A). 
0 

For the phase shifts (21) in this approximation we get: 

1 ...., ,.. _, 
li(k) --rr<A(k) JdAI<k.OIU(il)lk', 0>-

0 

- 2rrl L 
n>O 

A cJ.kn -+ ,.. -+ 

J dA J -- <k,OI U(A 1 ll k", n> x 
0 1 (2rr)3 

x < k ", n I U (A) I k', 0> li (E (k) - E n (k" )) , 

(with the same notation as in (20)). 

(22) 

(23) 

From eq. (19) it follows that U0 -operator is in general 

the non-Hermitian operator. He~ce, 80 (18) is the n~n-unita­
ry operator. The non-Hermitian part of U0 represents the 

contribution of inelastic to the elastic channel (by virtue 

of Q in (19)), However, the contribution of the second term 

in the r.h.s. of eqs. (19), (20) and (22) disappears when the 

projectile cannot excite any nuclear state, i.e., k 2<y2m(£ 0-£1 ), 

where :. fl Js the first nuclear excited state ene~gy. At this 
limit U0 =U becomes the Hermitian operator and S 0 the uni­

tary one. Consequently, in the low-energy limit the two-body 
unitarity condition is justified in our approach. As the pion 

energy will increase the second term in the r.h.s. of (19), 

(20) and (22) will give a contribution. In this way, the ima­

ginary part of the phase shift arises. 

4. In view of the basic expansion (8) of U it is natural 

to obtain a similar expansion for the phase shifts directly: 

8 (k) - i: o (N)(k) , (24) 
n-1 

where N denotes the power of the two-body u -matrix. One can 
easily get the expressions for s<N) by substituting (8) into 

(23) and grouping terms at a given power of u -matrix. 
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• 
Here we shall consider the first term 8 (!) (k) . In the 

first approximation for the nucleus phase shifts using anti­
symmetrized target wave function we have 

8 (l)(k) ~-·Arrr A (k) ldA { <k, O! u 1 C\ll k\ 0> I, (25) 

where the two-body u-matrix u 1 (..\}: 

(26) 

describes the pion interaction with the first nucleon. 
The matrix element in (25) has the same structure as the 

first-order optical potential (see refs. 11"41 ) . The latter 
arises from substitution of the two-body t-matrix for the 
u-matrix. In order to compute this matrix elements, it is 

advantageous to introduce the Jacobi coordinates: 

~ 

p ~ 
n 

~ 

A pn ---=' "---'n"- ( -- - k ) 
.A-n+l A-n n 

A-n-1 ~ 

~ 
m~ 0 k A-m' n = 1,2, ... ,A-1; 

(27) 

-+ ........ -+ where k 0 labels the pion momentum, k 1 ,k 2 , ... , kA label the 
nucleon momenta. Thus Po in (27) denotes the relative pion­
nucleus momentum, P; the relative momentum of the first nuc­
leon and the remain1ng (A-1) nucleons, etc. In the rr -nucleus 
c.m. system the total momenta p ... o and the wave functions 
in (25) are as follows: 

(28) 

To express the two-particle matrix element in (26), we in­
troduce the Jacobi coordinates corresponding to scheme 
[(A-1), (1, 0)]. In this scheme the relative pion-first nucleon 
momentum and the momentum of this pair relative to the re­
maining (A-1) nucleons are defined as: 

~ ~ ~ 

-Jo kl ko K~p.(-----), 
M m 

~ PI 
Q ~ lll ( -:--"-:-:c: 

A-I (A-l)M 
(29) 
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where the reduced masses are: ~ = mM/(m + M) , lllA_ 1 = 
~ A ~ 

=(A-l)M(m+M)/(m+.AM), the momentum P1- L k. and the remain-
i,.,. 2 1 

ing nucleon Jacobi ·coordinates p 2,p3 , ... , pA-l are defined 
in (27). In these variables for the two-boby matrix element 
ul we have: 

nm 

u 1 (A)- (2rr) 3 8(Q(n)_(j(m)) <;t(n) I u(,\) I it <m>;, x 
nm 

A-1 
X n (2rr) 3 B(p(n) -P (m)). 

i= 2 1 i 

The sum in (26) means the 
particles in intermediate 

integration over the momenta of 
A-1 

states*: L- (2rr )-3A f n dp~ (m\ 
m i=O i 

Using (28) and (30), the matrix element in (25) is: 

where the overlap function .F 00 is: 

(30) 

(31) 

(32) 

and the parameter 0-m/(M +m). In (31) and (32) the summation 
over spin-isospin variables is also implied. The spin-isospin 
structure of the problem will be discussed in Sec.S. 

The expression (31) contains the small parameter <.U .::;-0.13. 
Let the static limit of theory /71 be W4 0. In this limit 
(31) becomes: 

<k. o 1 u 1 <Al 1 k'·, o>-<k 1 u<"-l 1 k'> P c<il , (33) 

where 

*This is correct if the pion-nucleon 11bound-states 11 (isobar) 
are not taken into account. 
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(34) 

is the nuclear form factor, Q,., k -k' denotes the transfer 
momentum. Note that the two-body u matrix in (33) is defined 
on the isoenergetic surface Clkl~lk'll. Substituting (33) into 
(25) gives the following expression for the phase shifts: 

1 
8(1) (k)~-Arrc (k)lp(qJ JctA<klu(A)Ik~'>. 

A (35) 
0 

5. The spin and isospin dependence of the pion-nucleon two­
body u -matrix can be expressed in terms of spin and isospin 
operators: 

.... .... -+-+ ...... -+-+ 
0 0 ~1. o 1 ~tr, o 2 ~ian, o 3 ~i(an)(t<), 

1~ 1 • ... 1-+ where 2 a is the nuc eon sp1n operator, t and 2' are 
meson and nucleon isospin operators and unity vector 
D=[ K\t'J/(K•K').Thus,we can isolate the spin and isOspin 
dence of u by writing: 

(36) 

the 

de pen-

(37) 

The matrix elements ua are expressed in terms of the spin­
dependent u 1 and spin-independent u I operators at a given 
isotopic nN8-state 1=112, ·18/2 as c 

(38) 

Similar expressions for u 2 3 substitution of u 1
8 for u ~. ' 

arise from that of u0,1 by 

In view of (37) for (33) we have: 

-+ -+ i3 -+ -+ 
<k, Olu 1 (l\)lk',O>- l: <k, Olua (l\)lk', O>pa (q) 

a~o 
(39) 
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with the nuclear form factors: 

In (40) the nuclear ground state wave functions are assumed 
to contain the spin-isospin part of the whole pion-nucleus 
system wave functions. 

Let us consider now the pion scattering on nuclei with 
zeroth total spin and isospin. In this case the isospin t.;, 
spin:-flip ((j. ll) and spin-isospin flip (6ll) (t,j terms do not 
contribute to (39). Hence, in view of (38), the pion-nucleus 
phase shifts (35) are: 

c/L'l (k)=-Arr< (k)lp 0 (cj) fdA[3._<klu 312 (A)Ik'> + 
A 0 3 c 

~ 

where p 0 (q) 
the symbol 

is the Fourier transform 
1 I 

lf(x)IL =2" fdxPL(x) f(x). 
-I 

X A 

~ ~ 

gendre polynomials, x ""'k·k'. 

( 41) 

of the nuclear density, 
where P L (x) are Le-

Pion-nucleus phase shifts (41) can be expressed in terms of 
the elementary pion-nucleon ones. To do this, it is necessary 
to make the partial wave decomposition of the matrix elements 
in (41). This decomposition is given for each meson-nucleon 
isospin state (labelled by I) as: 

...., I 4 1 f < k 1 u (A) 1 k, > ~ s <i + -) u . (k. k; J\) P L <cos e) • 
c C,j-f±l. 2 !J 

2 

The nuclear form factor p(Q) can also be expanded in partial 
waves: 

... ... . . 
where cos8 =k·k'. Subst1tut1ng these expressions into (41) and 
integrating over variable A with the help of the basic rela­
tion (9) we obtain the -desired result: 
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m (k) ~:A-
~ 

L Ci+l_) 
I, e ', i ~e±l. 2 

2 

L e • e ( 
0 0 0 

x r .K.aea/z (k) + .la et;z (k) J, 
3 J 2 J ' 

(42) 

where 01- 'denotes p~on-nuc:leon phase. shifts in each eigen­
channel J (I, P, j), the p~on-nucleus and plan-nucleon reduced mas­
ses are, respectively, m and fl.• The expression (42) is quite 
similar to that of the first order optical poterttial (see, 
e.g., (2.36) in re£. 1 121 ). The latter arises from (42) by sub­
stitution of collision matrix t~. for 8~. , The pi-nucleus 
c.m. scattering amplitude is condtructed oY summing the con­
tributions from various partial waves 

f(li)~l.. L (2L+l)exp[i8 (k)lsin(o (k))P (oosO). k L L L 
The differential cross section is then da/ dQ -I f(0)\ 2 . 

6. The main result of the present paper is the system of 
equations (16)-(21) for the calculation of pion-nucleus phase 
shifts. In full analogy with the optical model 'method in the 
multiple scattering theory 11 "41 it reduces in the CCE-approach 
the many-body problem of the pi-nucleus scattering to the 
two-body one. By eq. (21) partial phase shifts are defined 
through the matrix element of the effective interaction ope-
rator fi 0 . It obeys the exact equation ( 19) and Plays here 
the role of the optical potential. 

The considered here method of solution of a giv-e·n equa­
tions- 'cons·ists in expansion in powers of the two-bod-y pi­
nucleon matrix u.One may believe in a relatively fast conver­
gence of these iteration series. Indeed, -each terrri of the ba'sic 
expansion (8) has correct analytic properties with respect to 
energy variables and is Hermitian. On the other hand, the 
higher terms of this series the further singul~rities of S -
matrix which give a subsequently decreasing contribution /8 1

• 

The consideration of simplest examples of rrd- and nd -scat~ 
tering discussed in /7,8/ supports this expectation. 

In Secs.4 and 5 we have considered in detail the first order 
approximation to pi-nucleus phase s-hifts. In this approxima­
tiJn parti~l phases are expressed through the matrix element 
<k,Oil u1 lk', 0> similar in its structure to the first-
order bptical potential 11"41 • Unlike the latter we must know 
it only on the energy shell (\kl ~lk'll. Hence, with the present 
approach, the,re is no an important problem of the off-she11 
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continuation of this matrix element. We show here (42) that 
the pi-nucleus ph.9.se shift can be expressed in terms of ele­
mentary pion-nucleon ones. This admits the semi-phenomenolo­
gical analysis of pi-nucleus scattering in the present approach 
based on the experimentally defined rrN-phase shifts and nuc­
lear form factor. Results of such a description of experimen­
tal data will be presented in a subsequent paper. 

The author is grateful to V.B.Belyaev, D.A.Kirzhnitz and 
R.A.Eramzhyan for helpful discussions and support. 
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