


1. INTRODUCTION

The models describing excited nuclear states at inter-
mediate and high excitation energies have been developed in
recent years/1"% ., In most of these models the RPA is used as
the basic approximation. There arises a guestion whether one
and the same set of parameters can be used for the descrip-
tion of the properties of low-lying and high-lying nuclear
excitations. It can definitely be answered upon investigating
more thoroughly the accuracy of the RPA and the values of
corrections to this approximation, which should be taken into
account in describing the low-lying excited nuclear states.

The accuracy of the RPA is being investigated more than
ten years. The terms of the nuclear Hamiltonian causing non-
linear kinematic and dynamical effects were investigated A,
One of the recent papers/4/ gives a review of the most impor-
tant papers devoted to this problem.

In recent years the quasiparticle-phonon model/l/ is of
great interest. This model allowed one to calculate the
spreading widths of the giant E!l and E2 resonances 5/, the
influence of these resonances on the radiative strength func-
tions’8’, enhancement of M! transitions in some spherical
nuclei’?’, and the regions of location of M2 transitions 8/,
Some interesting results have also been obtained for the
deformed nuclei /%,

An essential advantage of the quasiparticle-phonon model
is a large phonon space. According to the above-mentioned
papers, to adequatly describe the distribution of few~gquasi-
particle components of the nuclear wave function, one should
take into account numerous collective and noncollective
phonons with momentum from 1 to 7 and more of negative and
positive parity. The structure of these phonons is calculated
within the RPA. In refs./10.11/ the accuracy of this
approximation in spherical and transitional nuclei is inves-
tigated for the case when a large phonon space is used. It is
studied /1% that the accuracy of the RPA in spherical nuclei
is good for the phonons of any multipolarity in nuclei with
one closed shell and in the adjucent nuclei. However, with
increasing collectivity of the first 2% and 3~ states, the
number of quasiparticles in the ground state of an even-even



nucleus increases and the accuracy of the RPA becomes worse.
The simplest way of taking into account the influence of
quasiparticles in the ground state on the grp?erties of ex-
cited states has been suggested in refs.’1281% | The cor-
relations in the ?round states have been considered in more
detail in ref. 14/, The coupling between quasiparticle and
phonon branches of excitation arising due to the correlations
in the ground state was also considered in that paper. Using
the variational principle a system of equations connecting
the quasiparticle and phonon degrees of freedom was obtained.
However, these effects were not estimated numerically.

In this paper, based on the results of ref.’14/, we
estimate the influcnce of correlations in the ground state on
the energies and probabilities of electric transitions of the
firat excited 2% and 3~ states. The calculations have been
prirformed using a large basis of single-particle states; this
makss it possible to reduce to minimum the influence of the
effective charge on the final result. The renormalization of
parameters of multipole forces in order to make the agreement
with the experimental data better is discussed.

II. STATEMENT OF THE PROBLEM AND BASIC EQUATIONS

Let us proceed from the nuclear model whose Hamiltonian
includes the average field My, pairing H, and multipole
residual forces }(QQ. Sometimes the Hamiltonian includes also
the spin-multipole forces’1/. We use the Hamiltonian which
does not include these forces; however their influence on the
final result will be discussed below. Now we write the
Hamiltonian as follows:
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and ¥, (%) are the single-particle wave functions.
Using the Wigner-Eckart ti.:orem, the matrix element (8)
can be written as follows:
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where <2,LM|1> is the Clebsch-Gordan coefficient.
Now we transform the Hamiltonian (1) passing to quasi-

particles
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After the transformation (9) the Hamiltonian is a guadratic
form of the following operators:
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The commutation relation of the operators (10) has a complex
form, for instance
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vwhere L(P) denotes the linear form with respect to the
operator P . Let us denote the phonon creation operator as
follows:
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Let | > be a phonon vacuum. It is assumed in the RPA that
the right-hand side of the commutator (11) averaged over the
phonon vacuum can be substituted by 8 5 . This means

that the following relation wM
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should hold.

Thus, the operators A" and A as C*and C will
satisfy the boson commutation relations /167,

As has been shown in ref./!% the assumption (13) is ful-
filled for a small number of nuclei only. Following
papers /12.183/  ye shall take into account in very simple way
the right-hand side of the commutation relations (11).

Let us intvoduce the following quantities:



p.---l-—-—<lB |>,

! vaq, j

1 . (14)
——<|BT [111|>=8, .86 ..p, .
V2o, LM Lo%11°°P1

Thus, relation (13) will not be fulfilled. Let also the

operators C+, C, and C" inl, C LM[n] satisfy the boson
commutation rplatlons. Express the Hamiltonian through C,
and Gy ylnl and construct the functional
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The quantities p; are not independent parameters. They
are related with the boson amplitudes through the equation
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Neglecting the influence due to the pair vabrations (i.e.,

assuming that a, =b ., = 0), we derive a system of equatiois
which



1) connects the quasiparticle and phonon characteristics

of the system;
2) turns into the known system of equations of the RPA at
So, the secular equation has the form
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The quantities u, and v, are determined by the formulae
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influence of multipole forces to the value of
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Inclusion into the commutation relations (11} of the terms
proportional to p,; causes appearance of p, in the secular
equation (16) and in the expression for quasiparticle ener-
gies €5 (17).

The quasiparticle energies of the states with large P
(for which the number of quasiparticles in the ground state
is large) may differ essentially from the ?uantities cal~
culated by the superfluid nuclear model /187,

This difference is the larger, the stronger are the col-
lective properties of the lowest excitations. The con-
tribution of these states into the secular equation (16) will
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be suppressed strongly. Following the results of ref, 710/,
which show that large Py will have the states lying near the
Fermi surface, one may conclude that the corrections can
chiange essentially the structure of the ’owest states. The
guantity tr, (19),(21) in this consideration plays the role
of the gap parameter. Two effects cause the change of r, in
comparison with the superfluid model’15/ | First, due to the
presence of py in the first term r&” (19), 1, decreases
in comparison with the superfluid model. Secondﬂ the second
term 1{® will increase “he value of r, by its coherence.
These e%fects are much stronger when the first excited state
of an even-even nucleus is more collective. Taking into
account the fact that the largest values of p; have the
states lying near the Fermi level, we can state that the
strongest changes of the gap can be expected for the states
in that region.

The change of the structure of the lowest excited states
causes the change of the electromagnetic transition
probability.

The reduced probability of electric transitions of multi-
polarity L is expressed by the formula

B(EL; L +0) =
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It is shown in refs.’!?"14/  that this value is less than
that calculated in the RPA.

IIY. NUMERICAL RESULTS AND THEIR ANALYSIS

It is seen from the secular equation (16) that the prob-
lem stated can be solved in two stages. First, one should
determine the values of p, and then, having calculated all
the rest unknown quantities (18),(19),(21), derive eq.(16).
It is shown in ref.”'® that the values of py can be found
by solving the linear system
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If the calculations use a large basis of single-particle
states, the rank system (23) is large. One of its properties
is that the diagonal terms exceed considerably the non-
diagonal ones. This allows one to use the method from ref./IQK
for the solution of system (23).

In formulae (19),(21) and (23) the summation over the
phonon numbers is performed, and the phonons of different
multipolarity are included in thg sums.

Following the results of ref. 1% we nave taken into
account the first quadrupole and octupole phonons only. The
influence of other high-lying collective states and of the
spin—Tpltipole phonons is insignificant for the quantity
P . .
lThe numerical calculations have been performed for
144-150 g The Sm isotopes change sharply collectivity of
their 2% and 37 states. The 1448m  is a nucleus with one
closed shell and its lowest excitations are not very col-
lective. The 199§y is a good example of a transitional nuc-
leus in which B(E2) amounts to dozens of single-particle
units.

Table 1.

Energies and B(EL)-values for Sm isotopes. a) denotes the
RPA results; b) the results taking into account the number of
quasiparticles in the ground state; c) the results taking in-
to account the correlations of quasiparticle and phonon exci-
tations.

fiuclel Index 4 (.2; ”'“”J ’J?’[H” Elf[; E {3;}['““] ﬂ(fj }f é‘e['j

theor, Xl theor. exp. theor, exn, theor, axXDe
144 a 2415 04254 2.30 0.147
Sm b 2417 1.66 0.234 0.25 2,34 1,810 0.,136 -
[ 2.14 0.248 2.34 0.132
a 1.174 0.482 2.0 0.193
146g, b 14478 0,747  0.293 - 2,23 1.8 0,144 -
[ 1.00 04472 2,022 0.16
148 a 0.87 0.679 1.65 0,247
Sm b 1,45 0,550 0,309 0,70 2.09 1.162 0.156 0,25
c 1.09 0.428 1.87 0,171
a 049 1.33 1.50 0.262
150gy b 1443 04334 0361 1.37 2,05 1.071 0.151 0.1
¢ 1.03 0515 1.85 0.162




2 Global analyses of nucleon EM structure data
by the standard VMD model

There is a decomposition of nucleon electric Gg(t) and magnetic Gy(t) FF’s into
isoscalar and isovector parts of the Dirac and Pauli FF’s as follows

GHO = [Fn(0) + Ry + 75l Fin® + Fin(0)

2 = 1A ~<t)+F."~u)1+1F;~u + Fpult) )
GHO) = [Finlt) = Fn(O)+ 7 (Fin(0) = Fiu(0)

Gu(t) = [Fn(t) - m(l]+[Fz~ )= A

Cesselli, Nigro and Voci {1} have saturated the {atter by means of the following five
w(782),4(1019).4'(1660),p(773),p'(1600) resonances considering the standard VMD model

parametrization
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and carrying out a simultaneous analysis of 199 experimental points consisting of the
proton and ncutron space-like and the proton time-like data. In a fit of the proton FF
data in the time-like region the 1/(m?—t) factor has been modified to 1 /(m®—t+mT}),
where I is the width of unstable vector-m=sons under consideration.

T'he main result of this analysis is an estimate of the e¥e™ — nn cross-section to
he about 100 times larger than the ete™ — pp cross-section. At the same time, a
strong constraint on the fit from the time-like data has been observed. Really, if in a
fit anly space-like data are used, the calculated value of |G%(4m2)| = |G%,(4m?) at the
proton-antiproton threshold is 2.27 against the measured value D 51. This means that
it is impossible to reproduce the correct time-like behaviour of the proton EM FF’s in
the framework of the standard VMD model on the basis of the space-like data only.
The latter property is observed in all our further analyses as well.

We have used the same model analysing the nucleon FF data, however, extended
for proton FF's up to t = —33GeV'? and for electric and magnetic neutron FF's up to
t = ~1GeV? and ¢ = —10GeV?, respectively. We confirm roughly the Cesselli, Nigro,
Voci [1] result for a rate of oy(ete™ — nit) 10 oue(ete™ — pp) but it is no more
acceptable from the statistical point of view of an elaboration of experimental data as
we have V2/NDF = 7025/382 to be compared with x*/NDF = 359/189 in rel.[1]. The
obtained values of the corresponding coupling ratios are presented in Table 1, where
they are compared also with the results of Cesselli, Nigro, Voci {1).

We have tried to analyse all nucleon FF data also by a more sophisticated standard
VMD model of the nucleon EM structure taking into account the newest experimental



Table 2.

The quasiparticle energies ¢, and gap parameters r(® and
ty for some states near Fermi surface in 1508m. ‘The“gaps
of superfluid model are C,~1.29 MeV,C, ~ 1.22 MeV).

nly &, [AteV) rd i £ [UeV] et 7%
neutrons superfl, this this
model paper (Mev] [Mev] pratons ;l;geiﬂ . paper - [Mev] {ttev ]
e

Thyy 545 5033 0404 1,18 dDy  6.86 6485 0,0 1,12
1dsy, 5.12 503 002 117 {ggy, 6,28 6426 0.02 133
Lfia 1,29 119 0,69 1.60 [g,, 1.44 1,36 0,33 1.6
/hga 2,18 2,11 0.20  1.33 g, 1.20 1.18 0.42 1.36
jFJ/L 2454 2,48 0.19 1.25 {A“U 1.75 1,68 Q.31 1.35
jl‘(_j/‘ 2,57 2.51 0.20 1,32 351& 2454 2450 Q. 1.06
3/”/4, 3.61 3.58 0.0 1.5 st/‘ 2,64 2,60 0.07 1.15

It is seen from table 2 that the parameter of the gap r,
changes differently for different states. As has been men-
tioned, r, contains two terms r,()  and r(® with
opposite signs. It is seen from 639) and (Zf) that 1® g
directly connected with the constants of the multipole forces
therefore it will be sensitive to the change of collective-
ness of the 2% and 3~ states. The largest values of r(®
have the single-particle states near the Fermi surface. In
spite of large p, in these states (it .is seen from (19) and
(21) that g, decrease r{z) ). large amplitudes ¢y and ¢
(20) entering into (19) and (21), cause large values of r{®,

The term r{!) decreases the gap in contrast with the
superfluid model. These differences are essential in 150 gy
in which p; are the largest. As it is seen from table 2, the
values of r, are lower than the gap parameters Cy and C,,
calcula~ed by the superfluid model. Only the single-particle
states near the Fermi surface (neutron 2!'7/2 . 2p3/2, 1i13/2
and proton 1g7/2, 24 572 ! lhu/2 ) have a larger gap than in
the superfluid model.

New gaps r, cause new u, Vv ~coefficients and change the
one-quasiparticle energies e, . It follows from (17) that e
should be lass than the quasiparticle energies of the super-
fluid model. However, the increasing gap compensates this
decrease and ¢_ is only somewhat lower than those values
calculated by é%e superfluid model. A slight but essential
shift of the first poles of eq.(16) occurs. At that the
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multipole force constants «j, do not change, and the change
of ¢, and u,v -coefficients results in increasing col-
lectiveness of the lowest 2% and 3~ states. Therefore, in
table 1c¢) the energies of the 2; and 3; states are lower
than in b). The electric transition probabilities are also
larger in c) than in b).

By comparing the rows a) and c) of table 1, one can see
that the number of quasiparticles in the ground state and the
correlations of phonon and quasiparticle excitations lead to
two opposite effects giving almost the same corrections. In
the semimagic !44Sm and neighbouring 148 5 , in which col-
lectiveress of the first 2% and 3~ states is weaker, these
corrections are small and compensate each other completely.
With increasing collectiveness of the 2;' and 3; states, the

number of quasiparticles in the ground state of even nuclei
increases, the values of the vector ; become larger and the
first effect predominates. This changes essentially the
energies of the 2! and 3; states and B{(E2)- and B(E3)~
values in 88y and 150sm.

CONCLUSION

The above investigation shows that there exist cor-
relations connecting the amplitudes of phonon and quasipar-
ticle excitations. They cause the change of the gap of quasi-
particle states. Its value depends to a great extent on the
multipole force constants. On the other hand, the near gap
changes the quasiparticle energies, Bogolubov's coefficients
and consequently, the collectiveness of the lowest exci-
tations.

The numerical calculations of the Sm isotopes have shown
that influence of the multipole forces on the gap is notable
for the states near the fermi level. This effect, however,
is compensated to a great extent by the influence of quasi-
particles in the ground state. As a result the gap and the
quasiparticle energies of states only slightly differ from
the values calculated within the superfluid nuclear model.

The influence of the number of quasiparticles in the
ground state on the 2V and 3; states diminishes their col-
lectiveness. However, the collectiveness of the 2t and 3;
states increases, if one takes into account the correlations
between the number of quasiparticles in the ground state and
the phonon amplitudes ¢ and ¢.
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The calculations have shown that the effects under con-
sideration are small and compensate each other completely in
the semimagic !448m and neighbouring 1468p,

In the transitional nuclei the number of quasiparticles
in the ground state is so large, that its inclusion causes
a complete loss of collective properties of the first 2* and
3~ states. In these nuclei toc abequatly describe the
properties of collective states, one should evidently include
into the Hamiltonian the terms taking into account more
complex relations of quasiparticle degrees of freedom as has
been mentioned in ref. ‘147,

The numerical calculations allow one to conclude that it
is reasonable to use the RPA as an initial approximation,
since the effects under consideration are small in semimagic
and adjacent nuclei. Therefore, the RPA-phonons used as

a basis in the quasiparticle-phonon nuclear model’ 1’ are a
good basis. However, it is impossible to use the RPA-phonons
as a basis for the description of the fragmentation of
simple excitations in the nuclei, where the first excited
states are strongly collective (as in 198m ). Those nuclei
require additional investigations of the cole of other terms
in the Hamiltonian’4’, which form the first 2t and 3~ ex-
cited states.

The authors are grateful to prof. V.G.Soloviev for
interest in this work and valuable remarks. They thank also
A.I.Vdovin and R.V.Jolos for useful discussions.
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