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1. INTRODUCTION 

The models describing excited nuclear states at inter­
mediate and high excitation energies have been developed in 
recent years '1-8/ . in most of these models the RPA is used as 
the basic approximation. There arises a guestion whether one 
and the same set of parameters can be used for the descrip­
tion of the properties of low-lying and high-lying nuclear 
excitations. It can definitely be answered upon investigating 
more thoroughly the accuracy of the RPA and the values of 
corrections to this approximation, which should be taken into 
account in describing the low-lying excited nuclear states. 

The accuracy of the RPA is being investigated more than 
ten years. The terms of the nuclear Hamiltonian causing non­
linear kinematic and dynamical effects were investigated 4 . 
One of the recent papers / i / gives a review of the most impor­
tant papers devoted to this problem. 

In recent years the quasiparticle-phonon model is of 
great interest. This model allowed one to calculate the 
spreading widths of the giant El and E2 resonances 5', the 
influence of these resonances on the radiative strength func­
tions / s / , enhancement of Ml transitions in some spherical 
nuclei , and the regions of location of M2 transitions/8/. 
Some interesting results have also been obtained for the 
deformed nuclei / 9 /. 

An essential advantage of the quasiparticle-phonon model 
is a large phonon space. According to the above-mentioned 
papers, to adequatly describe the distribution of few-quasi-
particle components of the nuclear wave function, one should 
take into account numerous collective and noncollective 
phonons with momentum from 1 to 7 and more of negative and 
positive parity. The structure of these phonons is calculated 
within the RPA. In refs. 'MMl/ the accuracy of this 
approximation in spherical and transitional nuclei is inves­
tigated for the case when a large phonon space is used. It is 
studied/10/ that the accuracy of the RPA in spherical nuclei 
is good for the phonons of any multipolarity in nuclei with 
one closed shell and in the adjucent nuclei. However, with 
increasing collectivity of the first 2 + and 3~ states, the 
number of quasiparticles in the ground state of an even-even 
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nucleus increases and the accuracy of the RPA becomes worse. 
The simplest way of taking into account the influence of 
quasiparticles in the ground state on the properties of ex­
cited states has been suggested in refs. 1"'1'3 . The cor­
relations in the ground states have been considered in more 
detail in ref. fw . The coupling between quasiparticle and 
phonon branches of excitation arising due to the correlations 
in the ground state was also considered in that paper. Using 
the variational principle a system of equations connecting 
the quasiparticle and phonon degrees of freedom was obtained. 
However, these effects were not estimated numerically. 

In this paper, based on the results of ref. / 1 4 , we 
estimate the influence of correlations in the ground state on 
the energies and probabilities of electric transitions of the 
first excited 2 + and 3~ states. The calculations have been 
performed using a large basis of single-particle states; this 
makes it possible to reduce to minimum the influence of the 
effective charge on the final result. The renormalization of 
parameters of multipole forces in order to make the agreement 
with the experimental data better is discussed. 

II. STATEMENT OP THE PROBLEM AND BASIC EQUATIONS 

Let us proceed from the nuclear model whose Hamiltonian 
includes the average field H 0, pairing H p and multipole 
residual forces K Q e . Sometimes the Hamiltonian includes also 
the spin-multipole forces / 1 /. We use the Hamiltonian which 
does not include these forces; however their influence on the 
final result will be discussed below. Now we write the 
Hamiltonian as follows: 

H=H0 + H p + H Q Q , d) 

where 

K 0 - J < * r A , ' > J . ' (2) 

H = _ J ° P + P 

(3) 

* - 2 w j H , ' i . - ^ -
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К « - А - 2 v Q + Q < 5 > 
e a 8 111 * L LMyLM' 

i I U = 2 < 1 | Q . J 2 > a t m a, 
L M Jim! L M j i m l J 2 а 2 ш 2 (6) 

j 2 m 2 

^ ' Ч и ^ ' < 7 > 
<11Q L M 12> = J > +(«) 0 L M W ^ (x) dx . ( 8 ) 

and ^j(x) are the s i n g l e - p a r t i c l e wave funct ions. 
Using the Wigner-Eckart theorem, the matrix element (8) 

can be written as fo l lows: 

< 1 | | Q , | | 2 > 
<1 Q I U | 2 > ••L - <2,LM|1>, 

where <2,LM|1> i s the Clebsch-Gordan c o e f f i c i e n t . 
Now we transform the Hamiltonian (1) passing to quasi-

p a r t i c l e s 

a, + = u,a+ +(-1)Ь ш v .a , jm j Jm j J-m 
(9) 

a, = u . a , +(-1) v, aT „ jm j jm ' j J-m 

under the condition that 
u J + yS *** 

After the transformation (9) the Hamiltonian is a quadratic 
form of the following operators: 

A V A j - B l - A L M [ " ' b A +
L M[jj'], BLJjj'l, 

where 
l ^ = - * (-1) «<„<»._ = (A,) . V4fl m I" N ( Г ' 

B.-B.+ =-i— 2 a* a. , 



20 . = 2j + 1 , 

A + L M t 1 2 l = 4 - I < 1 . 2 l L M > a i

+ a a

+ = ( A L J l 2 | ) + , HO) 
V u П1]Шп 

B T

+ J12] = В Г 1 2 ] = 2 < l , - 2 | L M > a + « . 

The commutation r e l a t i o n of the ope ra to r s (Ю) has a complex 
form, for ins t ance 

U L M [ 2 2 ' ] , А £ д 1 1 П ] - а А 1 , 8 м М Ь ( в £ ' М - [ 8 3 ' ] ) , (11) 

where L(P) denotes the linear form with respect to the 
operator P . Let us denote the phonon creation operator as 
follows: 

C + n = *< anl A ; - b „ l A l b 

c^lni- x ( w' l [u iA^[U' ] -^[uiU) l r , ' yu ' i i , ( 1 2 ) 

Let | > be a phonon vacuum. It is assumed in the RPA that 
the right-hand side of the commutator (11) averaged over the 
phonon vacuum can be substituted by 8.5 . This means 
that the following relation 

< ] B £ M [ I I ] | > = O , 

<|B+ |> =0 (13) 

should hold. 
Thus, the operators A + and A as C + s.nd С will 

satisfy the boson commutation relations ' 1 5 / . 
As has been shown in r e f / l 0 / the assumption (13) is ful­

filled for a small number of nuclei only. Following 
papers /12,li3/ w e s nall take into account in very simple way 
the right-hand side of the commutation relations (11). 

Let us introduce the following quantities: 
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P , ==-<|B. + l>. 
V a n . 

(14) 

Thus, relation (13) will not be fulfilled. Let also the 
operators C+, C n and СД,|п1, C.wln] satisfy the boson 
commutation relations. Express the Hamiltonian through С 
and C L M[n] and construct the functional 

f r<|K|:.-S^(vf + n«) -

~ Д .-L
n(l-Pir)(<Ul'l-AL(ll']-<AL

n[H']^fH1) - ( 1 5 ) 

nb 11 

- 2 <o° (1 -« )(a ,a ,-b b , ) , 
l n О Г 1 nl nl Dl ill 

where 

" l b " ' . + 'k 
As a necessary condition for minimum, let 

= 0, = 0 , 
<*ifc <9vk .ОД [111 

= 0, =0, 
*a n k аь в к a*» [ill 
The quantities pi are not independent parameters. They 

are related with the boson amplitudes through the equation 

P - - L - s a - , ) sn L ( (*»[ ia) 8 +<*"[«]) 8 - i ) + 

Neglecting the influence due to the pair vabrations (i.e., 
assuming that a n k = b n k - 0 ), we derive a system of equations 
which 
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1) connects the quasiparticle and phonon characteristics 
of the system; 

2) turns into the known system of equations of the RPA at 
p -* 0. So, the secular equation has the form 

1=2* 2 L-. , ( 1 6 ) 

11 U+f J -ie>L) 

where 

enn-4r(o,» t.+ v 1i,j < 1 H ^ 1 — , 
(17) 

t =[(E -A)(u s-v 2)+Gu v S 2Я ,u,v ,(l-2p ,)] , 
S В S B S S у S S S r S 

The quantities u k and v k are determined by the formulae 

u k =—(1 + ) , 
v к к 

(18) 

where 

R k =(E s-A)(l-2p k ), 

Гк = Г к 1 } + r k 2 > =( 1-2p k)-|2 2n iu iv i(l-2p 1) + 

+ f , S X L ( S < 8 | | Q L l | 8 ^ ( V e ' + V 8 ' ) ( 1 - ' , 2 B ' ) ( ' f r L [ 8 8 ' 1 + * L [ 8 8 ' 1 ) x 

(19) 
x - L - <k||Q||k>(l-<. X^[kk] + ̂ [kkJ). 
2lJk 

It should be noted that the term г . ' including the 
influence of multipole forces to the value of r k , appears 
when pi £ 0 only, i.e., when condition (13) is not fulfil­
led. 

The boson amplitudes are equal to 
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N?Q,[:tl1 

^»[U1-
(20) 

where 
N L = *L 2#(1-^вв^Оь[881(^»[ЕВ'] + ̂ ^[аВ']), 

Using the normalization condition 

2(1-p. .,)((^»Ш'])8-(^»Ц1'])•]-« a' u L L 

we get the following equation for calculating the quantity 
>8r 

With this expression for N? , one can write (18) as follows: 

r k=,a) + f(i-Vl^!! l V l(i- ? l) + 

+ _ L _ 2 V2JrN n - i_<k| |Q | |k>(l-p..)(0"[kk] + ^ " [ k k ] ) . 

(21) 

Inclusion into the commutation relations (11) of the terms 
proportional to p, causes appearance of p in the secular 
equation (16) and in the expression for quasiparticle ener­
gies f s (17). 

The quasiparticle energies of the states with large p 
(for which the number of quasiparticles in the ground state 
is large) may differ essentially from the quantities cal­
culated by the superfluid nuclear model / 1 Б . 

This difference is the larger, the stronger are the col­
lective properties of the lowest excitations. The con­
tribution of these states into the secular equation (16) will 
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be suppressed strongly. Following the results of ref. / l 0 / , 
which show that large p, will hp.ve the states lying near the 
Fermi surface/ one may conclude that the corrections can 
change essentially the structure of the 1owest states. The 
quantity r k (19),(21) in this consideration plays the role 
of the gap parameter. Two effects cause the change of r in 
comparison with the superfluid model 1 5 / / . First, due to the 
presence of p k in the first term tr}> (19) , r, decreases 
in comparison with the superfluid model. Second, the second 
term r^2) will increase the value of r. by its coherence. 
These effects are much stronger when the first excited state 
of an even-even nucleus is more collective. Taking into 
account the fact that the largest values of p i have the 
states lying near the Fermi level, we can state that the 
strongest changes of the gap can be expected for the states 
in that region. 

The change of the structure of the lowest excited states 
causes the change of the electromagnetic transition 
probability. 

The reduced probability of electric transitions of multi-
polarity L is expressed by the formula 

B(EL; L - 0) -

-l 2 (1- Р 1 1,)е ь[11']<^т'] + ̂ [п'])! 2. ( 2 2 ) 

It is shown in refs. 1 8" 1 4 that this value is less than 
that calculated in the RPA. 

III. NUMERICAL RESULTS AND THEIR ANALYSIS 

It is seen from the secular equation (16) that the prob­
lem stated can be solved in two stages. First, one should 
determine the values of p. and then, having calculated all 
the rest unknown quantities (18),(19),(21), derive eq.(16). 
It is shown in ref. that the values of pi can be found 
by solving the linear system 

(.2ai+tl)p1+ 2 f 1 2 p 2 = P l , (23) 
where 

'i-l'ur < 1 2 - 2 2nL(*»ti2])2. 
K Ln 
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If the calculations use a large basis of single-particle 
states, the rank system (23) is large. One of its properties 
is that the diagonal terms exceed considerably the non-
diagonal ones. This allows one to use the method from ref. , 
for the solution of system (23). 

In formulae (19),(21) and (23) the summation over the 
phonon numbers is performed, and the phonons of different 
multipolarity are included in the sums. 

Following the results of ref;* we have taken into 
account the first quadrupole and octupole phonons only. The 
influence of other high-lying collective states and of the 
spin-multipole phonons is insignificant for the quantity 

The numerical calculations have been performed for 
144-150 g m T ^ e g m i s o t 0 p e s change sharply collectivity of 
their 2^ and 3~ states. The 1 4 4Sm is a nucleus with one 
closed shell and its lowest excitations are not very col­
lective. The 1 5 0Sm is a good example of a transitional nuc­
leus in which B(E2) amounts to dozens of single-particle 
units. 

Table 1. 

Energies and B(EL)-values for Sm isotopes, a) denotes the 
RPA results; b) the results taking into account the number of 
quasiparticles in the ground state; c) the results taking in­
to account the correlations of quasiparticle and phonon exci­
tations. 
Huclei Index 

theor. CXI'.. theor. exp. theor. exp. 
f>(fj)f 
theor. охр. 

"Ч- a 
Ъ 

2.15 
2.17 1.66 

0.254 
0.234 0.25 

2.30 
2.34 1.810 

0.117 
0.136 

с 2.14 0.248 2.34 0.132 

a 1.174 0.482 2 . 0 0.193 
1 4 6 8 m to 1.473 0.747 0.293 - 2.23 1.381 0.144 -

0 1.00 0.472 2.023 0.16 

l 4 8 S m 
a 
b 

0.87 
1.45 0.550 

0.679 
0.309 0.70 

1.65 
2.0Э 1.162 

0.247 
0.156 0.25 

с 1.09 0.428 1.87 0.171 

a 0.49 1.33 1.50 0.262 
1 5 °Sm b 1.43 0.334 0.361 1.37 2.05 1.071 0.151 0.31 

0 1.03 0.515 1.85 0.162 
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2 Global analyses of nucleon EM structure data 
by the standard V M D model 

There is a decomposition of nucleon electric GE(1) and magnetic (?д/(<) FF ' s into 
isoscalar and isovector parts of the Dirac and Pauli FF 's as follows 

GP

E(0 = [Ft„(t) + FMt)] + ^ l * 5 w ( 0 + *5v(0] 

G"EW = 1*7*г(0 - *7i»(0] + ^ [ ^ N O - *3*(0] 
cif(o = [f,vw - ^ivoi + mlw - F,V

NW]. 
Cesselli, Nigro and Voci [I] have saturated the latter by means of the following five 
и;(782),сА(1ГЛ9),<А'(1660),/>(773),/>'(1600) resonances considering the standard VMD model 
paramctrization 

W = E ^pr^iWA); fm= E ^(/JivV/,); 
(2) 

''."«>= E ^7( / i l l w / / . ) ; *?<') = E ^_-t(&/f«)> 
v=p,p' v v=p.p' " 

and carrying out л simultaneous analysis of 199 experimental points consisting of the 
proton and neutron space-like and the proton time-like data. In a fit of the proton FF 
data in the time-like region the l/(m2 — i) factor has been modified to l / ( m 2 — t + imT), 
where Г is the width of unstable vector-rresons under consideration. 

The main result of this analysis is an estimate of the e + e ~ —» nn cross-section to 
be about 100 limes larger than the e + e ~ —» pp cross-section. At the same time, a 
strong constraint on the fit from the time-like da ta has been observed. Really, if in a 
(it only space-like data are used, the calculated value of \Ср

Е14т^)\ — \CM(im2

p)\ at the 
proton-antiproton threshold is 2.27 against the measured value 0.51. This means that 
it is impossible to reproduce the correct time-like behaviour of the proton EM FF's in 
the framework of the standard VMD model on the basis of the space-like data only. 
The latter property is observed in all our further analyses as well. 

We have used the same model analysing the nucleon PF data, however, extended 
for proton FF's up to t = — 33GeV2 and for electric and magnetic neutron FF's up to 
t = —iG'eV2 and t = — lOCeV 2 , respectively. We confirm roughly the Cesselli, Nigro, 
Voei []] result for a rate of <ytot{e+e~ —* nn) to <7 ( 0t(e +e~ —* pp) but it is no more 
acceptable from the statistical point of view of an elaboration of experimental data as 
we have \2/NDF = 7025/382 to be compared with x*/NDF = 359/189 in ref.[l]. The 
obtained values of the corresponding coupling ratios are presented in Table 1, where 
I hey are compared also with the results of Cesselli, Nigro, Voci [1]. 

We have tried to analyse all nucleon FF data also by a more sophisticated standard 
VMD model of the nucleon EM structure taking into account the newest experimental 
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Table 2. 

jkll/l 5.35 5.33 0.04 1.18 

W s a 5.12 5.09 о.ог 1 . П 

•&/Vz 1.29 1.19 0.69 2.60 
ih.9/i 

JPVZ 
J'a/ 

2.18 2.11 0.20 1.33 ih.9/i 

JPVZ 
J'a/ 

2. 54 г.4в 0.19 1.25 
ih.9/i 

JPVZ 
J'a/ 2.57 2.51 0.20 1.32 
3Ff/z. 3.61 3.58 0 . 0 1.15 

6.86 6.85 0.0 1.12 
6.га 6.26 о.ог г.гз 
1.44 1.36 0.33 1.36 
1.26 1.18 0.42 1.36 
1.75 1.68 0.31 1.35 
2.54 2.50 0 . 1.06 
2.64 2.60 0.07 1.15 

The quasiparticle energies c and gap parameters r*2) and 
rk for some states near Fermi surface in 1 S 0 Sm. fThe gaps 
of superfluid model are С M - 1.29 MeV,C z - 1.22 MeV) . 

neutrons superfl. this this 
model paper [MeVJ iMeVJ protons superfl. paper • (MeV/ [UeVJ 

model 

ip„z 

Milt. 
Мни 

It is seen from table 2 that the parameter of the gap rfc 

changes differently for different states. As has been men­
tioned, rk contains two terms r,<D and r„(2> with 
opposite signs. It is seen from (19) and (21) that г̂ г^ is 
directly connected with the constants of the multipole forces 
therefore it will be sensitive to the change of collective-
ness of the 2 + and 3~ states. The largest values of r£2) 

have the single-particle states near the Fermi surface, in 
spite of large p, in these states (it is seen from (19) and 
(21) that px decrease t ^ ), large amplitudes ф and ф 
(20) entering into (19) and (21), cause large values of r*2) . 

The term r*1' decreases the gap in contrast with the 
superfluid model. These differences are essential in 1 5 0Sm , 
in which pi axe the largest. As it is seen from table 2, the 
values of r k are lower than the gap parameters С N and G z , 
calculated by the superfluid model. Only the single-particle 
states near the Fermi surface (neutron 2f ? / g , 2p 3 / g , li 1 3 / g 

and proton lg 7 / 2, 2d g/,_ , lh 1 I / s ) have a larger gap than in 
the superfluid model. 

New gaps г. cause new u, v -coefficients and change the 
one-quasiparticle energies e . It follows from (17) that es 

should be lass than the quasiparticle energies of the super-
fluid model. However, the increasing gap compensates this 
decrease and e is only somewhat lower than those values 
calculated by the superfluid model. A slight but essential 
shift of the first poles of eq.(16) occurs. At that the 
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multipole force constants к L do not change, and the change 
of i, and u ,v -coefficients results in increasing col­
lectiveness of the lowest 2 + and 3~ states. Therefore, in 
table lc) the energies of the 21 and 3~ states are lower 
than in b). The electric transition probabilities are also 
larger in c) than in b). 

By comparing the rows a) and c) of table 1, one can see 
that the number of quasiparticles in the ground state and the 
correlations of phonon and quasiparticle excitations lead to 
two opposite effects giving almost the same corrections. In 
the semimagic 1 4 4 Sm and neighbouring 1 4 в Sm » i n which col­
lectiveness of the first 2 + and 3~ states is weaker, these 
corrections are small and compensate each other completely. 
With increasing collectiveness of the 2+ and 3~ states, the 
number of quasiparticles in the ground state of even nuclei 
increases, the values of the vector /> become larger and the 
first effect predominates. This changes essentially the 
energies of the 2"! and 3~ states and B(E2)- and B(E3)-
values in H 8 S m and 1 5 0Sm. . 

CONCLUSION 
The above investigation shows that there exist cor­

relations connecting the amplitudes of phonon and quasipar­
ticle excitations. They cause the change of the gap of quasi­
particle states. Its value depends to a great extent on the 
multipole force constants. On the other hand, the near gap 
changes the quasiparticle energies, Bogolubov's coefficients 
and consequently, the collectiveness of the lowest exci­
tations. 

The numerical calculations of the Sm isotopes have shown 
that influence of the multipole forces on the gap is notable 
for the states near the fermi level. This effect, however, 
is compensated to a great extent by the influence of quasi­
particles in the ground state. As a result the gap and the 
quasiparticle energies of states only slightly differ from 
the values calculated within the superfluid nuclear model. 

The influence of the number of quasiparticles in the 
ground state on the 2t and 37 states diminishes their col­
lectiveness. However, the collectiveness of the 2"̂  and 3~ 
states increases, if one takes into account the correlations 
between the number of quasiparticles in the ground state and 
the phonon amplitudes Ф and ф . 
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The calculations have shown that the effects under con­
sideration are small and compensate each other completely in 
the seraimagic 1 4 4Sm and neighbouring 1 4 6Sm. . 

In the transitional nuclei the number of quasiparticles 
in the ground state is so large, that its inclusion causes 
a complete loss of collective properties of the first 2 + and 
3~ states. In these nuclei to abequatly describe the 
properties of collective states, one should evidently include 
into the Hamiltonian the terms taking into account more 
complex relations of quasiparticle degrees of freedom as has 
been mentioned in ref. ' 1 4 /. 

The numerical calculations allow one to conclude that it 
is reasonable to use the RPA as an initial approximation, 
since the effects under consideration are small in semimagic 
and adjacent nuclei. Therefore, the RPA-phonons used as 
a basis in the quasiparticle-phonon nuclear model/1' are a 
good basis. However, it is impossible to use the RPA-phonons 
as a basis for the description of the fragmentation of 
simple excitations in the nuclei, where the first excited 
states are strongly collective (as in 1 5 0Sm ) . Those nuclei 
require additional investigations of the cole of other terms 
in the Hamiltonian'4'', which form the first 2 + and 3~ ex­
cited states. 

The authors are grateful to prof. V.G.Soloviev for 
interest in this work and valuable remarks. They thank also 
A.I.Vdovin and R.V.Jolos for useful discussions. 
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