


1. INTRODUCTION

In the theoretical study of the nuclear structure, in par-
ticular, of the giant resonances and their decay properties we
are faced with a number of related problems. Among these are:
The self-consistent formulation of the theory, the compleness
the one-particle basis and the inclusion of many-particle con-
figurations, which are essential for description of the dam-
ping of resonance states., Let us discuss briefly these problems.

In a self-consistent theory the Hamiltonian and the equati-
ons of motion should satisfy certain requirements which have
its origin both in the space-time properties and the symmetry
of nuclear interactions. In the event of spontaneous breaking
symmetry these requirements result in certain consistency con-
ditions for the guantities invented in the theory.

In this paper we use the spontaneous breaking of the trans-
lational invariance from which the consistency relation fol-
lows between the mass operator {the shell-model potential),
the irreducible two-~-particle interaction amplitude (the effec-
tive interaction) and the density matrix. various formulations
of this cgg%%;ion were given in refs.’1"% | It has teen used
in papers ' for the self-consistent description of the
ground state and low-energy excited states in closed-shell
nuclei within the framework of the theory of finite Fermi-sys-
tems. The consistency conditions can be used for constructing
the effective interaction provided the variations both of the
density matrix and the corresponding potential are known. In
refs.” ™% the effective interaction was chosen in the sepa-
rable form and then applied to the self-consistent description
of various excited states. Self-consistency requirement is na-
turally fulfilled in the Hartree-Fock approach. In recent
years this approach has been used for describing the giant re-
sonances, eﬂﬁ}%x}ng the density-dependent Skyrme forces (see,
e.g., refs, ™ ). A common feature of all those methods is
an explicit elimination of "spurious” states associated with
the spontaneous breaking of symmetry. Besides that, the self-
consistency allows one to diminish the number of arbitrary pa~
rameters in the theory.

The commonly used nuclear one-particle potentials (pheno-
menological, Hartree-Fock, or those found from the consistency
conditions) are finite so that the set of bound single-particle
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states is not complete. For the sake of completeness this set
should be supplemented with the one~particle continuum. The
completeness of thea basis is important for some reasons. First,
the effective fields accompanying the nuclear excitations are
not smooth. They have usually the well developed surface peak
{its nature is well understood now’®’) and their matrix ele-
ments decrease slowly with increasing excitation energy, so
that the correct numericail results cannot be obtained with the
truncated basis including 2-3 shells near the Fermi-surface.
Second, the continuum states play an important role as inter-
mediate ones for various reactions, such as (y,n), (y.p) .,
etc., and for the electromagnetic transitions to nuclear sta-
tes above the nucleon threshold. The gilant multipole resonan-
ces lie, as a rule, in this range of excitation energies.
Without the proper inclusion of the one-particle continuum,
which is essentially responsible for the decay of the resonan-
ce states to open channels, the correct theoretical descripti-
on of the high-energy excitations seems to be impossible. An
appropriate method for treating the one-particle continuum was
developed in refs./1314/ 1t has peen used, in particular, for
calculating the cross section for excitation of the giant
dipole resonance in 400, by neutral currents in inelastic
neutrino scattering (V.Yu.Rusinov and S.,A.Fayans. Report
presented at the Session of Acad. of Sci. USSR, Leningrad,
1975.) .,

From the very naturs of the giant resonances which give an
essential contribution to the sum rule, it is clear that their
wave functions are superpositions of a large number of partic-
le~hole (p-h) configurations. In such a picture the resonance
width 1s entirely due to the nucleon escape to the continuum
(escape-width). In medium and heavy nuclei the calculated es-
cape-width of resonance states is much smaller than the obser-
ved one (see, e.g., refs./lo'lg/). The reason for such a dif-
ference is that with increasing the excitation energy the pro-
bability for the decay of p-h states over multiparticle confi-
gurations becomes larger. This results in spreading width for
resonance states /lsl(see also ref.”1®/ ), such a process is ac-
companied both by the enrichment of the excitation spectrum
and some redistribution of the transition strengths (see, e.g.,
refs.” " '7 ).

In this paper we consider the first two of above-menti-
oned problems, using the self-consistent model , that is
formulated in the coordinate representation’!®/ . This allows
one to include correctly the one-particle continuum when trea-
ting the giant dipole resonance and thus to calculate the es-
cape-widths. The use of the separable effective interaction is
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a compromise between the simplicity of the mathematical expres-
sions and numerical calculations on one hand, and the desirab-
le physical characteristics on the other. Such an interaction
exhibits some of the most important features of the so-called
"realistic" effective interaction, e.g., the surface character
and the density dependence (implicitly). In subsequent works
we intend to use more realistic forces and to carry out the
fully self-consistent calculations. Still one should bear in
mind that the results obtained until now with the separable
interaction’? agree qualitatively both with the experimental
data and the theoretical calculations /9! in which the "re-
alistic" interaction has been employed. The main purpose of
this paper is to reveal the effects associated with the one-
particle continuum, using the self-consistent approach to the
dipole excitations of nuclei.

2. BASIC EQUATIONS

We shall descrigg the nuclear excitations in terms of the
effective field V(T , ), that arises as a respunse of the sys-
tem to the external fileld V,(F)/20/

i - F | ik ,» - k,» -
Vife)=e Vo® + 23T ETDANELT g 0)
(1)
k, > +> .
x V (l"z,m)t'll'lt‘ll'2 .
where eh is the local charge of a quasiparticle with respect

to the field Vo, F ik represents the effective interaction
i,k =n,p) and A¥ is the p-h propagator defined by

adiing q> > . w Q. o, o de
Alr, ry0)= G (. faie- 5 )G (. e+ g )—2“

(2)

- -» - n,\_n,\’ - -
- &R ey () IR ar (e, ()

Here, @ is the excitation energy; GY, the quasiparticle Green
function, subject to the equation

(e-p%/2m —u (T DGR, ) =8 F-T), (3)



u(;3 is the self-consistent field, ¢ and ¢) are the quasi-
particle wave functions and energies, respectively;and n). the
occupation numbers. Note that eq. (1) does not contain the ve-
locity-dependent forces, but the non-locality in the p~h chan~
nel is taken into account.

In the case of spherical nuclei all the quantities in eq. (1)
are expanded over spherical harmonics that allows one to sepa-
rate the angular variables. Then for a given partial wave L
the radial part of eq. (1) is’

i i ik
Vi(re)=eg Vo,_,(r)+f J ¥, )
(4)

k k 22
x AL('yrz-“)VL('E'“)'lradrldrz-

where the spin-dependent and spin-orbital forces are neglected.

An additional equation that connects the effective interac-
tion with the self-consistent field arises from the transla-
tional invariance condition. In the case of spherical symmetry
it has the form

9u' —Efﬂ" (rr) I‘r dr,
ar ary ' %)

k
where p are the nucleon density distributions. In the absen-
ce of the spin-orbital potential the following identity takes

place/5/:

i du' 2
P = A(rr,, cu=0)rl'ldl'l . (6)
1

Let us suppose that the self-consistent field is given as
a sum of the isoscalar u? , isovector ul + and Coulomb V.,

terms

1©) = @O+ w07, + V(D11 ), (7

with r5 = +1 for neutrons and -1 for protcus. Then the effec-
tive interaction is sought in the fornm

0 1 -
F-F e F Gy FT Loy ) (8)
from which it follows
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(9)
F7- 5% .5 5°

We suppose that the consistency relation between V, and 9c
can be separated from eq. (5)

aVc _fﬂ"(l‘ l.l)_Ll- dr, . (10)
Then the consistency relations for u® and u! are

%,i’_=f ?O(I‘-fl)grg;ridrl : . (11

dul 1 pl

}r_—fff(r rl)—l—r Ldry, (12)

where p’=p"+p? and p'=p"-pP . Note that only the dipole
component L= 1 is present in egs. (10)-(12). In these equati-
ons and below index L is omitted.

The most important suggestion concerns the choice of the
effective interaction in the separable form’9/, that allows
one to determine uniquely from eqs. (10)-(12) its radial form
factors and strength parameters

Ju® du”®

m .

Fhr ) = kg ar ar " (13)
-1 . du™ dp"

IR T PR (14)

where index m= 0,1,¢ (p°=pP ). Now the integral equations
(4) for the effective fleld are transformed into the system of
algebraic equations. For simplicity we suppose that. the iso-
vector potential is proportional to the isoscalar one’21/

O 2 " *, (15)



where 7 is the isovector parameter. As a result, for the ef-
fective field we obtain
n n,n ou®
v (r'w)=3qvo(l)+?(l¢nn ¢

n * %up fp ),

0
U (k& 4 £) (16)

P P
V(r,w)=e’,’,v0(r)+ar o * *ap

where the strength parameters are defined by

N-Z 2
Kpn = % pp =0 +(q A )Kl'
an
N-Z 2
Kﬂp:xo—(q—A_) Ky

The quantities fn ' fp and fc that depend only on , are de-
fined by the system of the algebraic equations

_ n
KppBy ~1 Kann ean
p
%npBp KppBp 1 = 1% (18)
P
K"PB° KnnBc ech

Here, the following notations are used

au® i, , gu® dul,p 9V,
= ___A LS ) = — —— )
B @ =g Al 2y B @=(S A7) —2);
0 av
C ) = (EA@Y: O e =(5=A@V); (19)

_ Ve ,p Ve
Dc(w)_(?r_A (w)‘b—r— .

I
where the common brackets indicate the integration over all
coordinates.



Putting zero the determinant of egs. (18) we obtain the bo-
und spectrum of 1~ excitations (the poles of the effective
field). For the excitation energy @ above the nucleon thre-
shold the p-h propagator acquires the imaginary part, associ-
ated with the nucleon escepe to continuum, and the effective
field becomes complex. The continuous excitation spectrum is
described usually by the imaginary part of the polarization
operator with respect to a given external field Vg (this
quantity is often referred to as the strength function):

S(@)== 2 In T (g Vo &' @V' @ (20)

The quantity S{(w) can be written as a sum over the eilgensta-
tes |s> :

S(w)= T1<0] Vo|8>[%8 (0-w, ). (21)
8

Various energy-weilghted sum rules can be obtained from
egs. (20) and (21) by integrating over the excitation energy

o =f o"8W)Me=Zwy [<0|Vyls>®,
8 (22)

n=0 1, +2, ..

3. THE TREATMENT OF THE ONE-PARTICLE CONTINUUM

The proper inclusion of the one-particle continuum is based
on the calculation of the p-h propagator in the coordinate
space. For a given partial wave eq.(2) reads

L

AL(I'l,I'g,(L))= gz’g’ ’g” g 2 N R Ej (l' )R fj(ri! )
jL49 (23)
XIGFU' 2;%ﬁ +w)+qu,“lJE:ﬂﬂ - )},

where an and €,¢ are the radial wave functions and one-
particle energles; Nnﬁ + the occupation numbers; and B ey v

the angular coefficients: 0 P
( ) ’1 L } (24)

B, g = GEDEELDEE D g o o
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The sum in eq. (23) runs only over occupied levels and the one-
particle Green function in the coordinate representations is
given by

1)
ng("p'z-‘) 2myej (<,c)y (l‘>,c)/1\ rroW lj(‘)- (25)

where r, and r denote the lesser and the grzater of ry; and
fs and y() and y(z) are two linearly independent solutions
of the Shrddinger equation with the following asymptotic beha-
viour for ¢ > O:

) 7l
yml* - ~ sin(kr— 8 In2kr - +62; + 0 E')'
(26)
(2) ; a4
~ - 2kr—- I
ij(r» - expii(kr -8 In2kr > +8?J + a?)i,
where B=(Z2-1)e*m/n®k  is the Coulomb parameter; op =

= agl' (1+ £ +if ) , the Coulomb phase; and 8¢ , the nuclear
phase in the single-particle potential. The quantlty' Wei ()
denotes the Wronskian of y{» and y(® . For w below the
nucleon threshold solutions y) and y® are subject to the
boundary conditions

B @

fifrs0 ’ ij e oa. ~ exp(-vZ2mle([r /). 27

4. THE ESCAPE-WIDTH AND THE TRANSITION DENSITY
FOR THE ISOLATED RESONANCES

In the p-h excitation spectrum above the nucleon threshold
there are narrow resonances of two types. First, corresponding
to transitions between bound one-particle levels and, second,
the transitions from bound to quasi-discrete levels. When the
effective Interaction i1s switched off the former resonances
have no width, while the width of the latter is associated
with the probability of penetration of a particle through the
potential barrier (centrifugal and Coulomb ones). The effecti-~
ve interaction leads to the energy shift of the resonances.
Due to the admixture of the continuum the resonances of the
first type acquire the escape-width. For the same reason the
width of the resonances of the second type increases.



It is difficult to estimate the width of the narrow reso-
nance directly from S8(w) , because this requires calculations
with a very small step Aw. We have used, instead, a simple
approximate method that allows one to calculate the total es-~
cape-width as well as partial widths for different open chan-

nels.
Consider the equation for the nucleon-nucleon interaction

amplitudele/ in a symbolic form

=3 +3AT. (28)

For the excitations above the nucleon threshold tlie p-h propa-
gator becomes complex: A =8; + iAp  The amplitude I' can be
presented by a sum of terms having the poles in a complex

energy plane. For an isolated resonance with energy wg =
= w,, - iy,/2 it is possible to separate I' into the regular
part I'gp (a smooth furiction of energy near the pole) and the
pole term

F=FR+ B8y /H{w-o S), (29)
where g, is the creation amplitude of the excited state |{s> .
Evidently, y;, has the meaning of the resonance width.

Let us introduce an auxiliary amplitude I'’ connected only
with the real part of the propagator

r'=% +r"a5. (30)

Multiplying the 1l,h.s. of eq.(28) by 1+I'"A; we get
F=0"'+il"A,T . (31)
The amplitude I'" has the poles 55 on the real energy axis.
In the vicinity of Es it can be written as
M=l +84-8,/(w-6) (32)

Substituting (29} and (32} into eq.(31) and letting w=w_ 2 we
obtain

By B g +il- ByAg (0, MR (0, Vg, - 8, /(@ ~w )= 0. (33)



The regular part I‘R(J t;) can be represented by the suu
o )= . o — , 4
rR(w“)_s'Es By Bs'/(‘*’, ws,). (34)

where o - are the poles of the total amplitude r, Byr *8y”
being the residues. The mean value of (34) can be estimated as
l"R (a'is )-gs.gs/D , where D 1is the average energy spacing bet-
ween resonances with the same quantum numbers. Since Ia"is -ms!=
=Yg the regular part [ (59 ) in eq. (33) can be neglected
with the accuracy of ¥4 /S . Hence, g ¢~ Es and @ -a_=

= i(gsAg(aTs )¢, ) from which it follows 8

“1s =as ' Ys =-2(ESA2(JB )g~s ). (35)
Thus, the resonance width is determined by the imaginary part
of the p-h propagator. It is seen that the eigenenergies w,
and residues g, < a be found from the equation for ' (or es-
fective field), in which the imaginary part of the propagator
1s put to zero (as for the bound states’5/). Wwith the accuracy
of ys/D the imaginary part Ag(w) affects neither the reso-
nance energy nor residues, but gives rise to the resonarce
width.

It should be emphasized that y; in eq.(35) is the total
escape-width of the resonance. This quantity can be written as
a sum of partial widths that correspond to different open
cliannels. For this purpose we present the imaginary part of
che Green function (25) in the form

ImC.Ej (r,t";E)= '”REIJ(')RMJ(")' E>0, (36)

where the one-particle radial functions Rnﬂ satisfy the cr-
thogonality condition

[ Rop (R, Ej(r)rzdr=8(E-E’). (37

By inserting (36) and (23) into eq. (35) we get

L s L i
=2 3 3 ,pr R
Vs " g bl N,"ejl';’B"lj el ot
i
Xgis(l' R’EE’]’ (l')tedt le = (38)
. -1, i veet 2
<203 % 3 @D Ny f<atyllg B>
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where E = €pfy +@g> O. Hence, the total width can be written
as

1 f
Ye= % X anj)'nl_ig DI Vg

1 nff [ gy ' (39)

J;

where y;& are partial widths for the decay to hole levels of
the daughter nucleus and y;,, the widths for the escape of
nucleons with a given £°,§. S

The narrow 1solated resonances can be characterized by the
reduced transition probability

a4
BEL)= [ (L+DS)dw, (40)
gD

wh:;e/ A is a quantity of the order yg . As for the bound sta-
tes’® , one can define the transition density between the gro-
und and resonance states through the relation

i i
BEL)=@L+D| I ey [0y (rfar|®, (a1)
Using eq. (20) for 8(w) and eq. (41) we obtain

RO =-—%—:~—)—\/B(E—L)/(2L+1)

r W=, ﬂScus,
(42)
xImfA‘(rr ) )Vi (r. & )rlar
PANMEES PRI MRbS et Sl Rett I

¢

that is an extension of the transition density concept to re-
sonance states.

5. NUZERICAL RESULTS

Calculations were performed with the Saxon-Woods potential
in the form given by Chepurnov /21/

u®)=—Vg [1 sexpa(r-Ry)1 ™",
ulej=—1 () . (N-2)/A,

oAy A (0, y!?
U, =-7 (6'L)dr W’ +u fz)-
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Table 1

Parameters of the Saxon-Woods potential and of the effective interaction, and
some characteristics of the ground states

Fueleus 19y 4Bga 2Byy 30z 208py,
Vo MeV 53.35 53.35 53.35 51.0 53.3
n - 0.63 0.63 0.90 0.66
a1ty 0.40 0.63 0.63 0.63 0.67
: 2.55 3.38 3.78 4.18 5.40
theor,
<r§ 1 m 799/ 2.71 3.48 3.77 4.27 5.50
exp.
Bsym ,MeV - 20.0 27.4 30.1 26.3
Ko fm® /MeV -0.036 -0.024 -0.021 ~0.017 ~0.010
"1[’7(N—Z)/A]2'<o -1.0 ~0.65 -1.27 ~0.82 -0.70

x, Z(Z~1)/A,MeV 6.40 6.01 6.30 6.03 5.81




A = 0.263(1+2(N-Z)/A) m® ,

-1 2
2 (2R0) (3"(|'/R0) )1 TSRO (43)
Vc(r)=(Z—l)e x
1/r, > R,.
The radius Ry was taken to be 1.24 A% fm. The other
potential parameters and the calculated strength parameters of
the effective interaction are listed in table 1. The calcula-
ted r.m.s. charge radii < r§>1/2 and the potential symmetry
energy parameter

B aymm = 2= | wE)(p"-pP )% (44)
(N-2)
are given also in this table. It is seen that the values of

<ri>1/2 are in good agreement with experimental data.

In the closed-shell nuclei the lowest p-h 1~ states appear
in the region of the nucleon threshold energy where their mix-
ing with the multiparticle configurations might be strong.
Therefore, the calculation of such states is of methodical in-
terest in order to estimate the effects of the one-particle
continuum. Table 2 lists the calculated energies and B(El) va-
lues for the bound states ingoan . The results of calculati-
on are compared with those obtained in ref./g/, in which the
one particle continuum was approximated with the quasidiscrete
levels having the width < 1 MeV. It is seen that the correct
inclusion of the continuum affects weakly the energy of states,

Table 2
Energies and B(El) values for bound 1~ states in
2°8Pb/. The results of the descrete RPA calculati-
ons '% are given in parentheses
U), 6.118 6,135 6.525 6.825 6.853 Te135 T.287

MeV (6.112) (6.120) (6.536) (6.826) (6.859) (7.131) (7.326)

B(E1), 0,059 0,006 0,334 0.042 0.255 0.020 4.564
e?tm®  (0.029) (0.028) (0.267) (0.100) (0.234) (107%) (2.089)
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Table 3

Energies and uscape-widths of dipole resonances

( ¥nand yp are neutron and %roton partial widths,
respectively; for 25Ca and 208py ¥p=0)
Nucleus “, ‘r"’- ? yfl’ 2 Nucleus w, d‘;t J
MeV KeV KeV eV KeV
16o 17.86 0.4 232 480& 10.91 91
18.64 a4 1 11.33 6
20,60 172 768 11.83 2
23.13 404 879 12.08 17
12.89 3
58}11 10,98 1 1 13.37 33
11.50 39 0.3 14.50 69
11.80 0,007 0.08 15.71 204
12.17 0.1 8 16.99 10
12,53 3 11 19.03 36
13.15 13 36
13.58 0.3 69 206, T445 0.1
13.96 4 0.05 7455 0.1
15.14 13 37 7.66 0.01
16.30 189 264 T.87 0.1
17.83 100 181 8.02 1.8
8.12 0.07
QOZr 9.43 0.02 0.08 8.63 4.4
9.73 0.2 0.08 8.79 0.08
9.96 0.7 43 9,03 4
10.20 0,08 1 9.35 10
10.74 21 0.3 10.00 14
10.84 8 0.04 10.44 3
11.58 49 2 11.22 44
11.83 15 1 11.49 34
12.12 70 0.5 12.12 0.7
12.68 29 10 12.58 35
14.11 29 4 13.46 75
14.40 63 8
15.60 18 0.4
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Fig.l. Strength function of the dipole excitations
in 16 0 . The dash-dotted line corresponds to the p-h
strength function when the effective interaction is
switched off.

while B(El) values change noticeably. In particular, in the
present calculation the bound states exhaust 5.1% of the ener-
gy-weighted sum rule, while in ref.’? the contribution of
those states amounts to 2.7%. On the whole, the predicted 1~
spectrum and B(El) values agree qualitatively with the empiri-
cal data’®3/ obtained in (n,y) and (y.n)- reactions.

As it was mentioned, the excitation spectrum above the nuc-
leon threshold becomes continuous and can be characterized by
the strength function S(w) . Figs.1-3 show the radistive
strength functions (e(Vo- (N/AJef for protons and<Z/A)ef for
neutrons) for a number of nuclel. The excitations near the
threshold have quite small escape-widths (see table 3) and
they appear as the narrow isolated resonances. With increasing
excitation energy the width increases, but in medium and heavy
nuclel it does not exceed 0.1 MeV even for the high-energy re-
sonances. It is evident that the escape-width cannot be compa-
red with the width of the envelope curve observed experimen-
tally. Such a comparison can be made provided the damping of
p-h states and the experimental energy resolution are taken
into account. However, for the excitations near the thresshold
the calculated escape-widths in %8pp  are in qualitative ag-
reement with experimental data’/24/,
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Fig.2. Bottom: The strength function of the dipole
excitations in %¥Ca and ?92r . Top: B(E!) values
for the resonances shown below (solid lines) are
compared with the calculations/?/(dashed lines).

In light nuclei the sum of calculated escape-widths is com-~
parable with the total observed one (see, e.g., for €0 fig.1
and table 3),

To demonstrate the role of the effective interaction we
present in fig.l for 180 the pP-h strength function when the
interaction (13) is switched off (broken line). In this case
the maxima of S(w) correspond to the p-h fransitions (Pi& R
dg/p )nip ’ ( px./lz ’ ds/z Ja,ps and (Pg/p »84/2 )y - The
effective interaction shifts up those maxima, mixes the confi-
gurations, changes the distribution of the radiative strength,
and increases the escape-widths up to approximately 1.5 Mev.

In figs.2,3 the results obtained are compared with the dis-
crete RPA calculations’?/. The following effects are seen:

i) all the high-energy resonances are shifted down by
<0.5 Mev;

ii) El-transitions in the low-energy part are enhanced, so
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Fig.3. The same, as in fig.2, for "°Ni and 2%pp.

that their contribution to the energy-wieghted sum rule incre-
ases by as much as 10% as compared with the discrete RPA cal-
culations.

It should be mentioned that in the present calculations, as
in ref./g/, the predicted position of the El-resonance maximum
is by approximately 10% lower than the experimental one (ex-
cept for 180 where the resonance position was fitted by an
appropriate cholce both of the average field parameters and
the strength of the isovector interaction).

The correct inclusion of the one-particle continuum affects
slightly the shape of the transition density p.(r) as compa-
red with previous calculations/g/(see fig.4). It is important
that the present calculations confirm the change of py with
increasing the excitation energy, as it was pointed out in
ref. '¥, For the low-energy states Py have the large volume
oscillations, while in the region of the El-resonance maximum
the transition density is surface-peaked. This feature is de-
monstrated in fig.4 by comparison of calculated Py with the
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FiF.h. Transition dengities for two resonances in
Pb . Calculations /% (solid line) are compared
with ours (dashed line). The dash~dotted line shows
the derivative of the ground state proton density.
All the curves are subject to normalization

fp, Ba =1,

derivative of the ground state charge distribution dpP/dr ,
that represents the Tassie-model transition density. This re-
sult seems to be important for analysing the inelastic elec-
tron scattering data in order to separate the giant multipole
resonances.,

6. CONCLUSIONS

From the present consideration the conclusion can be drawn
that the simple translationally invariant model with the sepa-
rable interaction gives practically the same qualitative des-
cription of nuclear dipole states as many other microscopic
approaches. The specific feature of our calculations is the
correct inclusion of the one~particle continuum. As a result,
the excited states above the nucleon threshold acquire the es-
cape-width. The calculated widths for low-energy states (near
the threshold) agree well with the observed values. In light
nuclei the sum of the escape~widths is quite comparable with
the total measured giant resonance width.

We should like to emphasize that in the model employed the
effects on the nuclear surface play the dominant role because



for all the dipole states the collective amplitudes are assu-
med to be proportional to the average field derivative
(gs~du/dr ) , Such a form of the collective amplitude is true
for the case of the spurious 1~ state ( ® = 0), that corres-
ponds to the centre-of-mass motion. Note, that the nucleon in-
teraction amplitude for o in the vicinity of the eigenergies
o, of the nuclear system becomes separable. Therefore, the
separahilization of the effective interaction is not devoided
of a certain sense by itself.

In the general case for excited states there exist the qu-
antum volume corrections to the effective nuclear field which
are associated with the volume components of the z2ffective in-
teraction. These corrections are neglected in the present con-
sideration. Another part of the volume oscillations in our
model may appear naturally, if a more general self-consistent
potential (e.g., found from Hartree-Fock calculations or from
self-consistency egs.) is used instea? of the smooth Saxon-
Woods function.

The above-mentioned corrections are small for the low-ener-
gy bound states, as it was seen from direct calculations car-
ried out in the self~consistent version of the theory of fini-
te Fermi-systems’3/, It has been shown that the shape of p,
practically coincides with dpP/dr only for the lowest-energy
collective 3~ excitations (“pure capons"). The transition den-
sities for higher-lying states may acquire the noticeable vo-
lume components due to the dominant contribution of some p-h
configurations in the vicinity of the state considered.

There is a number of questions that cannot be answered at
the present stage of investigation. Up to what excitation
energy 1s the surface-peaked character of the effective field
(the collective amplitude g, ) preserved? In particular, is
the collective amplitude for the giant resonance peaked on the
surface or has it large volume oscillations? Up to now there
is not enough experimental data from which the information
about By can be gained. Of particular interest are the in-
elastic hadron scattering reactions, but the results are usu-
ally analysed in terms of parameters of the dynamic deformati-
ons By, i.e., it is supposed that gg~pPBg (du/dr). The model
considered is in line with this suggestion and it allows one
to calculate the parameters Bs microscopically.

It is difficult to carry out the model-independent analysis
of such reactions, from which the information concerning g,
can be obtained, because there exist the nucleon distortion
effects in the optical potential. The change of the radial
shape of gg¢ with increasing excitation energy can be traced
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by employing the "realistic" interaction that includes the
volume components. The work along this line is in progress.

The authors would like to thank Drs. S.V.Tolokonnikov and

A.V.Ignatyuk for fruitful discussions.
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