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In nuclear physics it has been attempted to extract
the strength of the nearest singularity to the physical
region in the cos v plane at fixed energy from differen-
tial CI‘OSS section data for various transfer processes’' =0
In ref. /5/ the Coulomb interaction in the vertices was
neglected though it changes even the character of the
transfer pole singularity /97 In this paper we determine
the h -d+p vertex constant (h= 3He) taking into account
the Coulomb interaction in the vertex. We also present
new results concerning the t-d+n vertex constant.

As this paper is a direct continuation of our earlier
paper 6/, the reader is referred to it as concerning
the general background of the subject. Here we give
only a grossly simplified description of the singularity
subtraction method.

Usually in the z=cosf plane the pole singularity is
nearer to the physical region than the other singularities
are. Therefore the pole determines the asymptotics of the
expansion coefficients of the differential cress section
according to a set of regular functions. Using this fact
one can determine the strength of the pole singularity
as follows. First of all, one should remove the pole
from the differential cross section by a suitably chosen
factor and by the least squares procedure {it it according
to some set of polynomials. These polynomials might
be the well known orthogonal polynomials B, (z)} , which
are orthogonal with respect to the weights of the least
squares procedure. Then one has:
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where only the significant terms are included into the
sum. If one removes only the interference term of the
pole with the background, then one has:
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Here the Bn(zp) polynomials differ from that in (1), but
this is of no importance. From (2) it follows that if one
analyzes (z —z)o/ dQ-P/(z_-2z) with a guess strength
P , then af the correct strength the A coefficients
with n >N become insignificant. To increase the effec-
tiveness of the method all these are carried out not
in the z=cosd plane, but in a new variable received by
the so-called optimal conformal mapping.

The problem of the Coulomb interaction in the ver-
tices was studied in refs./?~9/ (see also/!% ). In the
presence of the Coulomb interaction the vertex function
has a branch point singularity at the relative momentum
of the decay products wiich corresponds to their binding
energy. As a consequence, the ’’pole graph’ which
describes the traansfer mechanism, ceases to have a
pole singularity as its proper one. Using the formulae
of ref. /9/ it is easy to determine the behaviour of the
differential cross section around the singularity:
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where we consider the A+xsBay(x=a+y,B=Asa) {ransfer
process with zero orbital momentum in both vertices.
E,(E;) and k;(k;) are the CM relative kinetic energy
and momentum in the initial (final) state; m and J de-
note the mass and spin of the corresponding particle;
Gf and GZB are the vertex constants containing infor -
riation on the structure of particles; and f(z) coatains
all the corrections due to the Coulomb interaction in
the vertices:
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Here i« is the wave number corresponding to the
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binding energy, 7 is the well known Coulomb parameter
(7>0). The G vertex constant has the same connection
with the asymptotic behaviour of the bound state wave
function as earlier, but the undisturbed Hankel function
(e™xr /1) should be replaced by the corresponding
Coulomb - ~torted wave function’/9/.

At z=2, oOnhe has a branch point singularity instead
of a pole. This effect can easily be accouxzted for 1; in
formulae (2) and (1) one multiplies by (z ~z) 'x 78
instead of z, -z (or by some other expression correspon-
ding to it).

There is no other modification needed. At 7 _=7p =0
one gets the formulae of ref. /6/ pack. As finite order
expansion coefficients of the differential cross section
are stable against small changes in 7, and 7y , there-
fore at ’’smail’”’ Coulomb parameters it is not crucial
to include vertex Coulomb effects into the subtraction
method. On the other hand, in the continuation method,
in which one explicitly extrapolates up to the ’pole’’,
where the differntial cross section is unstable, it is
of vital importance to include this effect, at least in
principle. In practice the. numerical results are not
altered strongly, because one necessarily works with
finite order expaunsion coefficients, which are stable.
Taking into account Coulomb effects in the way described
above we have analysed the experimental data of rei. 76
on the d(d,n)h reaction with the subtraction niethod ‘.
The A, coefficients with n=4,5at E13.6,12.2,10.4 MeV
and w1th n=4 atE,=8.15, 5.8 MeV could be used for the
determination of 6262 .The results are presented in
Table 1, the errors contam an estimated normahzauom
error of 3%. The weighted average is GﬁGh=0 429+ 0.013 {2
The scattering of the results about their average was
slightly less than it follows from their errors. Neglecting
the Coulomb effects in the h vertex one gets 2.5-59
higher results depending on E .

We have also analysed the experimental data of ret./12/
on the d(d,p)t reaction. In this case at all energies
(E4=13.8, 12,15, 8.1 and 6.1 MeV) the A, . coefficient:
with n—4 5 counld be used for the determinaﬁon of



G2G % .These results are also presented in Table 1. The
errors contain a nermalization error of 3%. The weighted
average (together with our earlier E; = 25 MeV re-
sults /6/ ) is G3GZ=0.530 £0.015f 2. The scattering of
the results about their average is two times larger than
it follows from their errors, therefore we adopted a two
times larger error for the average too. As this large
scattering is not present in the h vertex results, the
reason of it might be that in the experiment it was more
difficult to detect protons with emulsion technique (!)
than helions. Ia addition, the protons were detected at
larger and smailer angles than helions and this also might
have introduce other systematical errors. It is possible
that only the lower energy resulis are good, as it follows
from the comparison with the E 4 =25 MeV result. In spite
of it, one should think of this pioneer measurement in
the field of nuclear reaction with great respect. We
notice that all these are fine effects, the finai error
is less than 3%, and due to the normalization error, one
could not get better results. The continuation metiiod
gave similar results, though there were larger deviations
than in the E ;= 25 MeV case.

We do not maintain our statement that the results of
the subtraction method are necessarily free of any syste-
matical error 76/, The point is that when one determines
the value of N from formula (1), the expansion series
have no necessarily N +1 significant terms, because by
chance’’ the expansion coefficients of the background
contribution in formula (2) (i.e., the b coefficients)
might obey the same recurrence relation (within their
error, of course) as the pole contribution coefficients
do * It means that some model assumption enters the
method.

One shoald especially be aware of it if the background
singularities lie near the pole and if one is able to
extract only the lowest order coefficients from the

* Actually this recurrence relation assures that in
formula (1) the pole contribution is present only. in the
constant and linear terms of the expansion.’
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Table 1

Results for the strength of the transfer pole singularity

2, 2 G626
n =4, n=5 _ n=4 n=5

25.3 0.45440,014 0.5014+0. 041
13.7 0.43840.025 0.47340.163 0.54940, 019 0.665+0.060
12,2 0.41740.024 0.36540.174 0. 56440, 020 0.55940.066
1044 0.43630.029 0.53340,215

8.1 0.41640.034 - 0.53340.21 0.706+0.128

6.1 0.49240.022 0.43340.173

5.8 0.408+0.044 -




experimental data due to their large errors. These
circumstances ’help’’ the background coefficients to
obey the recurrence relati..i of the pole coefficients.
We do not think that the large scattering of the vertex
results is caused by this =ffect, because i) neither of
these unfavourable circumstances is present in our case
and ii) the larg~ scattering is not present in the h vertex
results, where similar physics is involved. On the whole,
the errors given by us seem to be reliable, though some
caution is needed.

If one assumes Gi = 0.43* 0.01f, which follows from
the effective range formula as well as from the asympto-
tic behaviour of the calculated deuteron wave functions
for various potentials, then our results .re:G?=1.23t%
+ 0.04f for the t>d+n vertex constant and G;Z=1.00:
0.04 f for the h-»d+p vertex constant. The ratic of the
two constants is G%/G 2= 1.23 ¢ 0.05.

Qur results are in full] agreement with our determi-
nation of these constants’!% with the peripheral model
and are in good agreement with the later resuiis of other
methods (for a review see refs.”!1:13/ ) By similar
methods from n-—t scattering (}ata the triton vertex
constant was determined in ref.”?/ , while the helion
vertex constant was extracted in ref. from p—h scat-
tering data (Coulomb effects were neglected), but as we
have a far more favourable physical situation, our results
have smaller errors. We also notice that in ref.’/1%
a similar difference was found between the a-»t+p and
the a-»h+n vertex constants by the extrapolation of the
a -nucleon elastic scattering amplitude.

We have demonstrated the applicability of the singu-
larity subtraction method (and that of the continuation
method too) for nuclear reactions (the othar applica-
tions 175/ were to elastic scattering processes). There
are only minor physical differences between the
d(d,p)t,dld,n) h reactions and reactions like d,p) ,
(h,d) on light and heavy nuclei, therefore such methods
could be usefull in this field too. Such calculations are
in progress.
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