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In nuclear physics it has been attempted to extract 
the strength of the nearest singularity to the physical 
region in the cos у plane at fixed energy from differen­
tial c ross section data for various transfer processes l _ f ' . 
In ref. / 5 / the Coulomb interaction in the vertices was 
neglected, though it changes even the character of the 
transfer pole singularity / 9 / . In this paper we determine 
the h -> d + p vertex constant (h= 3 He) taking into account 
the Coulomb interaction in the vertex. We also present 
new results concerning the t - d + n vertex constant. 

As this paper is a direct continuation of our ear l ier 
p a p e r / 6 / , the reader is referred to it as concerning 
the general background of the subject. Here we give 
only a grossly simplified description of the singularity 
subtraction method. 

Usually in the z = cos0 plane the pole singularity is 
nearer to the physical region than the other singularities 
a re . Therefore the pole determines the asymptotics of the 
expansion coefficients of the differential cross section 
according to a set of regular functions. Using this fact 
one can determine the strength of the pole singularity 
as follows. F i r s t of all, one should remove the pole 
from the differential c ross section by a suitably chosen 
factor and by the least squares procedure fit it according 
to some set of polynomials. These polynomials might 
be the well known orthogonal polynomials B n(z) , which 
are orthogonal with respect to the weights of the least 
squares procedure. Then one has: 

(z - z ) 2 i £ - = 1 : + 1 a В (z ) , (1) 
P dll n=I n n 
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where only the significant te rms are included into the 
sum. If one removes only the interference term of the 
pole with the background, then one has: 

(x-z)—=——+ Sb В (z) = S А В (z ) . (2) 
i> dQ z - z n-l n " n n n ( } 

p 
Here the Bn(z) polynomials differ from that in (1), but 
this is of no importance. From (2) it follows that if one 
analyzes (z -z)da/ dfi-P/(z - z ) with a guess strength 
P , then at the correct strength the A n coefficients 
with n > N become insignificant. To increase the effec­
tiveness of the method all these a re carr ied out not 
in the z = cos в plane, but in a new variable received by 
the so-called optimal conformal mapping. 

The problem of the Coulomb interaction in the ver­
tices was studied in r e t s . / ' - 9 / (see a l s o ' / 1 4 / / ). In the 
presence of the Coulomb interaction the vertex function 
has a branch point singularity at the relative momentum 
of the decay products which corresponds to their binding 
energy. As a consequence, the "pole graph" which 
describes the transfer mechanism, ceases to have a 
pole singularity as its proper one. Using the formulae 
of ref. /9/ ;t is easy to determine the behaviour of the 
differential cross section around the singularity: 

(2 - z f i ^ . J-&L h __1JB±! G V f ( Z ) ( 3 ) 

P do 8*2 E r E f k, ( 2 J A + l X g a + l ) * B ' 
where we consider the A+x->B+y(x=a+y,B=iA+a) transfer 
process with zero orbital momentum in both vert ices . 
Ej(Ef) and k , ( k f ) a re the CM relative kinetic energy 
and momentum in the initial (final) state; m and J de­
note the mass and spin of the corresponding part icle; 
G x and G B a r e the vertex constants containing infor -
mation on the structure of part ic les; and f(z) contains 
all the corrections due to the Coulomb interaction in 
the vertices: 

• A , 4 / m Y k i k f / « „ % , ч, m A k i k f f f c O . r V » X - L ^ V - ( z - z ) ) rb-r, ) ( J V 1 4 1 ( Z - Z ) ) , 4 ) 

Here ii к is the wave number corresponding to the 
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binding energy, т) is the well known Coulomb parameter 
(i/>0). The G vertex constant has the same connection 
with the asymptotic behaviour of the bound state wave 
function as ear l ier , but the undisturbed Hankel function 
( е - к г / r ) S h 0 U i d be replaced by the corresponding 
Coulomb -J -torted wave function / 9 / . 

At z = 2„ one has a branch point singularity instead 
of a pole. This effect can easily be accounted for if in 
formulae (2) and (1) one multiplies by (Zp-z) 1 - " '* + T I B > ' 2 

instead of z _ z (or by some other expression correspon­
ding to it). 

There is no other modification needed. At i;x =i?B =0 
one gets the formulae of ref. '6^ back. As finite order 
expansion coefficients of the differential c ross section 
are stable against small changes in r/x and q B , there­
fore at " s m a l l " Coulomb parameters it is not crucial 
to include vertex Coulomb effects into the subtraction 
method. On the other hand, in the continuation method, 
in which one explicitly extrapolates ' up to the "po le" , 
where the differntial c ross section is unstable, it is 
of vital importance to include this effect, at least in 
principle. In practice the numerical resul ts a r e not 
altered strongly, because one necessari ly works with 
finite order expansion coefficients, which are stable. 
Taking into account Coulomb effects in the way described 
above we have analysed the experimental data of r e f / 1 2 / 

on the d(d,n)h reaction with the subtraction method ''• 
The A E coefficients with n = 4,5 at Е ^ З . б , 12.2,10.4 MeV 
and with n= 4 a t E d = 8.15, 5.8 MeV could be used for the 
determination of G2

dG2 .The resul ts a re presented in 
Table 1, the e r r o r s contain an estimated normalization 
e r ro r of 3%. The weighted average is GjG£o.429± 0.013 f2. 
The scattering of the resul ts about their average was 
slightly less than it follows from their e r r o r s . Neglecting 
the Coulomb effects in the h vertex one gets 2.5-5% 
higher resul ts depending on E d . 

We have also analysed the experimental data of r e f / ' 2 , / 

on the d(d,p)t reaction. In this case at all energies 
(E d = 13.8, 12.15, 8.1 and 6.1 MeV) theA„ coefficient:' 
with n = 4,5 could be used for the determination oiF 

5 



G jG 2 .These results a re also presented in Table 1. The 
e r r o r s contain a normalization e r ro r of 3%. The weighted 
average (together with our ear l ier E ( ] « 25 MeV r e ­
sults /e / ) is G|JG t

2 = 0.530 + 0.015 f 2 . The scattering of 
the results about their average is two t imes larger than 
it follows from their e r r o r s , therefore we adopted a two 
times larger e r ro r for the average too. As this large 
scattering is not present in the h vertex resul ts , the 
reason of it might be that in the experiment it was more 
difficult to detect protons with emulsion technique (!) 
than helions. In addition, the protons were detected at 
larger and smaller angles than helions and this also might 
have introduce other systematical e r r o r s . It is possible 
that only the lower energy resul ts a r e good, as it follows 
from the comparison with the E d = 25 MeV result . In spite 
of it, one should think of this pioneer measurement in 
the field of nuclear reaction with great respect . We 
notice that all these a r e fine effects, the final e r r o r 
is less than 3%, and due to the normalization e r ro r , one 
could not get better resul ts . The continuation method 
gave similar results , though there were larger deviations 
than in the E d = 2S MeV case. 

We do not maintain our statement that the resul ts of 
the subtraction method are necessarily free of any sys te­
matical e r ror /*/. The point is that when one determines 
the value of N from formula (1), the expansion se r ies 
have no necessarily N+1 significant t e rms , because "by 
chance" the expansion coefficients of the background 
contribution in formula (2) (i .e. , the b n coefficients) 
might obey the same recurrence relation (within their 
e r ror , of course) as the pole contribution coefficients 
do *. It means that some model assumption enters the 
method. 

One should especially be aware of it if the background 
singularities lie near the pole and if one is able to 
extract only the lowest order coefficients from the 

Actually this recurrence relation assures that in 
formula (1) the pole contribution is present only, in the 
constant and linear t e rms of the expansion. 
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Table 1 
Results for the strength of the transfer pole singularity 

h n =4. n =5 n-4 
G^G 2 

a t 
n=5 

25.3 0.494+0.014 0.501+0.041 
13.7 0.438+0.025 0.473+0.163 0.549+0.019 0.665+0.060 
12.2 0.417*0.024 0.365+0.174 0.564+0.020 0.559+0.066 
10.4 0.436+0.029 0.533+0.215 
8.1 0.436+0.034 0.533+0.21 0.706+0.128 
6.1 0.492+0.022 0.433+0.173 
5.3 0.408+0.044 _ 
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experimental data due to their large e r r o r s . These 
circumstances "he lp" the background coefficients to 
obey the recurrence relatLr; of the pole coefficients. 
We do not think that the large scattering cf the vertex 
results is caused by this effect, because i) neither of 
these unfavourable circumstances is present in our case 
and ii) the larg° scattering is not present in the h vertex 
resul ts , where similar physics is involved. On the whole, 
the e r ro r s given by us seem to be reliable, though some 
caution is needed. 

If one assumes Gj = 0.43± O.Olf, which follows from 
the effective range formula as well as from the asympto­
tic behaviour of the calculated deuteron wave functions 
for various potentials, then our resul ts ^re:G^ = 1.23 ± 
± 0.04 f for the t-»d+n vertex constant and Gh* = 1.00± 
0.04 f for the h->d+p vertex constant. The ratio of the 
two constants is G f / G ^ = 1.23+ 0.05. 

Our results a re in full agreement with our determi­
nation of these c o n s t a n t s ' 1 0 ' with the peripheral model 
and a re in good agreement with the later results of other 
methods (for a review see refs . ' " ' I 3 / ). By similar 
methods from n - 1 scattering data the triton vertex 
constant was determined in r e f . ' 2 / . while the helion 
vertex constant was extracted in ref. from p - h scat­
tering data (Coulomb effects were neglected), but a s we 
have a far more favourable physical situation, our resul ts 
have smaller e r r o r s . We also notice that in r e f y i 4 / 

a similar difference was found between the a -»t + p and 
the a-»h+n vertex constants by the extrapolation of the 
a -nucleon elastic scattering amplitude. 

We have demonstrated the applicability of the singu­
larity subtraction method (and that of the continuation 
method too) for nuclear reactions (the othar applica­
t i o n s / 1 - 5 / were to elastic scattering processes) . There 
a re only minor physical differences between the 
d(d,p) t , d(d,n) h reactions and reactions like (d,p) , 
(h,d)on light and heavy nuclei, therefore such methods 
could be usefull in this field too. Such calculations a re 
in progress . 
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