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I. INTRODUCTION

Recently, Novakovi¢ and Shukla /1/ have presented a new approach
to nematic liquid crystals by exploring the pseudo-spin formalism. Also
several neutron experiments were carried oué on these types of liquids
/2-4/. Taerefore, there is a need to develop a model-scattering theo-
ry which would be 1nvokéd to verify the consistency of the proposed
pseudo-spin Hamiltonian with the existing observations by neutron tech-
niques.

In this paper we present a method for an expliclt evaluation of
the angular cross section for the elastic neutron scattering by nema-
tic liquids. To do this, it is necessary to quote briefly their phy-
sical nature in addition to the pseudo-spin model and its thecretical
consequences /1/.

Az it is well known /5,6/, in distinction from the smectic li-
guid crystals, in nematic and cholesteric ones the molecules are not
confined in layers but are capable of random orientations which are
more or less continuous throughout the liquid. Furthermore, nematic
liquids possess certailn invariance under reflections, while this is

not the case with the cholester’c liquids.
IT. THE PSEUDO-SPIN HAMILTONIAN

Assuming that 25 + 1 (S = b/2; b = 0,1,...) orientations of an
effective electrical dipole., 31 = Zeﬁoi(zlﬁoi being the distance bet-
ween effective charges e) inside of each long elongated rod-like mo-
lecule, are described by deviations of the sﬁ pseudo-spin components
(t1j= 1,...N label the molecular sites)‘, the proposed Hamiltonian

of the system is /1/

*
To effective dipoles 51 = 2eR ione makes correspond the pseudn-spin
8, = ortﬁﬂ, such that ai=d0£i (d°=2eRD),
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Here Rj are quantum parameters related to a transfer energy of
dipoles, while Tik = JEH, = ’;i - ;j!' are coupling parame-
ters related to the intermolecular {(namely interdipole} potential,
as a continuously varying function for a fluid. The above Hamil-
tonian, being thus very general, was simplified a bit further as-
suming that all dipoles have only 3 possible orientations (S = 1).
However, the treatment and the obtalned results are essentlally iden-
tical for gemeral §.

The further procedure, whicn is used als¢o hereafter, consis-
ted in a rotation of the pseudo-spin system through an angle ?¢ Then
the pseudo-spin raising {(lowering) operators S% = S? + 1S§ were in-
troduced ,assuming their bosonlc representation /7/. After this,
going over to the Fourier transformed bosons, performing the stai-—
dard Boyolubov’'s diagonalization and assuming the Lennard-Jones
intermolecular potential, the collective excitation frequency was
obtained. Sach a frequency was anralysed around the origin a = 0 and in
the neighbourhood of the second maximutn in the Fourier transformed
intermolecular potential 50' wherefrom a zero~sound velocity and a

rotonic mass were estimated,

III. GENERAL EXPRESSIOM FOR ELASTTC NEUTRON SCATTERING

The elastic scattering of slow neutrons by nematic liguid
crystals can be described with high accuracy by a pure nuclear iln-
terac’ lon, while the other ones can be dlscardéd as being the ef-
fects of a considerably less order of magnitude. Actually, for an

asymmetric effective dipole (l.e. rotator, defined later on in Sec. 1V}



an interaction would exist between the neutron magnetic mo-
ment and a resulting magnetic moment generated by the rotation

of a dipole proportional to
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mp is the proton mass and in = the neutron spin; y = - 1,93 is the

neutron magnetic moment ir nuclear Bohr magnetons ,and f=ﬁ(ortaxortg)
is an effective orbital moment operator associated with a rotating
dipole masses my and my, 5 being a dipole momentum.Since masses
my = m, are probably relatively large, such a magnetic scattering
would result in a negligikle effect.

The elastic differential cross section per unit solid angle

for unpolarized neutrons can be expressed in the concise form /8,9/

2
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Here the bracket <<...>> stands for the average of the expectati-
on value of the enclosed operator, as well as for the average over
the nuclear spin and effective orbital moments (divoles) orientati-
ons, and the line above denotes the average over the initial neu-
tron spin orientations; m, is the neutron mass, E:E-E' is the scat-
tering momentum transfer and E, 5‘ are incoming and outgoing wave
vectors cof the neutron, respectively. The atoms along any rod-like
molecule, as well as the two ends ot each effective dipole, are la-
belled. by the index r (L £ r £ n + 2, n being the total number of
atoms in the.molecule) ,and their position vectors are denoted by

Eir' The scattering amplitude of nuclei, i.2. scattering amplitudes



associated with effective dipole nuclear mass 3, are a;,. =

> -
Air + Bir(In fir) (Ii: is the spin operator of the ir-th tarxget,
and Ajr and Bir are the corresponding nuclear constants).
Let us now perform decomposition of the ir-th position vec-
tor

> - .
R, (£) = Ry + R (t); (4)

ﬁi refers to the middle (gravity) point of the i-th rod-like mo-

lecule and ﬁ;(t) is an instantaneous distance of the r-th atom, i.e.,
an instantaneous distanze of one or the other dipole end, inside a
molecule, with respect to its gravity point.

These position vectors have not any correlation at an infi-
nite time-llke distance, so the correlator in (3) can be written
R R -8R (o), AR (=), (5)

i <e

- >
<e-1qnir(o)e1qnjr;m)> =
ks we deal with neutron scattering by effective dipoles inside
long rod-like molecules, we shall use the adiabatlc approximation.

The correlators

4+
e 18Ry (0) 13 (o) | m1dR Ry 18R o), ) st e

{usv = 1,5..n},
will, as a good approximation, determine only Bragg-like peaks,
deplicting an orxdinary elastic scattering in liguids, i.e. a "back-~
ground” to which the scattering on the "basic (dipole-like) mode™

would be superposed. The "pure" dipole correlators
e . -+
ce-iaRpylo) A3h (o), e-iq(ﬁi—ﬁj)l<e-1qRK(o))l2 o

(4,8 =n + 1, n+ 2),"



and the "mixed" correlators between atcms and effective dipoles

cemt8Ry (0 AqR iy te, | 18R -Ro)  -1aR (o), 28R 0) p 0y gy
will describe a characteristic elastic scattering by effective
dipoles themselves, as well as correlated with the atomic mot o1,
cespectively. In the above expressijons F{T)~ l is a thermal f:c-
tor due to the internal degrees of freedem of the molecule.

Actually, these two last correlators are concerned with the
neutron scattering by "basic elementary excitations”, the latter
reflecting once more the collective atomic effect in addition to
that manifested in the formation of an effective dipole'as a
consequence of a specific atomic cooperation.

Then from (3) one can write
> 2 e >
&= fv§°h!feiQ§i| + NoiPC] | celdR(0)  mlaRle), 2 +

b3 + % -13R (o)
[Ugohlzeiqiilz . No;nc]s(q) cetafitoy + e > F(T)  (9)
i

(R(o) = ﬁﬁ(o) - the position vector of any
: dipole end, independent of ¥ )

where
2 m?

coh n 2 inc n 2 2,1

o = <A >, o = Lo [<Ag>~<A> "+ F<B>I(I+1)]

£ (ZWBZ)Z £ £ (Zﬂhz)z £ £ 4L ’
(£=1,2) ; (10)

i
s@ = | el 2, eindE 1

u=l (8



S(E)—structural factor of the molecule, ZIII being the molecular
length; <AE> ={L As cs)f, Cq being the concentration of atoms
{isotopes}, i.e?,of effective dipoles, for which Air = AS. The
index "1" is referred to the "pure" scattering by dipoles, pro-
vided that a possible estimatlon of a corresponding scatteri=g
amplitudes will be outlined hereafter, when model description
of dipoles will be closely adjucted; the index "2" is related to

the "mixed" scattering events, when dipoles corielate with atoms.

Iv. MODEL DESCRIPTION OF THE EFFECTIVE DIPCLE

AND PSEUDO-SPIN FORMFACTORS

To explore the pseudo-spin formalism for the explicit eva-
luation of the angular elastic cross section (9), 1t 1s necessary
to find an equivalent correlator between pseudo-spins /lC-12/.
Since the effective dipoles have 3 discrete orientations (res-
triction to the case of S=1), one assumes that thelr correspon-
ding states can be desribed by a set of real trial wave functions

for every dipole

x> = == 622 mr ) (- 55 [vg (0,00 + ¥, (6,0])
Q

R

ly> = ;ﬁ-— M2 rer )y 145y 0,00 - X, (8, 00] ) (12)
Q

2> = ;é— s (m-m )y (0,00,
o

The radial part of the above wave function is assumed according
to Schwinger /11/ for a rigid rotator, while the spherical fun-

ctions are
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In such 2 way we also asscciate to each erfective dipole §i=d°§i

a corresponding rotator with an effective orbital mor :nt operator

> L ox. = ; o .
B, = w87 8] - 3,5 |3°] = |3] = 1), so that it holds
*2 2.,
%_ fa> =?‘_.%‘ +1) yo = L= x,¥,2); (14)
(r = fmy + mz)xé is the inertia-moment of the recatur),

Restricting ourselves to tle cage of a symmetric rotator (rl:m2=n),
it is obvious that the above equation (14) is egvivalent to thg
equation for a free rotating dipol. with 3 discrete oricutations
(free pseudo-spin or “dipolar-like" spin)

2 a2, oo
34> = 4% 2iz +1), 4 = 20R, . (15)

Hence, in the proposed model figvre parameters of the effective
dipole such as m, e and Ro' although for the final scattering rross
section, as we shill see later, only the estlmation of dipole ma-
gnitude, i.e. the estimation of its effective length, 1s needed
along with the assump.lons for the ratios e/m, m/M to be cf the
order eo/an y RO/L s respactively, M being the molecular mars.

Accordinyly, for effective nuciear consciants, associated with

nuclear dipole mass, one can assrme

RO RO
Ag= Bac)2s B=(IBe) . (16)
u



1f one makes correspond the spin-wave functions(namely those
of pseudo-spin) [xa> (for S = 1) to the wave functions [a>, then
one can make correspond the pseudo-spin-like operator to the exponen-
tial one in (9). This comes from equality of the corresponding
matrix elements of tl.ese two operators in thelr respective bases,

so one postulates.

v
19R (o5£(3,8)= A_14B S +D_S 2,F 524G 5.5 +H S_S_+#K S S_;
I3 3 AI4BS, 4C S +D S, 4E S HF S/#G S 5 +H 5.8 +K S S,

(I is the unit [3x3] matrix), (17}
where the above formfactors are determined from the conditions
igR > +
<ale™|8> = <x |£@,8) Ixg> = Mg (@) (18)
Applying now the well known expansion

>
iqR _ L. * + + > >
3 = 4n im i ]E(qR)Ylm(qO)YEm(ru)i q, = ortq, I, = artk , (19)

and the formula for the product of two spherical functions

22.+1) (22.,+1) (2% +1)_1/2
o (Gr0) =1 [ 2 1
2 m 4r

¥y m, (0181

(20}

11 12 r (11 12 L

Y, (8,9)
] ] o) m T TR

m m, m
as well as the hermitieity and unitarity of the IHcB(a)ﬂ matrix,
)

one obtains

i0



3. - 3. .
M _(q) = Ejz(qRo,‘sinZBqalnoq i My (gq) = - 732(qRo)sian)qccsaq A

3 P . ) 2
M () = 3j2<qn,’)sm‘eqsxnz¢q My, (d) = 3 (aRg)+ip@Ry) (1-Jeos®o )

. 2 (21)
M__{q) = 2Jz(qR )[3(sln 0qcosz¢ + cos eq) - 1]

+ 1. 2 .
M () = - §Jz(qrzo)[ztsinzeqcosmq - eosti 4 4 - igtar,),

where ©_ and ¢q are the spherical angles of the wave vector a in

an ordinary X,¥,2 sSpace.

For the claiming formfactors then one finds
A= [ (& - 24 (@] = 3_(ar) + j,(qR) [1-3(cos’8_+sine_sin2¢ )]
zz '3 ey (30 = 35 (AR, J, (AR, cos 84 qSin2e, )]
B =

3 . :
[ (q] M (q)J = m]z(qRO)SLnZSq(sin¢q—cr ;¢q) ,

1
1
c = 1-17- [, @ - M, @] = 12—3,5j2(qao)sinzeq(simqwosq»q),

1 > + 3. 2
Dy =3 [Mxx!q) - Mw(q)] = 33, (qR )sin 8550520, (22)
E_ = 2M_{d) = 3j,(aR_)ain’6_sin2¢
q ooy {9 3, @Ry » q ¢
=1 3 57 - - =3 24 _ 2
E'q =3 EMxx(q) + Myy(q)] Aq %‘Eq = 2j2(qRo) [3(::05 Gq 2sin eqsinZ\pq]

- 1] - 23 lary).

V. FINAL EXPRESSIONS

&
To test the pseudo-spin model for nematic liquids ,it is of

-
In /1/'the nunerical values are chosen for para-azoxyanlsole' as

a typical nematic liquid czystal.



interest to ca culate the neutron elastic cross section in the

zero-scund (a ~ 0) and the rotonic (E ~ ao) parts of the fre-

quency spectrum /1/ both at temperature region T~ ¢ and at T-T =

2
%— IJ(ﬁm)] (&m is the first minimum in the Fourier transform of
B

the intermolecular potential /1/).

kow, with the aid of (8), (17) and (22), the angular elas-

tic cross sections around T~ O and T~ Tc are as follows

3
do = coh(2w) "N . 2.7 incy |
g0 * Loy AR I e ]

2 2 2
4(Aq+Bq<Sx>+Dq<Sz>+Eq<Sx> +qu»Sz> +Hq<sx><sz>)

(23}
3 T“
. [agm‘——L(zgo N 5 8 (G- Trwal™] - 4n -—-(Jlst“q) FiT) *

2 2
(Aq+Bq<Sx>+Dq<sz>+Eq<sx> +Fq<Sz> +Hq<sx><sz>) '

3
dg - r,eoh(2w) N > ine
& e [oy v,k §(q-T) 480y ]

2 2 2
4[A _“+2A B _<S_>+2A D <S5 >+(B_"+2A E > + N
[ q 9g x 99 2 * q q q)(Sx +2(Aqﬂq Bqu)

. 3 2 2
<sx><sz>+23qsq<sx> +2(Bqu+DqEq)<sx> <sz>+Eq <sx>

4
+ ZE_H_<S_>3<s >] (24)
Qg Ux z

3 -+
coh{2n}°N F-TU § . 1n(l,
+ [o$ i—)—vo § 8 @-Hwop™] 4ns(;_‘§) Lpry -

2
(Aq+aq<sx>+nq<sz>+sq<sx> +Hq<sx><sz>) ’

(v, = % is the volume of an effective unit cell).
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In the above two expressions we have the coherent and
incoherent parts. It is obvious that the former describes only
the shapes of peculiar Bragg peaks at a given reciprocal lat-
tice-like point é =1 . But the incoherent part could give in-
formation about zero-sound and rotonic scattering in both tempe-
rature reqionsf Thus, it remains to evaluate <Sx> and <SZ>
around these temperatures. Usinq a standard procedure fecr zero
temperatures /12,13/ and combining a selfconsistent field ap-
proximation with an expansion for the thermodynamical functions
cos%P and H /1,14,15/ in powers of (T—Tc) {a second-order phase
transition is assumed).i, one finds:

a) At T- O:

<§_>, = cosp (S—<b;b Y .

i
{25)

A

w
v
H

_ - +.
sinp (S-<bib;>q)

where simp = Ql/ZS(J—QZ), coming from the condition for the system

to achieve a ground state at T=0 /1/.

Assuming, as a good approximation, for small 5 the disper-

sion law in the form
_ 2
mq = mo + mlq )

Ja
w, = Scosp /IRy, w =1 ——Ln (26)

’
1 (J—QZ)COSZ?

(ul being estimated in /1/),

* If the condition 2lqg_ < 1 is violated, one has to multiply the
incoherent scattering gntensity by the factor 1/2.

**At critical temperatures cos’~0 /1/. As a consequence, it comes
out, from the Hamiltonian (1), that, with a good accuracy, one can
apply such a procedure.




one obtains

v koT 3/2

+ o 5 (]

<b,b,>, = T(3/2) (=) Zis2 (3=5) 4 (27}
AT (2ny? “1 / BT

r{3/2) is the gamma-function and

Zh(x) = £ K_h e ¥ .
=1

[

Since the Fourier transformed Lennard-Jones potential

32

Vi@ = sfNa@ g s 210 em’) /1/ has the main contribution

as being integrating over ¢ from zero to approximatly §o~ aBrill/Z .
tne above obtained expressions should be applied for the elastic

+
scattering around g ~ggs tOO.

h) At T ~ Tc H
By convenient definitions

2,1/2

- = . - (u?
He = 9y + 22,<5,>, H, = 2J<§,> 5 H = (Hx + HyD (28)
J=23ij ,
and with the expansions /1,15/ J
A{T-T .}, T>T
cos%? ={ € € B
2A1T-Tcl, TeT (29)
H [Ler]T-T_}+...], T<T
={* ¢ c, (30)
Hy, T>T,
on the basis of the selfconsistent equation
H
=5 2 .
<s‘> = 8 " th(ZkBT ), (3L)



one obtains

K, T<T,
<5.> ={ T-T, (32)

K-8Q —=3 T, .

ZkBTC
J— 1/2

Qv le'r-'rc] JT<T K = 0,/2(3-2,)
<§,> ={ 1/2 ay a3 (33)

Q /X(T-T) ST Q=g+ a K].
The constant ), which was on’y regquired earlier /1/ to have

1

the dimension T =, =an be determined by a slight adaptation from

Ref. /l4/, wherewith it follows

| T N— (30)
T H, 3T'T=T 2!
x e t [exgr_-253(1-2%)]

where z = Hx/ZkBTc

To conclude, a new approach to neutron scattering by liquid
crystals, especially of nematic type, is presented. The obtained
results provide the possibility to reproduce the shapes of the co-
herent and incoherent peaks in elastic neutron scattering spectra
in the acoustic ;3 = 0) and the rotoric (3 = 50) parts of the col-
lective excitations, both at temperature regions T ~ O and at T = 'I‘c
Since the cross sections are expressed in terms of parameters Ql,
nz, J, ays A and LA the fittiﬁq to experiments could give the
poacibility to verify the validity of the pseudo-spin model and the
theoretical estimations of the parameters in it. At the same time,
one could gbtain closer estimations of effective dipole parameters,
which would be of basic interest. Neverthaless, one could expect much
more information from inelastic neutron scattering spectra, which can

be, in principle, described by the same pseudo-spin formaiism and the
here proposed method.

15 ¢
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