СООБЩЕНИЯ
 ОБЪЕАИНЕННОГО ИНСТИТУТА
 भAEPHЫX ИССАЕАОВАНИЙ

АУБНА

$$
19 / 8-74
$$

E4-7981
S.Stamenković
$3207 / 2-74$
THEORY OF NEUTRON
ELASTIC SCATTERING
BY NEMATIC LIQUID CRYSTALS
$1 \div 2<4$
ААБОРАТОРИН TEOPETИЧЕСНОЙ
S.Stamenkovici*

THEORY OF NEUTRON

ELASTIC SCATTERING BY NEMATIC LIQUID CRYSTALS

[^0]
I, INTRODUCTION

Recently, Novakovic and ShukIa /l/ have presented a new approach to nematic liquid crystals by exploring the pseudo-spin formalism. Also several noutron experiments were carried out on these types of liquids /2-4/, Tnerefore, there is a need to develop a model-scattering theory which would be invoked to verify the consistency of the proposed pseudo-spin Hamiltonian with the existing observetions by neutron techniques.

In this paper we present a method for an explicit evaluation of the angular cross section for the elastic neutron scattering by nematic liquids. To do this, it is necessary to quote briefly their physical nature in addition to the psevdo-spin model and its thecretical consequences /1/.

As it is well known $/ 5,6 /$, in distinction from the smectic liquid crystals, in nematic and cholesteric ones the molecules are not confined in layers but are capable of random orientations which are more or less continuous throughout the ilquid. Furthermoce, nematic liquids possess certain invarlance under reflections, while this is not the case with the cholester: \mathbf{c} ilquids.
II. THE PSEUDO-SPIN HAMILTONIAN

Assuming that $2 S+1(S=b / 2 ; b=0,1, \ldots)$ orientations of an effective electrical dipole, $\vec{d}_{1}=2 e \vec{R}_{o i}|2| \vec{R}_{o} \mid$ being the distance between effective charges e) inside of each long elongated rod-like molecule, are described by deviations of the S_{1}^{Z} pseudo-spin components ($1, j=1, \ldots N$ abel the molecular sites)*, the proposed Hamiltonian of the system $15 / 1 /$

[^1]$H=-\sum_{j b=1}^{2 S} \Omega_{j}\left(S_{j x}\right)^{b}-\sum_{j k} J_{j k} S_{j z} S_{k z}$.

Here S_{j} are quantun parameters related to a transfer energy of dipoles, while $J_{j k}=J(|\vec{r}|), \overrightarrow{\mathbf{r}}=, \vec{r}_{\mathbf{i}}-\vec{r}_{\mathbf{j}}$, are coupling parameters felated to the intermolecular (namely ineerdipole) potential. as a continuously varying function for a fluid. The above Hamiltonian, being thus very general, was simplf.fied a bit further assuming that all dipoles have only 3 possible orientations $(S=1$). However, the treatment and the obtalned repults are essentially identical for general s.

The further procedure, which is used also hereafter, consisted in a rotation of the pseudo-spin system through an angle p. Then the pseudo-spin raising (lowering) operators $S_{j}^{+}=S_{j}^{X} \pm 1 S_{j}^{Y}$ were irm Eroduced assuming their bosonlc representation f7/ After this, going over to the Fourier transformed bosons, performing the standard Bogolubo\%'s diagonalization and assuming the Lennard-Jones intermolecular potential, the collective excitation frequency was obtained. Sach a frequency was analysed around the origin $\vec{q}=0$ and in the neighbourhood of the second maximutn in the fourier transformed intermolecular potential $\stackrel{\rightharpoonup}{q}_{0}$, wherefrom a zeromsound velocity and a rotonic mass were estimated.
III. GENERAL EXPRESSION FOR ELASTTC NEUTRON SCATTERING

The elastic scattering of slow neutrons by nematic liquid crystals can be described with high accuracy by a pure nuclear interacion, while the other ones can be aiscarded as being the effects of a considerably less order of magritude. Actually, for an asymmetric effective dipole (1.e. rotator, defined lator on in sec. IV)
an interaction would exist between the neutron magnetic moment and a resulting magsetic moment generated by the rotation of a difole proportional to

$$
\begin{equation*}
\left|\vec{\mu}_{n}\right|\left|\vec{\mu}_{e f f}\right|=\left|2 Y \frac{e \hbar}{2 m_{p} c} \vec{I}_{n}\right|\left|\frac{1}{2 c}\left(\frac{e_{1}}{m_{1}}+\frac{e_{2}}{m_{2}}\right) \vec{L}\right| ; \tag{2}
\end{equation*}
$$

m_{p} is the proton mass and \dot{I}_{n} - the neutron spin; $\gamma=-1,33$ is the neutron magnetic moment in nuclear Bohr magnetons, and $\vec{L}=\hbar$ (ort $\overrightarrow{d x o r t} \vec{p}$) is an effective orbital moment operator associated with a rotating dipole masses m_{1} and m_{2}, $\stackrel{+}{p}$ befing a dipole momentum. Since masses $m_{I}=m_{2}$ are probably relatively large, such a magnetic scattering would result in a negligible effect.

The elastic differential cross section per unit solid angle Eor unpolarized nuutrons can be expressed in the concise Eorm / 8, 9/

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{m_{n}^{2}}{(2 \pi)^{2} \hbar^{4}} \sum_{i j r r} \sum_{i r}\left\langle\left\langle\vec{a}_{i r}^{a_{j r}}\right\rangle\right\rangle\left\langle e^{-i \vec{q} \vec{R}_{i r}(0)} s^{i \stackrel{\rightharpoonup}{q} \vec{R}_{j r},(\infty)}\right\rangle \tag{3}
\end{equation*}
$$

Here the bracket $\langle<\ldots .\rangle$.$\rangle stands for the average of the expectati-$ on value of the enclosed operator, as well as for the average over the nuclear spin and effective orbital moments (dipoles) orientations, and the Iine above denotes the average over the initial neutron spin orientations: m_{n} is the neutron mass, $\vec{q}=\vec{p}-\vec{p}-$ is the scattering momentum transfer and $\overrightarrow{\mathrm{p}}, \overrightarrow{\mathrm{p}}$ - are incoming and outgoing wave vectors of the neutron, respectively. The atoms along any rod-like molecule, as well as the two ends of each effective dipole, are labelled by the index $r(1 \leqslant r \leqslant n+2, n$ being the total number of atoms in the molecule), and their position vectors are denoted by $\vec{R}_{\text {ir }}$. The scattering amplitude of nuciel, i.e. scattering amplitudes
associated with effective dipole nuclear mass $;$, are $a_{i r}=$ $A_{i r}+B_{i r}\left(\vec{I}_{n} \vec{I}_{i r}\right)\left(\vec{I}_{i z}\right.$ is the spin operator of the ir-th target, and $A_{i r}$ and $E_{i r}$ are the corresponding nuclear constants). Let us now perform decomposition of the ir-th position vector

$$
\begin{equation*}
\vec{R}_{i r}(t)=\vec{R}_{i}+\vec{R}_{r}(t) ; \tag{4}
\end{equation*}
$$

\vec{R}_{i} refers to the middle (gravity) point of the i-th rod-like molecule and $\vec{R}_{r}(t)$ is an instantaneous distance of the r-th atom, f.e., an instantaneous distance of one or the other dipole end, inside a molecule, with respect to its gravity point.

These position vectors have not any correlation at an infinite time-like distance, so the correlator in (3) can be written $\left\langle e^{-i \vec{q} \vec{R}_{i r}(0)} e^{\left.i \vec{q} \vec{R}_{j r} f^{(\infty)}\right\rangle}=e^{-i \vec{G}\left(\vec{R}_{i}-\vec{R}_{j}\right)}\left\langle e^{-i \vec{q}_{R}(0)}\right\rangle\left\langle e^{\left.i \vec{q} \vec{R}_{r} r^{(\infty)}\right\rangle}\right.\right.$.
hs we deal with neutron scattering by effective dipoles inside long rod-like molecules, we shall use the adiabatic approximation. The correlators

$$
(\mu, v=1, \ldots n),
$$

will, as a good approximation, determine only Bragg-like peaks, depicting an ordinary elastic scattering in liquids, i.e. a "background" to which the scattering on the "basic (dipole-like) mode" would be superposed. The "pure" dipole correlators
$\left\langle e^{-i \vec{q}_{\mathrm{R}}{ }_{i \gamma}(0)} e^{i \vec{q} \vec{R}_{j \beta}(\infty)}\right\rangle=e^{-1 \vec{q}\left(\vec{R}_{1}-\vec{R}_{j}\right)}\left|\left\langle e^{-1 q R_{\gamma}(0)}\right\rangle\right|^{2}$

$$
[\gamma, \beta=n+1, n+2]
$$

and the "mixed" correlators between atoms and effective dipoles $\left\langle e^{-i \vec{q} \vec{R}_{i \mu}(0)} e^{i \vec{q} R_{j} \sigma^{(\omega)}}\right\rangle=e^{-i \vec{q}\left(\vec{R}_{i}-\vec{R}_{j}\right)}\left\langle e^{-i \vec{q}_{q} R_{\mu}(0)}\right\rangle\left\langle e^{i \vec{q} \vec{R}_{\gamma}(0)}\right\rangle F(T)$
will describe a characteristic elastic scattering by effective aipoles themselves, as well as correlated with the atomic mot 0 . , respectively. In the above expressions $F(T) \sim 1$ is a thermal fictor due to the internal degrees of freedem of the molecule.

Actually, these two last correlators are concerned with the neutron scattering by "basic elementary excitations", the latter reflecting once more the collective atomic effect in addition to that manifested in the formation of an effective dipole, as a consequence of a specific atomic cooperation.

Then from (3) one can write

$$
\begin{aligned}
& \frac{d \alpha}{d \Omega}=\left[\sigma_{2}^{c o h}\left|\Sigma e_{i}^{i \vec{q} \vec{R}} i\right|^{2} \div N \sigma_{1}^{i n c}\right]\left|\left\langle e^{i \overrightarrow{q R}(0)}+e^{-i \vec{q} \vec{R}(0)}\right\rangle\right|^{2}+
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \vec{R}^{2}(0)=\vec{R}_{\gamma}(0)-\text { the position vector of any } \\
& \text { cipole end, independent of } \gamma \text {) }
\end{aligned}
$$

where

$$
\begin{align*}
& \begin{array}{r}
\sigma_{f}^{c o h}=\frac{m_{n}^{2}}{\left(2 \pi \hbar^{2}\right)^{2}}\left\langle A_{f}\right\rangle^{2}, \sigma_{f}^{i n c}=-\frac{m_{n}^{2}}{\left(2 \pi \hbar^{2}\right)^{2}}\left[\left\langle A_{f}^{2}>-\left\langle A_{f}\right\rangle^{2}+\frac{i_{i}}{4}<B_{f}>I(I+1)\right],\right. \\
(f=1,2) ;
\end{array} \\
& S(\vec{q})=\left.\left.\right|_{\mu=1} ^{n} e^{i \vec{q} \overrightarrow{R_{\mu}}}\right|^{2} \simeq n \frac{\sin \left(\overrightarrow{t_{a}} L\right.}{(\overrightarrow{[g})} . \tag{11}
\end{align*}
$$

$S(\vec{q})$-structural factor of the molecule, $2|\vec{l}|$ being the molecular length; $\left\langle A_{f}\right\rangle=\left(\sum_{S} A_{S} c_{S}\right)_{F}, c_{g}$ being the concentration of atoms (isotopes), i.e., of effective dipoles, for which $A_{i r}=A_{s}$. The index "l" is referced to the "pure" scatteriag by dipoles, provided that a possible estimation of a corresponding scatterirg amplitudes will be outlined hereafter, when model description of dipoles will be closely adjucted; the index " 2 " is related to the "mixed" scattering events, when dipoles corielate with atoms.
IV. MODEL DESCRIPTION OF THE EFFECTIVE DIPOLE AND PSEUDO-SPIN FORMFACTORS

To explore the pseudowspin formalism for the explicit evaluation of the angular elastic aross section (9), it is necessary to find an equivalent correlator between pseudo-spins /lc-12/. Since the effective dipoles have 3 discrete orientations (restriction to the case of $S=1$), one assumes that their corresponAing states can be desribed by a set of real trial wave functíons for every dipole
$|x\rangle=\frac{1}{R_{0}^{2}} \varepsilon^{1 / 2}\left(R-R_{0}\right\rangle\left\{-\frac{1}{\sqrt{2}}\left[Y_{11}(\theta, \phi) \div Y_{1-1}(\theta, \phi)\right]\right\}$
$\left|Y^{\prime}\right\rangle=\frac{2}{R_{0}^{2}} \delta^{J \cdot / 2}\left(R-R_{0}\right)\left\{\frac{1}{\sqrt{2}}\left[Y_{11}(\theta, \phi)-Y_{1-1}(\theta, \phi)\right]\right\}$
$|z\rangle=\frac{2}{R_{0}^{2}} \delta^{1 / 2}\left(R-R_{0}\right) Y_{10}(\theta, \phi)$.

The radial part of, the above wave function is assumed according to schwinger /li/f for a rigid rotator, while tie gpherical functions are

In such a way we aito asscoiate to each edfective dipole $\vec{d}_{i}=d_{o} \vec{S}_{i}$
a corresponding rotator with an effective orbital mon nt operator $\vec{L}_{i}=\hbar \vec{S}_{i}\left(\vec{S}_{i}-\vec{S}_{i} ;\left|\overrightarrow{\vec{S}^{-}}\right|=|\vec{S}|=1\right)$, so that it holds

$$
\begin{equation*}
\left.\frac{\vec{L}^{2}}{21}|c\rangle=\frac{\hbar^{2} \ell}{2}{ }^{n}+1\right\rangle, \quad(e=: ; \quad=x, y, z) ; \tag{14}
\end{equation*}
$$

$$
\left(I=\left(m_{1}+m_{2}\right) \alpha_{0}^{2}\right. \text { is the inertia-moment of the rocatur). }
$$

Restricting ourselves to the case of a symmecric rotator ($\mathrm{r}_{1}=\mathrm{m}_{2}=\mathrm{Fr}$), it is obvjous that the above equation (i4) is equivalent to the equation for a free rotating dipol: with 3 discrete oricntations (free pseudo-spin or "ßipolar-ilke" spin)

$$
\begin{equation*}
d^{2}|\alpha\rangle=d_{0}^{2} \ell(\ell+1), d_{0}=2 e R_{0} . \tag{15}
\end{equation*}
$$

Hence, in the proposed model figlre parameters if the effective dipole such as $m_{2} e$ and R_{o}, although for the final scattering rross section, as we shill see later, only the estlmation of dipole magnitude, i.e. the estimation of its effective length, is needed along with the assumpuions for the ratios $e / m, m / M$ to be $c f$ the order $e_{o} / 2 n_{p}, R_{o} / L$, respectively, M being the molecular mazs. Accordinyly, ior effective nuclear consiants, associated with nuclear dipole mass, one can assime

$$
\begin{equation*}
\left.A_{d}=\left(\sum_{\mu} A_{\mu} c_{\mu}\right)\right)_{L}^{R_{O}}+B=\left(\underset{\mu}{\left.\left(E B_{\mu} c_{\mu}\right)\right)_{L}^{R_{O}} .}\right. \tag{16}
\end{equation*}
$$

If one makes correspond the spin-wave functions (namely those of fseudo-spin $\rangle\left\langle x_{a}\right\rangle$ (for $s=1$) to the wave Eunctions $|a\rangle$, then one can make correspond the pseudo-spin-like operator to the exponential one in (9). This comes Erom equality of the corresponding matrix elements of tiese two operators in their respective bases, so one postulates.
$e^{1 \vec{q} \vec{R}}\left\langle=>f(\vec{q}, \vec{S})=A_{q} I+B_{q} S_{x}+C_{q} S_{y}+D_{q} S_{z}+E_{q} S_{x}^{2}+F_{q} S_{z}^{2}+G_{q} S_{x} S_{y}+H_{q} S_{x} S_{z}+K_{q} S_{y} S_{z} ;\right.$

$$
\text { (I is the unit }[3 \times 3] \text { matrix), }
$$

where the above formfactors are determined from the conditions

$$
\begin{equation*}
\langle\alpha| e^{i \vec{G} \vec{R}}|B\rangle=\left\langle x_{\alpha}\right| f(\vec{q}, \vec{\xi})\left|x_{a}\right\rangle=M_{\alpha \theta}(\vec{q}) . \tag{18}
\end{equation*}
$$

Applying now the well known expansion

and the formula for the product of two spherical functions
$Y_{\ell_{1} m_{1}}(\theta, \phi) Y_{\ell_{2} m_{2}}(\theta, \phi)=\sum_{\ell_{m}}\left[\frac{\left.2 \ell_{1}+1\right)\left(2 \ell_{2}+1\right)(2 \ell+1)}{4 \pi}\right] \cdot 1 / 2$

$$
\cdot\left(\begin{array}{lll}
\ell_{1} & \ell_{2} & \ell \\
m_{1} & m_{2} & n i
\end{array}\right)\left(\begin{array}{lll}
\ell_{1} & \ell_{2} & \ell \\
0 & 0 & 0
\end{array}\right) \quad \chi_{\ell \pi}(\theta, \phi) .
$$

as well as the hermiticity and unitarity of the $\left\|_{\alpha \beta}(\vec{q})\right\|$ matrix, one obtains
$M_{x z}(\vec{q})=\frac{3}{2} j_{2}\left(q R_{o}: \sin 2 \theta_{q} s i n \phi_{q} ; \quad M_{y z}(\vec{q})=-\frac{3}{2} j_{2}\left(q R_{q}\right) \sin 2 \theta q^{\cos \gamma_{q}} ;\right.$
$M_{X Y}(\vec{q})=\frac{3}{2} j_{2}\left(q R_{n}\right) \sin ^{\dot{2}}{ }_{q}{ }_{q} \sin 2 \phi_{q} \quad M_{z z}(\dot{q})=j_{0}\left(q R_{o}\right)+j_{2}\left(q R_{o}\right)\left(1-3 \cos ^{2} \theta_{q}\right) ;$
$M_{x x}(\vec{q})=\frac{1}{2} j_{2}\left\langle q R_{o}\right\rangle\left[3\left(\sin ^{2} \theta_{q} \cos 2 \Phi_{q}+\cos ^{2} \theta_{q}\right)-1\right]$
$M_{Y Y}(\vec{q})=-\frac{1}{2} j_{2}\left(q R_{O}\right)\left[3\left(\sin ^{2} \theta_{q} \cos 2 \Phi_{q}-\cos ^{2} \underline{\xi}_{\underline{q}}\right)+1\right]-j_{0}\left(q R_{O}\right)$,
where θ_{q} and ϕ_{q} are the spherical angles of the wave vector \vec{q} in an orainary x, y, z space.

For the claiming formfactors then one finds
$A_{q}=\left[M_{z z}(\vec{q})-2 M_{x y}(\vec{q})\right]=j_{0}\left(q R_{o}\right)+j_{2}\left(q R_{o}\right)\left[1-3\left(\cos ^{2} \theta_{q}+\sin ^{2} \phi_{q} \sin 2 \phi q\right)\right]$,
$B_{q}=\frac{1}{\sqrt{2}}\left[M_{Y Z}(\vec{q})+M_{X z}(\vec{q})\right]=\frac{3}{2 \sqrt{2}} j_{2}\left(\mathrm{qR}_{\mathrm{o}}\right) \sin 2 \theta_{\mathrm{q}}\left(\sin \phi_{\mathrm{q}}-\mathrm{cr} ; \phi_{\mathrm{q}}\right)$,
$c_{\mathrm{q}}=\frac{1}{1 \sqrt{2}}\left[M_{\mathrm{y}}(\overrightarrow{\mathrm{q}})-M_{\mathrm{xz}}(\overrightarrow{\mathrm{q}})\right]=1 \frac{3}{2 \sqrt{2} j_{2}}\left(\mathrm{qR} \mathrm{R}_{\mathrm{o}}\right) \sin 2 \mathrm{e}_{\mathrm{q}}\left(\sin \phi_{\mathrm{q}}+\cos \phi_{\mathrm{q}}\right)$,
$D_{q}=\frac{1}{2}\left[M_{x X}(\vec{q})-M_{Y Y}(\vec{q})\right]=\frac{3}{2} j_{2}\left(q R_{o}\right) \sin ^{2} \theta_{q} \cos 2 \phi_{q}$,
$\mathrm{E}_{\mathrm{q}}=2 \mathrm{M}_{x \mathrm{Y}}(\mathrm{q})=3 \mathrm{j}_{2}\left(\mathrm{qR}_{\mathrm{o}}\right) \sin ^{2} \theta_{\mathrm{q}} \sin 2 \phi_{\mathrm{q}}$,
$F_{q}=\frac{1}{2}\left[M_{x x}(\vec{q})+M_{Y Y}(\vec{q})\right]-A_{q}-\frac{1}{2} E_{q}=\frac{3}{2} j_{2}\left(q R_{o}\right)\left[3\left(\cos ^{2} \theta_{q}-2 \sin ^{2} \theta_{q} \sin 2 q_{q}\right)\right.$
$-1]-2 j_{0}\left(\right.$ (R $\left._{0}\right)$.
$\mathrm{H}_{\mathrm{q}}=-1 \mathrm{C}_{\mathrm{q}^{\prime}} \quad \mathrm{K}_{\mathrm{q}}=0$.

V. FINAL EXPRESSIONS

To test the pseudo-spin model for nematic liquids* it is of

[^2]Interest to co culate the reutron elastic cross gection in the zero-sound ($\vec{q}-0$) and the rotonic ($\vec{c} \cdots \vec{q}_{0}$) parts of the frequency spectrum /1/both at temperature region T - G and at $T-T e^{=}$ $\frac{S^{2}}{x_{B}}\left|J\left(\vec{q}_{m}\right)\right|\left(\vec{q}_{m}\right.$ is the first minimum in the Fourier transform of the intermolecular potential /1//.

Now, with the aid of (8), (17) and (22), the angular elastic cross sections around $T \sim O$ and $T \sim T_{c}$ are as follows

$$
4\left[A_{q}{ }^{2}+2 A_{q} B_{q}<S_{x}>+2 A_{q} D_{q}<S_{z}>+\left(B_{q}{ }^{2}+2 A_{q} E_{q}\right)<S_{x}>^{2}+2\left(A_{q} H_{q}+B_{q} D_{q}\right) .\right.
$$

$$
\cdot\left\langle S_{x}>\left\langle S_{z}>+2 \mathrm{~B}_{\mathrm{q}} \mathrm{E}_{\mathrm{q}}<\mathrm{S}_{x}>^{3}+2\left(\mathrm{~B}_{\mathrm{q}} \mathrm{H}_{\mathrm{q}}+\mathrm{D}_{\mathrm{q}} \mathrm{E}_{\mathrm{q}}\right)\left\langle\mathrm{S}_{\mathrm{x}}>^{2}\left\langle\mathrm{~S}_{z}>+\mathrm{E}_{\mathrm{q}}{ }^{2}<\mathrm{S}_{\mathrm{x}}>^{4}\right.\right.\right.\right.
$$

$$
\begin{equation*}
\left.+2 \mathrm{E}_{\mathrm{q}} \mathrm{H}_{\mathrm{q}}<\mathrm{S}_{x}>{ }^{3}<\mathrm{S}_{z}>\right] \tag{24}
\end{equation*}
$$

$$
+\left[\sigma _ { 2 } ^ { \operatorname { c o h } (2 \pi) ^ { 3 } \mathrm { N } } \frac { \sum _ { \mathrm { T } } } { } \delta \left(\overrightarrow{\left.\mathrm{q}-\vec{\tau})+\mathrm{No}_{2}^{1 \mathrm{nc}}\right]} \cdot{ }_{4 \mathrm{n}} \frac{\sin (\overrightarrow{\mathrm{~L}} \mathrm{D})}{(\overrightarrow{\mathrm{L}})} \mathrm{F}(\mathrm{~T}) .\right.\right.
$$

$$
\left(A_{q}+B_{q}\left\langle S_{x}>+D_{q}\left\langle S_{z}\right\rangle+E_{q}\left\langle S_{x}\right\rangle^{2}+H_{q}<S_{x}><S_{z}>\right),\right.
$$

$\left(V_{0}=\frac{V}{N}\right.$ is the volume of an effective unit cell).

$$
\begin{align*}
& 4\left(\mathrm{~A}_{\mathrm{q}}+\mathrm{B}_{\mathrm{q}}<\mathrm{S}_{\mathrm{x}}>+\mathrm{D}_{\mathrm{q}}\left\langle\mathrm{~S}_{\mathrm{z}}>+\mathrm{E}_{\mathrm{q}}\left\langle\mathrm{~S}_{\mathrm{x}}>{ }^{2}+\mathrm{F}_{\mathrm{q}}\left\langle\mathrm{~S}_{\mathrm{z}}>^{2}+\mathrm{H}_{\mathrm{q}}\left\langle\mathrm{~S}_{\mathrm{x}}><\mathrm{S}_{\mathrm{z}}>\right)^{2}\right.\right.\right.\right. \tag{23}
\end{align*}
$$

$$
\begin{aligned}
& \left\langle\mathrm{A}_{\mathrm{q}}+\mathrm{B}_{\mathrm{q}}\left\langle\mathrm{~S}_{\mathrm{x}}\right\rangle+\mathrm{D}_{\mathrm{q}}\left\langle\mathrm{~S}_{\mathrm{z}}\right\rangle+\mathrm{E}_{\mathrm{q}}\left\langle\mathrm{~S}_{\mathrm{x}}\right\rangle^{2}+\mathrm{F}_{\mathrm{q}}\left\langle\mathrm{~S}_{\mathrm{z}}>{ }^{2}+\mathrm{H}_{\mathrm{q}}\left\langle\mathrm{~S}_{\mathrm{x}}><\mathrm{S}_{\mathrm{z}}>\right\rangle ;\right.\right.
\end{aligned}
$$

In the above two expressions we have the coherent dad
incoherent parts. It is obvious that the former describes only the shapes of peculiar Bragg peaks at a given reciprocal lat-tice-like point $\stackrel{+}{q}=\stackrel{+}{\mathrm{t}}$. But the incoherent part could give information about zero-sound and rotonic scattering in noth temperature regions.*Thus, it remains to evaluate $\left\langle S_{x}\right\rangle$ and $\left\langle S_{z}\right\rangle$ around these temperatures. Usinf a standard procedure for zero temperatures / 12,13/ and combining a selfconsistent field approximation with an expansion for the themodynamical functions $\cos ^{2}\left(P\right.$ and $H / 1,14,15 /$ in powers of ($\left.T-T_{C}\right)$ \{ 2 second-order phase transition is assumed) ${ }^{*}$, one finds:
a) At $T-0$:

$$
\begin{align*}
& \left\langle S_{z}\right\rangle_{T}=\cos \varphi\left(S-\left\langle b_{i}^{+} b_{i}\right\rangle_{T}\right), \tag{25}\\
& \left\langle S_{Y T}\right\rangle_{T}=\sin p\left(S-\left\langle b_{i}^{+} b_{i}\right\rangle_{T}\right),
\end{align*}
$$

where sirp $=\Omega_{1} / 2 S\left(J-\Omega_{2}\right)$, coming from the condition for the system to achieve a ground state at $T=0 / 1 /$.

Assuming, as a good approximation, for small \dot{q} the dispersion law in the form

$$
\begin{gather*}
\omega_{q}=\omega_{0}+\omega_{1} q^{2} \\
\omega_{0}=\operatorname{scos\varphi } \sqrt{J\left(J-\Omega_{2}\right)}, \omega_{1}=\frac{1}{2} \frac{J \alpha_{1}}{\left(J-\Omega_{2}\right) \cos ^{2} \varphi}
\end{gather*}
$$

(α_{1} being astimated in /i/),

[^3]one obtains
\[

$$
\begin{equation*}
\left\langle b_{1}^{+} b_{i}{ }^{\prime} T=\frac{v_{0}}{(2 \pi)^{2}} r(3 / 2)\left(\frac{k_{B}^{T}}{\omega_{1}}\right)^{3 / 2} z_{3 / 2}\left(\frac{\omega_{0}}{k_{B} T^{\prime}}\right) ;\right. \tag{27}
\end{equation*}
$$

\]

$r(3 / 2)$ is the gamma-function and

$$
z_{h}(x)=\sum_{k=1}^{\infty} k^{-h} e^{-k x} .
$$

Since the Fourier transformed Lennard-Jones potential $V(\vec{q})=s^{2} N_{0} J\left(\overrightarrow{\mathrm{q}} . \quad\left(\mathrm{N}_{0}=2 \cdot 10^{32} \mathrm{~cm}^{3}\right) / 1 /\right.$ has the main contribution as being integrating over \vec{q} from zero to approximatly $\vec{q}_{0} \sim_{\mathbb{q}_{B r i l l / 2}}$, the above obtained expressions should be applied for the elastic scaitering around $\stackrel{+}{q} \stackrel{\rightharpoonup}{g}_{o}$, 500.
h) At $T-T_{C}$:

By convenient definitions

$$
\begin{align*}
& \quad H_{x}=\Omega_{I}+2 \Omega_{2}\left\langle S_{x}\right\rangle, H_{z}=2 J\left\langle S_{z}\right\rangle ; H=\left\langle H_{x}^{2}+H_{z}^{2,1 / 2,}\right. \tag{28}\\
& \text { and with the expansions } / L, 15 /
\end{align*}
$$

$$
\begin{align*}
& \cos ^{2} \varphi=\left\{\begin{array}{l}
\lambda\left(T-T_{c}\right), T>T_{c} \\
2 \lambda\left|T-T_{c}\right|, T<T_{c}
\end{array}\right. \tag{29}\\
& H=f_{H_{x}\left[1+\lambda\left|T-T_{c}\right|+\ldots\right], T<T_{C},}^{H_{X}, T>T_{c}} . \tag{30}
\end{align*}
$$

on the basis of the selfconsistent equation

$$
\begin{equation*}
\left\langle s_{\alpha}\right\rangle=s \frac{H_{\alpha}}{H} \operatorname{th}\left(\frac{H}{2 k_{B}^{T}}\right), \tag{31}
\end{equation*}
$$

one obtains
$\left\langle S_{x}\right\rangle=\left\{_{K-S Q}^{K,} \frac{T-T_{c}}{2 k_{B} T_{C}^{2}}, \quad \begin{array}{l}T>T_{c},\end{array} \quad\right.$,
$\left\langle S_{z}\right\rangle= \begin{cases}0 \sqrt{2 \lambda}\left|T-T_{C}\right|_{1 / 2}^{1 / 2}, T<T_{c} & K=\Omega_{1} / 2\left(J-\Omega_{2}\right) \\ 0 \sqrt{\lambda}\left(T-T_{C}\right)^{1 / 2}, T>T_{c}: & 0=\frac{\Omega_{1}}{2 J}\left[1+\frac{\lambda_{2}}{\Omega_{1}} K\right] .\end{cases}$

The constant λ, which was on'? required earlier $/ 1 /$ to have the dimension T^{-1}, can be determined by a slight adaptation from Ref. /14/, wherewith it follows

$$
\begin{equation*}
\lambda=\left.\frac{1}{H_{x}} \frac{\partial H}{\partial T}\right|_{T=T}=\frac{2 S J\left(1-z^{2}\right)}{T_{c}\left[2 k_{B} c_{c}-2 S J\left(1-z^{2}\right)\right]}, \tag{34}
\end{equation*}
$$

where $z=H_{s} / 2 k_{B}{ }_{c}$.

To conciude, a new approach to neutron scattering by liquid crystals, especially of nematic type, is presented. The obtained results provide the possibility to reproduce the shapes of the coherent and incoherent peaks in elastic neutron scattering spectra in the acoustic $(\vec{q}=0)$ and the rotoric $\left(\vec{q}=\vec{q}_{0}\right)$ parts of the collective excitations, both at temperature regions $T=0$ and at $T=T_{c}$ Since the cross sections are expressed in terms of parameters Ω_{1}. $\Omega_{2}, J, a_{1}, \lambda$ and q_{0}, the fitting to experiments could give the passibility to verify the validity of the pseudo-spin model and the theoretical estimations of the parameters in it. At the same time, one could obtain closer estimations of effective dipale parameters, which would be of basic interest. Nevertheless, one could expect much more information from inelastic neutron scattering spectra, which can be, in principle, described by the same pseudo-spin formailsm and the here proposed method.
[1] L.Novaković, G.C. Shukla, Fizika 4, 29(1972).
[2] K.Otnes, R.Pynn, J.A.Janik, J.M.Janik, Phys.Lett. 38A, 335(1972).
[3] J.A.Janik, J.M.Janik, K.Otnes, R.Pynn, Neutron Inelastic Scattrring (Proc.Symp., Grenoble 2972), ed. IAEA, Vienna 1972, p. 515.
[4] V.Dimic, L.Barbic, R.Blinc, Phys. Stat. Sol. (b) 54, 121 (1972).
[5] G.Friedel, Ann. Phys. (Paris) 28, 273(1922).
[6] P.C.Frank, Disc. Faraday Soc. 25, 1 (1958).
[7] T.holstein, I. Primakoff, Phys. Rev. 58, 1098 (1940).
[8] L.Van Hove, Hhys. Rev. 95, 249 (1954).
[9] Yu.A.Izyumov, Usp.Fiz. Nauk 80, 41(1963), (in Russian).
[10] P.G.de Gennes, Solid State Commun. 1 , 132(1963); M.Tokunaga, Progr.teor.Phys. (Kyoto) 36, 857(1966); S.Stamenkovic. J. Low Temp. Phys. 9, $475(1972)$.
[11] :. Schwinger, E.Teiler, Phys.Rev. 52, 286(1937).
[12] J.villain, S.Stamenkovic, Phys.Stat.Sol. 15, 585(1966).
[13] S.Stamenkovic, L.Novakovic, Phys.Sta亡.Sol. 41, 135 (1970).
[14] L.Novakovic, J. Phys.Chem. Solids, 31, 431 (1970).
[15] L.Novakovie, S.Stamenkovik, A.Vlahov, J.Phys.Chem.Solids, 32, 487(1971).

> Received by Publishing Department on May 24, 1974 .

[^0]: - On leave of absence from the Boris Kidrič Institute of Nuclear Sciences, Belgrade, Yugoslavia.

[^1]: To effective dipoles $d_{1}=2 e \vec{k}_{o 1}$ one makes correspond the pseudn-spin
 $\vec{S}_{1}=$ ort \vec{R}_{d}, such that $d_{0} \dot{S}_{1}\left(d_{0}=2 e R_{0}\right)$.

[^2]: In $/ 1 /$, the numerical values are chosen for para-azoxyanisole, as a typical nematic liquid czystal.

[^3]: The the condition $2 L_{q}<1$ is violated, one has to multiply the incoherent scattering intansity by the factor $1 / 2$.
 **At critical temperatures $\cos ^{2} p \sim 0 / 1 /$. As a consequence, it comes out, from the Hamiltonian (l), that, with a good accuracy, one can apply such a procedure.

