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I. INTRODUCTION 

Recently, Novakovic" ar.d Shukla /1/ have presented a new approach 
to neinatic liquid crystals by exploring the pseudo-spin formalism. Also 
several neutron experiments were carried out on these types of liquids 
/2-4/. Therefore, there is a need to develop a model-scattering theo­
ry which would be invoked to verify the consistency of the proposed 
pseudo-spin Hamiltonian with the existing observations by neutron tech­
niques. 

In this paper we present a method for an explicit evaluation of 
the angular cross section for the elastic neutron scattering by nema-
tic liquids. To do this, it is necessary to quote briefly their phy­
sical nature in addition to the pseudo-spin model and its theoretical 
consequences /1/. 

h£ it is well known /5,6/, in distinction from the smectic li­
quid crystals, in nematic and cholesteric ones the molecules are not 
confined in layers but are capable of random orientations which are 
more or less continuous throughout the liquid. Furthermore, nematic 
liquids possess certain invariance under reflections, while this is 
not the case with the cholestei'с liquids. 

II. THE PSEUDO-SPIN HAMILTONIAN 

Assuming that 2S + 1 (S = b/2; b = 0.1, ) orientations of an 

effective electrical dipole. d\ = 2 e R
0i* 2li* oi b e i n 9 t h e distance bet­

ween effective charges e) inside of each long elongated rod-like mo­
lecule, are described by deviations of the S. pseudo-spin components 
(i,j= 1,...N label the molecular sites) , the proposed Hamiltonian 
of the system is /1/ 

To effective dipoles d\ == 2e# . one makes correspond the pseudo-spin 
Si = ort%, such that a ^ d ^ (d 0=2eR o ). 
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2S . 
H = - T I V S i x > - £ J,, S. S . (1) 

Here it. are quantum parameters related to a transfer energy of 
dipoles, while J., = J(jr|), r = • r, - r. j, are coupling parame-
ters related to the intermolecular {namely interdlpole) potential, 
as a continuously varying function for a fluid. The above Hamil-
tonian, being thus very general, was simplified a bit further as­
suming that all dipoles have only 3 possible orientations (S = 1). 
However, the treatment and the obtained res»"alts are essentially iden­
tical for general S. 

The further procedure, whicn is used also hereafter, consis­
ted in a rotation of the pseudo-spin system through an angle to- Then 
the pseudo-spin raising (lowering) operators S:*- = S. + isY wert? in­
troduced „assuming their boaonlc representation /7/. After this, 
going over to the Fourier transformed bosons, performing the stan­
dard Boyolubov's diagonalization and assuming the Lennard-Jones 
intermolecular potential, the collective excitation frequency was 
obtained. Sach a frequency was analysed around the origin q = 0 and in 
the neighbourhood of the second maximum in the Fourier transformed 
intermolecular potential q . wherefrom a zero-sound velocity and a 
rotonic mass were estimated. 

III. GENERAL EXPRESSION FOR ELASTTC NEUTRON SCATTERING 

The elastic scattering of slow neutrons by nematic liquid 
crystals can be described with high accuracy by a pure nuclear In­
teract ion, while the other ones can be discarded as being the ef­
fects of a considerably less order of magnitude. Actually, for an 
asymmetric effective dipole (i.e. rotator, defined later on in Sec. TV) 
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an interaction would exist between the neutron magnetic mo­
ment and a resulting magnetic moment generated by the rotation 
of a dipole proportional to 

tf„nse„i- i *sr c * n i iTs i <=7 + =fi*i' <2> 
P 1 2 

m is the proton mass and I - the neutron spin; у = - 1,93 is the 
neutron magnetic moment in nuclear Bohr magnetons ,and L=h(ort5xortp) 
is an effective orbital moment operator associated with a rotating 
dipole masses m. and nu, p being a dipole momentum.Since masses 
m l ~ m 2 a r e Pr°bably relatively large, such a magnetic scattering 
would result in a negligible effect. 

The elastic dj fferential cross section per unit solid angle 
for unpolarized neutrons can be expressed in the concise form /8,9/ 

„2 
do E Z « a . a. .» < e - i q R i r ( o ) e i q R j r Л " } > - (3) 
d" " {21.) V ij rr' i r 5r 

Here the bracket <<...>> stands for the average of the expectati­
on value of the enclosed operator, as well as for the average over 
the nuclear spin and effective orbital moments (dipoles) orientati­
ons, and the line above denotes the average over the initial neu­
tron spin orientations} m is the neutron mass, q=P~P* is the scat­
tering momentum transfer and p, p' are incoming and outgoing wave 

vectors of the neutron, respectively. The atoms along any rod-like 
molecule, as well as the two ends ot each effective dipole, are la­
belled by the index r ( l ^ r ^ n + 2 , n being the total number of 
atoms in the.molecule),and their position vectors are denoted by 
R, . The scattering amplitude of nuclei, i-г. scattering amplitudes 
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associated with effective dipole nuclear mass з, are a. = 
A. + B

i r { l n ?i r) (!*_ is the spin operator of the ir-th target, 
and A. and Б. are the corresponding nuclear constants). 

Let us now perform decomposition of the ir-th position vec­
tor 

R l r(t) = R ± + R r<t); (4) 

R. refers to the middle (gravity) point of the i-th rod-like mo-
lecule and R (t) is an instantaneous distance of the r-th atom, i.e. 
an instantaneous distance of one or the other dipole end, inside a 
molecule, with respect to its gravity point. 

These position vectors have not any correlation at an infi­
nite time-like distance/ so the correlator in (3) can be written 

« . - i i ^ l o V S S j ^ - ) , - e - ^ V V <e-i5V°>> <.iS*r-<->>. <5> 

As we deal with neutron scattering by effective dipoles inside 
long rod-like molecules, we shall use the adiabatic approximation. 
The correlators 

< e-i3\,(°> eiq£ j v<») e e-iq<V*j> < e-i$V°>> <e i 5 Sv ( a ,' > Ffr) (6) 

<y,v = 1,...n}, 
will, as a good approximation, determine only Bragg-like peaks, 
depicting an ordinary elastic scattering in liquids, i.e. a "back­
ground" to which the scattering on the "basic (dipole-like) mode1' 
would be superposed. The "pure" dipole correlators 

< e-tqR 1 ) ((o) el5S j 8('») > = e-iq(ft i-S j) | < e-iqK | <(0) > 12 { ? ) 

(H,B » n + 1, n + 2),• 
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and the "mixed" correlators between atoms and effective dipoles 

<e-i55lp(o) „iqS^M, = e,-i$<V Sj><e- 13V 0 )><e i4V°>>F<T> (8) 

will describe a characteristic elastic scattering by effective 
dipoles themselves, аз well as correlated with the atomic mot о 1, 
respectively. In the above expressions F(T)~ 1 is a thermal fac­
tor due to the internal degrees of freedom of the molecule. 

Actually, these two last correlators are concerned with the 
neutron scattering by "basic elementary excitations", the latter 
reflecting once more the collective atomic effect in addition to 
that manifested in the formation of an effective dipole(as a 
consequence of a specific atomic cooperation. 

Then from (3) one can write 

(Й(о) = iL (o) - the position vector of any 
dipole end, independent of У ) 

where 

2 2 
af°h = •••""? 2~ < A f > 2 < 4 n ° " - ^ - 5 - J [<A?>~<Af>2+ i<B f >I( I+ l ) ] 

f ( 2 * h 2 ) 2 £ f ( 2 „ n 2 ) 2 f f 4 f ' 
lf=1.2) J (10) 

S<q) - | t . ^ l * . » # . (11) 
vi (и) 
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S(q)-structural factor of the molecule, 2|L| being the molecular 
length; <A-> =(E А с ) - , с being the concentration of atoms 

s 
(isotopes), i.e.jof effective dipoles, for which A. - A . The 
index "1" is referred to the "pure" scattering by dipoles, pro­
vided that a possible estimation of a corresponding scattering 
amplitudes v.'ill be outlined hereafter, when model description 
of dipoles will be closely adjusted; the index "2" is related to 
the "mixed" scattering events, when dipoles correlate with atoms. 

IV. MODEL DESCRIPTION OF THE EFFECTIVE DIPOLE 
AND PSEUDO-SPIN FORMFACTORS 

To explore the pseudo-spin formalism for the explicit eva­
luation of the angular elastic cross section (9), it is necessary 
to find an equivalent correlator between pseudo-spins /1C-12/. 
Since the effective dipoles have 3 discrete orientations (res­
triction to the case of S=l), one assumes that their correspon­
ding states can be desribed by a set of real trial wave functions 
for every dipole 

| x> = -±- 6 1 / 2 ( R - R O ) { - £_ [Y u<e,4S - У 1_ 1(в,Ф)]) 
Ro 

|y> =•"-—- 6 1 / 2{R-R 0)[^j[Y 1 1(6^) - Y ^ O , * ) ] } (12) 

| z> = 1 6 1 / 2(R-R )Y, n <6,ф). 
% 

The radial part of,, the above wave function ia assumed according 
to Schwinger /11/ for a rigid rotator, while the spherical fun­
ctions arp 
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2 Я i (асоБб' 
(13) 

In such a way we also associate to each ej-fectivu dipole d.=d s. J c l о i 
a corresponding rotator with an effective orbital mor 'nt operator 
L. = nSr (S: ~ S.; |£'| = |S| = i ) f so that it holds 

|! ) o, .*!|'"t31 , ( t. : , ,. . x.y f„, ti4, 

(_!' = (m, + m2)«i is the inertia-moment of the rocatcr) , 
Restricting ourselves to the case of a symmetric rotator (p,=ra2--n) , 
it is obvious that the above equation (I A) is equivalent to the 
equation for a free rotating dipol. with 3 discrete orientations 
(free pseudo-spin or "dipolar-like" spin) 

32|a> = d* £ U +1)/ do = 2eR Q . (15) 

Hence, in the proposed model figwre parameters of the effective 
dipole such as m, e and R , although for the final scattering cross 
section, as we sh;"!ll see later, only the estimation of dipole ma­
gnitude, i.e. the estimation of its effective length, is needed 
along with the assumptions for the ratios e/m, m/M to be cf the 
order e /2m , н /L , respectively, M being the molecular ma?s. 
Accordinyly, for effective nuclear cons-Lants, associated with 
nuclear dipole mass, one can assume 



If one makes correspond the spin-wave functions(namely those 
of pseurto-spin) [x^ (for S = 1) to the wave functions | a> , then 
one can make correspond the pseudo-spin-like operator to the exponen­
tial one in (9). This comes from equality of the corresponding 
matrix elements of these two operators in their respective bases, 
so one postulates. 

{I is the unit [3x3] matrix), (17) 

where the above formfactors are determined from the conditions 

<a|e i q R|B> = <xa|f<q,£)|xB> = M
a e ( 3 > . (18) 

Applying now the well known expansion 

e i q R = 4 " \ i i3 ),(qR>v; c3 0 )v i i n ( ? o ) ( 5 o = ort3, ? = ortS , (i9) 

and the formula for the product of two spherical functions 

21Ц4-1) (2l,+l) (21 +1) 1/2 
* Л "2 т2 Jtm 4it 

ym m 2 m / \o о о «1 i« л л # Y « - ™ ( e ' * * ' 

as well as the hermiticity and unltarity of the JM „ (q) [J matrix, 
one obtains 

to 



M x z ( S > = f j 2 ( q V s i n 2 e q a i n » q > M y J ( q > = - j i 2 (qR 0 ) s i n 2 < > q c o s ;>q ( 

M * y ( 3 > = | 3 2 < Ч И 0 ) з 1 п ' в ( ] 3 1 п 2 ф [ ! M 2 Z ( 5 ) = J 0 ( q R 0 l + i 2 l q H 0 ) ( l - 3 c o s 2 e q ) 

, . 2 j (21} 
Mxxl4) = ^ 2 < 4 R o ' L 3 ( s l n e q c o s 2 * q + c o s e<j> - l ] 

M y y (5) = - ^ 2 < д к 0 Ф ( я 1 п 2 в < 1 С 0 5 2 ф

д - cos 2 ?^) + l ] - j 0 ( q R 0 ) . 

an o r d i n a r y x , y , z s p a c e . 

For t h e c l a i m i n g f o r m f a c t o r s t h e n one f i n d s 

A q = C M

Z Z <5> - 2M (qf j = J 0 ( q R 0 > + 3 2 ( q R 0 ) [ l - 3 { c o s 2 9 + s i n 2 6 s i n 2 4 ) ] , 
q L zz ^ xy ^ - 1 J o ^ о J2 ^ о 1- q q T q • 

B q = 72 b " y z ( q ) + « X Z ( 4 ) J = 2 7 2 - J 2 ( q E 0 ) s i n 2 6 q ( S i n * q - c r ;ф д ) , 

C q = 172 fry («) " M x z < 5 0 = 1 ^ 2 ( Ч Н 0 ) 8 1 п 2 в ч ( 6 1 п ф д + с о В ф д ) / 

D q = I СМ Х Х '5) " Myj,<q)] = | j 2 ( q R 0 ) s i n 2 e q c o s 2 . > q , (22) 

E q = 2 М х у ( Ч > = З з 2 ( 9 Н 0 ) з 1 п 2 8 д в 1 п 2 ф < з , 

F q = k t " x x < 3 ) + « y y ( 5 ) J " A q ~ К = ! b ' 4 R 0 ) [ 3 ( c o S

2 e q - 2 s i n 2 6 q s i n 2 t q 

- 1] " 2 J 0 ( q R 0 ) , 

q ч q 

V. FINAL EXPRESSIOHS 

To test the pseudo-spin model for nematic liquids ,it is of 

In /1/.the numerical values are chosen for para-azoxyanisole as 
a typical nematic liquid czystal. 



interest to calculate the neutron elastic cross section in the 
zero-sound (q - 0) and the rotonic (c, - q ) parts of the fre­
quency spectrum /1/ both at temperature region T- 0 and at T-T = 
2 

j-~ |J ( q )| (q_ is the first minimum in the Fourier transform of 
the intei-molecular potential /I/) . 

Kow, with the aid of (8), (17) and (22), the angular elas­
tic cross sections around T- 0 and T~ T are as follows 

/do, _ г-СОп(2тг) N r xt+ j u v Inci . EdW }T~o " l-al V — * 5Cq-x)+Noz J о т 
4 vvv+v v+v sx> 2 +v v^vv* v>2 

(23! 

+ [0cohi2£iiN 6 ( 5 . * ) + N incj . 4 n «injtl) p ( T ) . 
от г (tq) 

( A q + B q < S x > + D q < S z > 4 . E q < S ) i > 2

+ F q < S i , > 2

+ H q < S ; c > < S z > ) ; 

ido , _ r-OOh(2Ti) N r ,,± ±,.„ inoi . 
'Зп'т-Т L»! —v J Mq-tl+Nc^ J 

с о т 

< [ A q

2 + J V q ' : S x > + 2 * q V S * > + ( B q 2 + 2 A q E q ) < V 2 + 2 ' A q V B q D q > ' 

• < S x > e S z > + 2 B q E q < S x > 3

+ 2 ( B q H q + D q E q ) < S x > 2 < S 2 > + E q

2 < S x > ' 1 

+ 2 E q V S * > 3 < V J ( 2 4 ) 

+ [ooohjawifa 6 , 5 . t ) + N 4 n o ] • 4nSiBilal P ( T ) . 
о T l (tq) 
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In the above two express i ons Wf havo the coherent, and 
incoherent parts. It is obvious that the former describes only 
the shapes of peculiar Bragg peaks at a given reciprocal lat­
tice-like point q = т . But the incoherent part could give in­
formation about zero-sound and rotonic scattering in both tempe­
rature regions. Thus, it remains to evaluate <S > and <S "> 

around these temperatures. Usinq a standard procedure for zero 
temperatures /12,13/ and combining a selfconsistent field ap­
proximation with an expansion for the thermodynamical functions 

2 cos to and H /1,14,15/ in powers of (T-T ) (a second-order phase ** transition is assumed) , one finds: 
a) At T- 0: 

<S z> ? = cos«p (S-<b|b i> T) , 
(25) 

<S x> T = sirtf» (S-<b+b.>T) , 

where sin» = I2./2S (J-ft?) , coming from the condition for the system 
to achieve a ground state at T=0 /1/. 

Assuming, as a good approximation, for small q the disper­
sion law in the form 

- scoap /J(M 2I, M l = i — - i - r , (26) 
{J-sl2)cos in 

(a. being estimated in /1/), 
* If the condition 2Lq < 1 is violated, one has to multiply the 
incoherent scattering Intensity by the factor 1/2. 
**At critical temperatures cos2(p-0 /1/. As a consequence, it comes 
out, from the Hamiltonian (1), that, with a good accuracy, one can 
apply such a procedure. 

is 



one obtains 

4 V T = ~2 ГО/2) ££>""*,,, l̂ T) , (27) 

Г(3/2) is the gamma-function and 

Since the Fourier transformed Lennard-Jones potential 
-*• ? •* 12 3 

V(q) = S N J{q, (N = 2-10 cm ) /1/ has the main contribution 
as being integrating over q" from zero to approximatly q - 4 B rjii/2 
the above obtained expressions should be applied for the elastic 
scattering around q 'q , coo. 
bl At T - T : С 

By c o n v e n i e n t d e f i n i t i o n s 

H = П + 2 J V S >, H = 2J<S > i H = (И* + u l ) 1 / 2 , (28) "1 T '"2^x 

and with the expansions /1,15/ 

, X(T-T ), T>T z_ / с с 

J=£J i ; i 

COS U> =( 
2X I T-T I , T<T (29) 

H [l + X|T-T-I*...], T<T„ 
H = < X C C , (30) 

on the basis of the selfconsistent equation 

<SS = s iT* №<-ЯГф->, (31) 
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one obtains 

К, T<T 
<S > ={ T-T (32) 

X K-SQ j , T>T , 
2*B TC 

1/2 
Q / 2X|T-T | ,T<T К « tl./2(J-^ ) 

<s > ={ с , л а[ ?,i, (33) 

The constant X, which was on. у required earlier /1/ to have 
the dimension T , can be determined by a slight adaptation from 
Ref. /14/, wherewith it follows 

X = L- ЭН| = 2SJ(l-z2) 
н„ ат-т-т. Т о & к в Т с - а М ( 1 - , ' 0 ' 

where z = H.^/2kBTc. 

To conclude, a new approach to neutron scattering by liquid 
crystals, especially of nematic type, is presented. The obtained 
results provide the possibility to reproduce the shapes of the co­
herent and incoherent peaks in elastic neutron scattering spectra 
in the acoustic {q = 0) and the rotor.lc (q ~ q ) parts of the col­
lective excitations, both at temperature regions T * О and at T - T 
Since the cross sections are expressed in terms of parameters Яд, 
П ?, J, a,, X and q , the fitting to experiments could give the 
possibility to verify the validity of the pseudo-spin model and the 
theoretical estimations of the parameters in it. At the same time, 
one could obtain closer estimations of effective dipole parameters, 
which would be of basic interest. Nevertheless, one could expect much 
more information from inelastic neutron scattering spectra, which can 

be, in principle, described by the same pseudo-^pin formalism and the 
here proposed method. 
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