





1. Introduction

A number 6f authorsl) have treated the problem of a few nu-
cleons outside a closed shell. 'In most of these célculatibns,
shell model wave functions were used, in a régtriéted senée of
the words. kThe Hamiltonian of these nucleons Qas di&idéd into
aishelilmodel part} describing, hopefui;y, £he interactions 6f
the pérticles with the closed shell core, together with the ki-
netic tefms,and a residual part describing the inte;aptipns be-
tweeﬁ the particles;'

Energles and wave fuﬂctions-are now found by diagonalizing -
the total Hamiitonian iﬁ a basis of bound‘staté eigensolutionsv
of the shell model gart.

Inclusion of coré excitatién terms in the above Hamiltonianr
presents. a number of problems, but we shall here neélect thesé
and concentrate on anothervtype of deficiency‘of the above ap-
proach. ‘What we have in mind is that the products ofabound
single particle state wave functions d§'n0£ form a set, which
is closed'with resbéct to operation éf the residuai interac;
.tions. ’ . |

One very consistent.attempt‘to overcome this difficulty ygé‘

2)

made by Ibarra and Bayman who calgulaﬁed 0% states of

42Ca and 58Ni, including a part of the states of the conti-
nuous spectrum of the shell model Hamiltonian in the basis, »
A main result of this work was, that in these cases the

energies of the states were not very much shifted by including

the continuum (~ 0.15 MeV), but the cross‘section'of one- and



two-particle transfer were changed considerably. This is in _
agreement with thevfact, that the restricted shell model basis
is particularly poor in the surface region of the nucleus,

whereas the main contributions to nucleon transfer amplitudes

e

come just from that region.

The method of Ibarra and Bayman consists of div1ding the
contlnuum 1nto energy intervals and treating the wave function f
of each interval as being a dlscrete state with energy, say, ]
as the mean value in the interval These, together with the
bound states, are then used as basis of dlagonallzation.

This procedure has a number of dlsadvantages. First, it is

very tedlous. Continuum énergies up to about 300 MeV and inter-

_vals of the order of magnitude 10 MeV seemed to be necessary
- to obtaln sufficlently accurate solutions in the desired. re-
gion of space., This means that already when ' states, where one
particle is in the contlnuum, are 1ncluded the rank of the ma-

: trlces to be dlagonalized is several hundreds.

‘ From thlu, also another disadvantage is clear, namely that
it is practlcally ‘excluded to take such state into account,
where both particles are in the continuum.

- In a 1ater workza), Ibarra has included also such states,v
however in a perturbative way only.

The problem of getting a complete bas1s, convenient for nu-
clear problems, was met in other connections3? and solved by
introduclng the Sturmian functions. » k

It seems that also in the present context these functions

ke,

represent a practical tool, which will permlt us to.overcome.
the difflcultles mentioned in the descrlptlon of the work of

Ibarra and Bayman.

2. Theory

With the method suggested below, calculations of eigen?
states for systems with a number of particles outside a closed
shell seem within reach. Since our:calculations are restrict-
ed to the two particle case, we shall, however, write. formu-
lae only.for this, generalizations ‘to more particles being
straightforward. .

We shall furthermore restrict ourselves to the case that
the interactions between the particles andlthe closed shell
are described by a potential, and the core states are pure

shell model states of the same potential. -

our two-particle states are solutions of the Schrddinger

equation

[‘gfi (A.+a,_ ) - V(«., )'+V(~,z) +\\.’,(l~;,-$_.;_:j-‘5]§:o "

, E

with the condltion of being antisymmetrlc in particles 1, 2

as well as with respect to the partlcles of the core states.
Neglecting for a moment the latter conditlons, we try to

solve (1) by an expan51on
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The indices i

V(z,:)-€.]Q (o .,a

1° i2 correspond to the sxngle—particle quantum
numbers nfj.

The energies E

El' o may here in principle be chosen free-
ly, since in any case the functions ¢i form a set whieh is
complete in lzz—snace. The choice of E1,2 may then be_guid-
ed by the deSire for a good description of any particular com-
ponent of the wave function, i.e. good convergence of (2),15
some particular pert of configuration space. Since in prac-
‘tice one always uses a truncated basis, such a convergence is
’ important. 7 ‘

In Fhevpresent case, we are looking for comparatively small
deviations from the simple bound state shell model wave func-
tions. This eeems clear from the results of ref.2) and a pos-

sible choice is therefore that for each value of &, 3.

E,=E. j-'Eei.,”’ (42)
“where Elj is determined in such a way that when V in (3)
is the shiell model potential v, ‘which gives the best fit to
'the energies of 42Ca,'xnlj = 1, where nlj are the quentum
numbers’of the four unoccupied states in '41Ca. This means
that some components in (2)} which can be assumed to be the
main components, are~comp1e£ely identicaldto shell modeijcoﬁ-
ponents., T T o R
Such a choice.will in general be possible in spherical nu4

clei, where unoccupled hound 51ngle partlcle states, differ-

e L
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ing only in n, do not occur. The choice'of E1 2 for such

states, where %, j is not represented among the shell model

states, is of course still left open, it was here chosen ac-

cording to the next suggestion.
Another possible choice of energies, which is commonly used

when two- particle form factors are calculated, is

= o .
= = 5 4b
E.=E. =75 _ (4b)
e e .42
where E. is the two-particle binding energy in , ""Ca.

The third possibility is to take E1 as the binding energy

of some state in 41

L

- Ry . ' i (4c)
E..=- = - E;‘ - PR B

This choice gives the most realistic form factors for one-
particle transfer. fFor‘two-particle:transfer, calculations
were made with all threevchoices.‘ wirh the presentrtrunca-
tion, they lead to cross sections, which differ by less than
5%. . ‘

- When nothing else is mentioned, the results given in. tables
and figures correspond to the choice (4c). :

For the functione '¢i we have the drthogonality, which can

also be ueed for normalizdtion

S (P‘\/(PJ AT =_%;J', . 'v (s



Inserting (2) in (1), multiplying from left with

o5 (r,)¢i (r2)V(r;)V(r,) and using (3), (4) and (5), we ob-

tain, after integration over ;. and I,
- ;E C. . - T N L e
— Ly fa_ ut\uz) i L:.' C;_" iy (E "E'.." ’Ei.,:) —O,(s)

where
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The index 1, still stands for n £im but we are in the
following restricting ourselves to the interesting case of 0+

' states. Here; the :expansion (2) reduces to

C@(\z) Z. A, g [@md (» )W.,zg 1-‘)]#8)

J’ "’h'h'l.

with the antisymmetr iri . = .
: y. Yy requiring Al]n;nz Al]nznl’

From equations (6), (7) E and A are found by diagona-

lizing the unsymmetric matrix

L@:'Q(E;.H'E\, )d-,_._ ;

iy
Still, however, we‘are faced with the problem of obtaining

i )
a wave function which is antisymmetric in the coordinates of
all particles.

In conventional'shell model calculations, this problem is

solved by assuming that the particles in closed shells are”

i
‘
2
i

i

occupying single.particle states corresponding to the same .
potential as that of the unfilled shell. Then the space in
which the two-particle wave function is expanded is’easily
chosen to be‘orthogonal”to that of. the closed shellstpand the
Pauli principle’is automatically taken 1nto account.

In such a procedure the basic symmetry of the Hamlltonian
for exchange of-all particles is obviously neglected How-
ever, just for the closed shell particles, “the neglect‘oﬁ re-
sidual interactions may be a good approximation in:this con-
nection, and we shall do = the same here.

So in addition to equations(6), we shall require that our-
wave functions are orthogonal to the occupied shell-model
states,—again to be calculated with the potential V.,

Denoting the occupied states V;, Wz'-z---.ln' /the ortho-

gonality in question means 2N"equations - !

§ & Coin) Va2 o4 = S@Cz.;}:;) t’a(@m;o'

' (9)

When symmetries are taken into account, the number of equations

- reduces; for the general case we have, however, 1ntroducinq

(2) in. (9)

cC. .. |
Z-C QN> @ (0 =0, am
Lq L Lt ’
(N equations),

Zf Ci ¢y, "1-<?‘1} > ¢l—| (11) = 0

R PRI (10b)

(N equations)rtv



Multiplying (10a) with ¢i (r2)V{r.) "and integrating over

r2 we obtain the equations

Z Cw‘- C@, WY

correspondingly we get from (10b)

;Z,C—mw %, >=0.

(11la)

(11b)

. Now, in practical calculations, the.basis {¢,} must of
. i

course always be truncated. If we include M values of 1,

and 1i:, (6) represents'kM2 equations, which are to be solved

with the 2 x N x M- subsidiary conditions (11). (But both

contain fewer eguations, when symmetries are taken into ac-

)

count) .

A very convenient tool for this is the following 4).

us, for clarity, Introduce a briefer,notétion in (6)

Z: Hpg oy ~€cp=0 ,

Let

{6)

Correspoﬂdingly any of the equations- (11) may be'writteh

Ef:i s -
chq "o N
q
Now (6%) is replaced by -
- . : .
Z:("'n*t”r‘i)c?:": <p
0 :
where

LI s s
HH = 1‘r' L‘ﬁ

o

(11

x(6+a)

(12)

and we find the eigenvalues and eigenvectors of (6+a) fo£

t + ©. One of these eigenvalues corresponds to tfl‘ and will
go to infinity with .t. The other éigenvaiues aod eigenvec-:
tors in this limit are solutions of our problem (6+) with the
conditions (11+). ‘

If a number of such conditions are introduced, M' must of

course be-replaced by
A\ $ /S -
H . = : Lk. :
Pa :E;: Lfr I - (13)

Returning to our brevious notation, ‘we easily see that

H\\.‘,L.”l-, (<CP" ><\r (P 78‘-;‘*— : (.14)j
+ <qﬂal,w,\7 & 6@7 5;5;\) )

Table 1.shows the dependence of the A's ‘oﬁ t for the case

42

treated below (" “Ca). In this case, .the ocqupiod,states inr‘

question are lpl/2 and _ lp3/2; Apart' from the convergence

“with t the table shows that the coeffic1ents of the corre-

sponding Sturmlan wave functlons (lpl/2 and 1p3/2) becomel
very small in the orthogonalized'state;' This ;s of course due
to the._great similafity between shell rodel and Stufmian wavé;
functions Qith the same quantum numbers, and it shows that a
ver§ good approximation to the orthogonalization is obtained‘
by simply leaving out the Sturmian states correspondiog to the

occupied ones in the expansion (2).

-



~ 7 . o ) . 3. Calculation of wave functions

Since we were interested in.comparing our. results to those

of .Ibarra and Bayman?? Qé have been sticking to the potential

g s

Table 1 .
) and .interaction used in that reference, that is-
Energy and configuration mixing coefficients as functions of the . . V4 ' ( L . ondi .
parameter t(see text). Y - Va %"‘5—5 -+ Sf-- ud £ ‘(‘"’"‘), T -
§ ) (15)
without 1pl/2 Vie ‘V J-V‘p C" l’*—- ~l /0"'), .
t=1 |t=10 |t=102 |t=103 [t=10% |ana 1p /2 R*"—‘Mf»’ 0.6 € fm s .
& - - 3/2 The integrals in (7) fall in two parts. The first! conr
. . |-19.200]|-19.942{-20.367{-20. - - - ' .
configuration 20.199{-20.198)-20.194 : taining only the spherical potentials viry) . and  V(r:) re-
(191/2) -.0262 {~.0359 .0238.} .0019 | .0019 : . - duces to a simple product of integrals over radial wave func-
0+ - . . .
(1p1/22p1/2) -.0170 i-.0461 .000 -.0014 |-.0014 tions. .The.second p;:t, containing V12 was’calculatedlby
9+ ’ ' i R o B the method of Bayhan and Kallios), modified by the presence’
(2Py /51Py /20 |- 0159 |-.0142 [-.0091 |-.0129 |-.0129 ' - 6) L o
- ) B of the factor. V|V, "', and taking -into account not only
2 : o ’ ’ '
(2p] ,,) .0264 .0265 .0343 .0305 .0305 .0309 . ‘states, but also other components of the relative motion.
2 0+ . -
(Ip3,)." . |=.0570 |-.0696 | .0558 |..0030 | .0030 '
-0+ ' " 40 42 + 3 ot
1 2 e ’ . Ca(t ca(0; (g.s.) and O
(1P3,22P3/2) |-.0091 [-.0106 [-.0033 |-.0034 |-.0034 3a “catt,p) "cald; (9-s.) 3 ‘
: ; .0+ . . ' - ' : 4 I
J(2p3/21p3/2) -.0089 [-.0098 .0072 |-.0008 {-.0008 . The waverfunction§ of calg. s) were calculated with
2 .0+ ) . : - E; = E; = = 9.9 Mev for the basis functions. This is half
(2p3,,) .0707 | .0699 | .0884 | .0799 | .0798 | .0794 o - — . 42 L ,
) d+ . _ - R - . } the separation energy of two neutrons in *“ca, 'so when we’
1£2 ) . {..0689 | .0626 | ..084 . B s
5/2 : ’ 3 0764 -0764 -0762 - . : limit our basis to the guantum numbers of the shell model
2,0+ : : . : :
1£55.) .9935 | ,9928 | .9896 -| . : . ' > usual’
7/2 9930 .993 .993 . » states (lfl/2’ 1f5/2, 2p3/2, 2p1/2) we obtain the usual WDP
B i ) form factor, however with the modification that, in the usual
) = - WDP{'the'coefficienté of the different compdnents are taken
7 from shell model calculatioﬁé, whereas hére théy result’from'
3 a consistent diagonalization in the Sturmian basis.
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These two sets of coefficients which therefore‘in principle
are different are compared in table 2. It is seen that the
difference is rather small, excebt for 'the smallest\components.
This is, however, a somewhat special'feature of the type ofi
state under consideration and shéuld not be expected for other |,

nuclel or at other energiest
Eigenvalues and coefficients fn a more complete Sturmian:
basis for 42Ca .are given in table 3. The parameters'mere_hr
chosen as (2) V, = - 54.63 MeV, V3, = ~ 43.5 MeV, o = 1.5 .
In,the table only the larger A~ coefficiénts are given.
It is seen that, as in the previous ealculations 2), 7)
each state contains a dominating shell model component, and
‘small'admixtures of other components. Among those admintures,'
again, the bound states are dominatin;, but other components
are not negligible.
V The components corresponding to two particles in the con-
tinuum.are seen to be of comparahle size as those where one
particle is occupying a bound state. .-This is not unexpected
from the structure of \U, and the neglect of such components
in ref 2) seems to represent a relatively crude approxima-’
tion.k A‘ A )

The smallness of all admlxtures to.the shell model states,
seen in these calculations, is of course a speclal feature of
the’ chosen configuration and residual lnteraction, and could not
be expected in other nuclei oriin excited;states.

The present method avoids the problems of ref. 2), concern-

Do S

o e A e g R e R

e e

x

Iable 2 : -~

Configuratlon ~ mixing amplitudes in 42Ca(g.s.)’
configuration (lf ) (lf ) (2P2 ’)0+ (2P2 l
. /2 5/2 3/2 172’
ordinary shell ;
model : ... 0.989 0.083 0.102 ° '0.041
wbp in Sturmian - B
method 0.993 0.076 0.079 0.031

ing the energy step length and total energy interval. There
is then, however, ‘a question of the number of states in the

sturmian basis.

It was found; as seen from table 3 that a good convergence
was obtained for‘eigenvalues as well as eigenfunctions already
when . the basxs 1nc1uded functions up to’ 'h =2 - 3,

The following calculatlons are made w1th the 3.

' variant for the ch01ce of the energies,~i.e.- E, = Bind}4lCa),

. a1 R ) 7
E; = E - Ep (0 "ca). o

Form factors of” two-nucleon transfer can be‘calculated only
when definite assumbtions concerning reaction mechanisms and
structure of the pro;ectlle are made.

We shall here llmit ourselves to the model of a cluster



Table 3

e o 42 .
Configuration mixing amplitudes in Ca ( ges:) 1n

Sturmian basiq T

' N : . - 0.
configuration (389  (2p))™ (2% - Op*

A ynn, 0.004 . .0.491 .0132 .0062

2,0+
(ZP%)O+ (293/23P3/2)0+(3P3/2?)0+ (2d3/2 ) +

1170 0286 .0123 .0058

- o]
(2d5/g)0+ (1f5/§ )0+ (}f5/22f5/2) + (2f5/§)0+

. 0041 . 0846 0423 .0121

‘ O+ (o 290+
QD% Qg )Wy 530" (21/2)

«9414 ' «2454 #1515 - +0806

s s S S, S—— St

' 240 2 0+
(2,532, 0% (329,507 - gy, (ggyp” )

. 0441 40289 . T « 0441 «0282

' 240+ 250+
(Ahg,5%) (1hy4 /5"
.0101 0481 -
i6

transfer Qrohght abéﬁt by a zeré rénée force bétweenzﬁhé éf;-
ton‘and the center of méss of the two trénsferred heutrpns.vr

It was shownAby Baymana)that;vat least as angular diétfibu-‘
tions are concerned, théré 1s‘littlévdiffefénce-betWeen the
resultﬁ‘dbtained from~£his‘mode1; and those of much more elab- -
drate célculations; using realistic 1ntefactions-(but still
considering the transfer as béing a one step process).

In this médel‘the.form'faétor-isvnow obtained as the 6ve?—'
lap of the two-particle wéve function ¢(r1, r2) with the o
-function describing the relative motion of.the two ‘neutrons
in the‘triﬁon. . » .

For the internal tfiéz; wave fuﬁction we used the conQen;
tional Gaussian form; : fk

Q= (ﬂ%%“ )J‘&}o (-3 el iy mm1*))

Tl e

(16)

2

with « = 0.24 fr° 1ike in ref. 2).

The overlap integral was calculated by the modified method

of Bayman and Kallioe).' The two-particle form factor for

42Ca (p,t) is shown in figwi,;where} fdr'comparisén{‘also the
results of WDP and those obtained By using uﬁuai.shell model

wave function with admixture coefficients from tablé 1 are

.shown.

'iIt is seen that the extra node, obtained in the calcula-
tions of Ibarra and Bayman is absent in the present form factor.
It was explained by. Ibarra and Bayman as an effect of admix- -

tures of the type (2p3/2 3p3/2) + in the wave function. ‘It
. . 0 - : .
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was also argued by these authors that admixtures of the type 3b 160(£‘p)180(0+ (g.s.) and'o;)*
. . S - . N - - 1 O 27

0 .
(393/2 3p3/2) , omitted in their calculations, would likely S el : NI ! 16 .7
- : . : . : In figs. 4,5 are shown the cross sections of o(t,p)
be too. small to wipe out this structure again. The conclusion 18 + : T4 P < -
- . 0(01) (g.s) and 02(3.6 MeV), calculated with different ap-
of the present calculation seems to be that these latter admix— D : ’ o ’ :
proximations.

tures are nevertheless large enough to give such an.effect. } K ) - R o
’ ' ) The parameters of the optical potential were taken from 11),

The cross sections. for 40Ca {t,p} leading to the ground.
. - and the found state parameters were V = - 53 63 MeV,
state and the 0: state at 5.85 MeV of. 42Ca calculated with ‘42 .
T : V?z = = 32 Mev, c = 1.8 and else the same as in the ““Ca
the different form factors are shown in figs.2, 3 *. It is ’ ‘ k
case.

seen again .that angular distributions are not very sensitive ' ]
: ) . . The results are surprlsingly similar to those from Ca.

to the admixtures in question, but that the absolute cross sec- Co 0(02)
- : . E e The ratia comes out to be v 1, whereas the experi-
tions are sensitive. ‘ ’ L 0(0‘) 12) ) :
c(Oj) . ) k mental ratio is only v 0.03 so in this case the spec-
From the experimental data the ratio ——fp— " 1, whereas ) . :
) ag(01) . . troscoplc amplitude in question should be v 0.2.

in our calculation we obtain ~ 9, compared to ~ 7 in WDP ,

and 5.3 in a pure shell model. It is therefore likely that the o
. . ) : Cen ] . - : ] 4. Conclusions
(03) state and maybe also (OT) are of a more complicated na- ' '

ture than the one calculated here, presumably as a result of It was.shown that the Sturmian basis provides a good method
coupiing to core excitations of the deformed type 9). The i ' for finding the eheréies and eigenstates of the system of two
amplitude of the.configuration we have‘useq here (spectroscopic . nucleons out51de an inert core with any desired accuracy.
amplitude) could only be = o,j, o . The question aof accuracy can, however, not: be phrased in an
Another choice of .the residual interaction might lead to " ‘unambiguous way, since different experiments,test,different
larger amplitudes of (lfj/zn f7/2) which in our calculatien » » components of the wave function. So, e.g.,AwaGé fuhctions
interferes destructively in the (0;)_ cross section. In this -_ - yhich give good agreement with the energy spectrum may still
case the spectroscopic amplitude might be larger. ) ’ he insufficient for ene—particle or two-particle transfer or
both. ‘

This ambiguity can, in the Sturmian approach, to some ex-—
- tent be matched with the ambiguity in choice of ba51s energy. :
+) The:optical parameters were taken as in ref. 2}.
If the energy af single partlcle states is chosen to corre-
spond to the calculated SLngle—particle separation energxes,
the convergence for all "r > R will be about as good as for
B . o r ¥ R, and this may be important in single particle transfer

~calculations.




In tne‘two-particle case there are, as mentioned. above,
some indications that, for projectile energies such as in cur-
rent use, the region of importance is that where both par;
ticles are 1n-tne neighbourhood of tne nuclear radids.“In‘
this region the basis which was used here seems to be suf-
flcient.4 l v » ‘ ‘

A number of questions concerning the reaotion mechanisms
of two-particle transfer are Stlll unsolved, and it would be
premature to claim that the present calculatlons could glve
complete predlctlons of cross sections. On the other hand,
realistic form factors are necessary for-any understanding of
the cross sections. k

In heavy ion transfer, the mechanism is altnouéh more com-
plicated presumably better understood than for 1light projec-
tiles{ In tnis case, ratio of experimental cross sections
with those obtained with conventional form factors are very
large, - 3 - 50‘ particularly for protonvl3). It seems
likely that just in this case, the inclusion of quasi—station-
ary states by the present method might lead to improvements.

The authors express their‘gratitude to R. Jaffe, -V, Bunakov
and H., Schulz for valuable suggestions and comments. .

One of the authors (J.B) is grateful to professor
V.G.Soloviev for»an invitation to stay at JINR (Dubna) where this
work was begun, another (F.A.G.) is grateful to professor Aage™
Bohr for an invitation to stay at the Niels Bohr Institute,

where this work was concluded.

Appendix

In the case of negligible interéction between the two par-
ticles, an analytical expression for the asymptotic form fac-
tor is obtained. For sinplleity only li==12 =0 .is considered.

,Apart from normalization consténts, this>asymptotie form
2 e YOS 1)
~e T t
. € ‘1-. Ty LTS R,_;_)- : “(AL1)
o 2 R : o . 3
zh_.(ku""}c’a.t') = E, ' o

In coordinates of center of mass and relative motion §i :

may be written-

G- er Z_ YR, m.Je)

-X.xzrzg

I..

(R) Y ..C8)

A‘.*' -2 ) I‘VL‘J'(J—) KMq'()‘\R) +_l()¢z.&) > 2?

wnere p and R and thevlength of the relatiye distance end
the center of mass veotor, respeotively, I and k are modi-
fied Bessel and Hankel functions. It is nere included in the
definition of the’asymptotic region that R ?~%.

The overlap 1ntegral'mentioned above now gives

G5 ap g enp2as NG “"‘)C'b

8 atCon)? eup (S )ZK..MCx, ‘) m(x R)

%, x, R I‘“t )(2,;4!)

(a.3)

’k_" l'Z.%



1f we sharpen the definition of the asymptotic region by

the requirement

., 4 Il
R> =2

@fi[ﬂi Eéﬁ_._ Gi+x)R]

.L I, R~ P

~ 2.;;7“

e SplGamcdR ], B

we get

From this expression, it should:be noted that if we compa;e two
components c; ¢1,c2 ¢2 with <1 v c, but different partitions
of the energy, the one where «; and »Kz'are\mosﬁ unegusl Qi}l
be dominating for large R values. ' .
Another extreme case, which leads to an analytic expression
for the asymptotis’form factor, is obtained when the interac~ -
tion betwéen the transferred particles is. strong enodgh to pro-
duce a bound state of/ﬁhe relative motion, and at the same time
the function with which ovérlap is taken is identicél to this
state. Then the form factor is a single Hankel function of X Rl
divided by VR. (%;K2==Ebind). Such a factor has actually been
used, but the interac?ion betwéen two neutroqs is so weak that
the actual form factor of this reaction mechanism, although con-
taining some correlations in p, must be>nearer to the first case.
The nﬁmber'of’nodes is seen, in both cases, to be limited,
so for very large R values the form factor is monotonous and
definite. In the weak interastion case, there seems, however,

to be no limit of how far out nodes may bé found.

Fig. 1

16" 4
N\
; Ca (t p) Ca 2 \e
162} \ =
E° = 585Mev )\
. N
\.
, '\\
. ‘ A \
| , \.
'63‘ - | 1 1 1 \

2 4 6 8 10

Form factors for Ca (t,p)Ca 42 dots: shell model,

dashed line' WDP, full curve: our results,

2 =>cl 1,.2, 3, 4, 5.




(arb. Units);

‘>d0'
- TdQ

10

10.2 ' ' ' l l l l lo-' T T T T T T T
. ) 4 o ‘ -~ )
= : . 40 : 42 ]
) Cu‘oz(t,‘p)~C0‘2(g.s.07) | : I\ Ca™ (t,p) Ca™ -
Er = 101 MeV I\ E = 101MeV
CE* = OMeV ' ' 7 E%*= 5.85MeV
Q = 11.35MeV - ‘ ' ‘ Q = 55MeV
) : ) . =21 . ‘ . :
10°}- - » —
0 _ )
- =
3
. g
S
- bla
16° \
\
(N I
v \"
V. \ v
_ “ I \ ;
! \
]66 2 1 1 1 b y o\, / 1 o i S 65 . S h\\’jl .
) - a . } I ] . 1 'l . A - " ‘» .
0 20 40 60 80 100 120 140 160 | - 70 20 40 60 80 100”120 140 160 -
Fig. 2 Cross section for Caqo(t,p)Cadz(g.s.). Dots: Shell : Co 40 42 ) :
) . ...Fig. 3 . Cross section for Ca”"(t,p)Ca “(5.85 MeV), notations
model,dashed line: WDP, full curve: our method. N - ' C . B ’
24 3 . ‘as in fig. 2. 25 ’




(arb. units)

10 — T T T T ™ T 1

-3 : ' QN
) lo i i - ol | 1

il | 1
0 20 .40 60 780' 100’ 12Q 140 160
. Fig. 4 Cross section ft.;r Ols(t,p)ole(é.s.i,notatlons as in
fig. 2. )

26

(arb. units)

do
- dQ

"j'.

T T T T T T NN Exaa—

.0%(t, p). 0" (excited state- 03) -

: Bt =.12MeV . .

E* =.363MeV .
Q. =-007MeV

Syt

1 [ S | L L i

20 40 60 - 80 . 100 120° 140 160 .

. 5. cross: section for 0% (t,p)0'8(3.63 Mev), notations

. s in fig. 2. L -



References

1.

11.

12.
13.

R.A. Broglia, O. Hansen and C. Riedel, "Advances-in Nuclear

Physics", Eds. M. Baranger and E. Vogt, New York, Vol.6

(1973)283.

R.H. Ibarra and B.F. Bayman, Phys Rev., Cl (1970)1786

R.H. Ibarra, Nucl. Phys.,Ale (1973)317

F.A. Gareev-et al., Nucl.Phys.,AZlS (1973)570 and

regerenées-ofAthis article
R. Courant and D. Hilbért "Methods of Mathematical Physics"”
Intersci.Publ., New-York - London, 1953.
B.E. Baymnn and A. Kallio, Phys.Rev.,156 (1967)1l21 .
V. Furman et al. Preprint P4-8110,Dubna: (1974).
F.A. Gareev, J. Bang and R.M. Jamalejev,
Phys.Lett., 49B (1974) 239.
B.F/ Bayman, Nucl.Phys.,Al68 (1971)1.

T. Ericson et al., Phys.Lett., 46B (1973)173.

‘HiW. Barz et al., Nucl.Phys., A125(1969)577.,

"M, Pignanelli, J. Gosset, F. Resmini, B. Mayer and J.L.

Escadie, Phys.Rev., C8 (1973)2120.
R. Mlddleton and D.J. Pullen, Nucl. Phys. 51 (1964)63,

B. Nilsson, prlvate communication

Received by Publishing Department
on May 23, 1974.

28



