ОБЪЕАИНЕННЫЙ ИНСТИТУТ
 ЯAEPHЫX
 ИССАЕАОВАНИЙ
 AYБHA

$\overline{\mathrm{V}-33}$
E4 - 7812
$2330 / 2-74$
A.I.Vdovin, Ch.Stoyanov

MIXING OF THE VIBRATIONAL
AND TWO-QUASIPARTICLE EXCITATIONS
IN ISOTONES $\mathbf{N}=\mathbf{8 0}, \mathbf{8 2 , 8 4}$

E4-7812

A.I.Vdovin, Ch.Stoyanov

MIXING OF THE VIBRATIONAL and TWO-qUASIPARTICLE EXCITATIONS IN ISOTONES $\mathbf{N}=\mathbf{8 0}, 82,84$

Submitted to "Изв. Ан CCCP:

The present paper is devoter to a rather widely discussed recently problem about an interaction of vibrational and two-quasiparticle excitations in even-even atomic nuclei.

The semimagic and neighbouring to them nuclei have such an energy gap that the two-phonon and two-quasiparticle states have nearly the same excitation energi.es.If so, even not very strong interaction may cause sensible mixing of these excitations and complicating of the structure of "true" states.

Within the framework of superfluid nuclear model ${ }^{9}$ the above situation has been investigated already for deformed nuclei ${ }^{1 /}$. For spherical nuclei such investigations have been made quite recently ${ }^{2-4 /}$. There it has been shown that the admixture of noncollective components may be rather significant.

The account of the above admixture in the structure of "two-phonon" states is of importance not only in itself. If the only collective degrees of freedom (for anharmonic terms of Hamiltonian not higher than those cutic in the number of phonon operators) are allowed for in calculations then, as is known 78 , the energy of 2_{2}^{+}level is very high, the quantity $B\left(\mathcal{F}, 0_{\text {g.s. }}^{+} \overrightarrow{2}_{2}^{7}\right)$ is larger by an order than the experimental one and the sequence of levels in triplet $0_{1}^{+}, 4_{1}^{+}, 2_{2}^{+} \quad$ is given strictly.

In papers ${ }^{7 /}$ it is pointed out that inclusion of the noncollective components into the wave function of $2_{2}^{+}, 4_{1}^{+}$ states can improve a theoretical description.

We have calculated characteristics of a series of 2^{+} and 3^{-1} levels in the isotones $N=80,82,84$. The energies
of states, probabilities of electromagnetic transitions, quadrupole moments have been computed. All the details of calculations and arguments for basic approximations can be found in paper ${ }^{/ 3 /}$ We give hereonly the expression for the state wave function $\Psi_{\nu}(\mathbb{M})$

and the secular equation for the energy $\eta_{\mathrm{l} \nu}$ of this state:

$$
\begin{equation*}
\operatorname{det}\left\{\left(\epsilon_{[1}-\eta{ }_{\mathrm{I} \nu}\right) \delta_{\mathrm{ii}},-\mathrm{K}(\mathrm{ii})\right\}=0 . \tag{2}
\end{equation*}
$$

The following conventions are used in (1), (2): $Q_{\lambda \mu i}^{+}, Q_{\lambda \mu i}$ are, respectively, the phonon creation and annihilation operators with moment and projection λ, μ and number i ; ω_{11} is the energy of phonon with quantum numbers IMi, $\left\langle\lambda_{1} \mu_{1} \lambda_{2} \mu_{,} \mid I M\right\rangle-$ the Clebsch-Gordan coefficient, ν-the number of root of eq. (2).

Note that $1, \lambda_{1}, \lambda_{2}=2,3$. The expression for coefficients K (ii') can be found in paper $/ 3 /$. The operator of $E \lambda$-transition which we have employed in calculations of probabilities of the electric transitions and quadrupole moments is taken from book/9/ (Chapter 6, Sect. 3). The wave function (1) which includes the components not higher than two-phonons permits one to calculate states with an excitation energy not higher than $2.5-3.0 \mathrm{MeV}$ for positive parity and $3.5-4.0 \mathrm{MeV}$ for negative parity. Accordingly, the summation over i in (1) is restricted, $i \leq 4$.

The Hamiltonian of spherical nucleus consists of average field for neutron and proton. systems and the following residual interactions: pairing, quadrupole-quadrupole and octupole-octupole.

The average field is described by the Saxon-Woods potential with the following parameters:
a) for the proton system: $A=141 ; Z=59 ; r_{0}=1,21 \mathrm{fm}$, $V_{0}-58.0 \mathrm{MeV}, \kappa=0.349 \mathrm{fm}^{2}, a=1.587 \mathrm{fm}^{-1}$;
b) for the neutron system with $\mathrm{N}>82: \mathrm{A}=137,{ }^{\text {r }}{ }^{0}$ $1.613 \mathrm{fm}^{-1}$,
$V_{0}=43.4 \mathrm{MeV}, \quad \kappa=0.413 \mathrm{fm}^{2}, a^{0}=$
c) for the neutron systemwith $N<82: A=141, r_{0}=1.27 \mathrm{fm}$,

$$
V_{0}=46.5 \mathrm{MeV}, \kappa=0.409 \mathrm{fm}^{2}, a=1.613 \mathrm{fm}^{-1} .
$$

Here A is the atomic number, Z - the proton number,
$R=r_{0} A^{1 / 3}$ - the potential radius, V_{0}-the potential depth, κ - the constant of spin-orbital part of the potential,
a - the parameter of diffusion of the potential boundary.
The choice of these parameters was made on the basis of papers ${ }^{10!}$. Single-particle schemes and matrix elements of multipole operators were calculated by the program of paper

The constants of pairing interaction were chosen to ensure the correct description of pair energies ${ }^{9,12}$. In calculations only the levels of open shell were involved. The values obtained for the correlation function and chemical potential are in good agreement with the results of papers 12% The constants of quadrupole-quadrupole and octupole-octupole forces were taken for each nucleus in such a way tnat the values of η_{21} and η_{31} coincide
with the experimental energies of ${ }^{2}$, ${ }^{+}$and 3_{1} levels, respectively. The effective charge used for describing the electromagnetic transitions and quadrupole moments is taken to equal 0.6 for all nuclei.

Calculating energies of two-quasiparticle states in the isotones $\mathrm{N}=80,84$ we have taken the blocking effect . ${ }^{\text {. }}$ into account. The account of this effect results in decreasing of energies of two-quasiparticle states by $200-400 \mathrm{keV}$ as compared to the values calculated with the correlation function of the ground state. The main result of this decreasing is just the energy lowering of the second and higher roots of eq. (2) and change of the structure of their wave functions. An example of the above changes is given in Table 1 (for ${ }^{140} \mathrm{Nd}$ and ${ }^{144} \mathrm{Nd}$). Allowing for the blocking effect has caused the energy lowering of the second 2^{+}levels by $100-250 \mathrm{keV}$. Note also should be made that the blocking effect changes the

Table 1

The influence of blocking effect on the energy and structure of the wave function of the states with $1^{\pi}=2^{+}, 3^{-}$in isotones $\quad N=80,84$

$\text { Nucleus }{ }^{T}$	E KeV exp.		ut blocking effect Structure of the wave funct.	1 EXPV theory	With blocking effect Structure of the vave function
$2{ }_{1}^{+}$	697	723	81.1\% $\mathrm{Q}_{34}^{+}+9.33 \mathrm{Q}_{21}^{+} \mathrm{Q}_{21}^{+}$	704	$83.7 \% Q_{21}^{+}+10 \% Q_{21}^{+} Q_{ \pm 1}^{+}$
$144^{\text {Nd- }}$	1556	1852	$\begin{aligned} & 7.6 \pi Q_{24}^{+}+63.1 \% Q_{k 2}^{+}+ \\ & +1.2 \% Q_{33}^{+}+1.3 \% Q_{m}^{+} \\ & 25 \% Q_{31}^{+} Q_{M 1}^{+} \end{aligned}$	1715	3.4\% $Q_{\mu}^{+}+82.6 \% Q_{R 1}^{+}+10.7 \% Q_{\mu 1}^{+} Q_{R 1}^{+}$
34	1510	1484		1505	69.7\% $Q_{4}^{+} 24.2 \% Q_{\mu}^{+} Q_{\mu}^{+}+3.5 \% Q_{3}^{+}$
32	2776	3110	$\begin{aligned} & 2.8 \% Q_{m}^{+}+70.5 \% Q_{12}^{+}+14.45 Q_{p}^{+} \\ & +0.4 \% Q_{m}^{+} Q_{m}^{\dagger}+5.8 \% Q_{\mu}^{+} Q_{m}^{+}+ \\ & +3.6 \% Q_{m}^{+} Q_{n}^{+} \end{aligned}$	2995	$\begin{aligned} & 1.8 \% Q_{21}^{+}+808 Q_{32}^{+}+8 \% Q_{n 1}^{+}+48 Q_{a 1}^{+} Q_{31}^{+} \\ & +4.2 \% Q_{41}^{+} Q_{32}^{+} \end{aligned}$
2_{i}^{+}	775	783	$78.6 \% Q_{4}^{+}+15.2 \% Q_{4}^{+} \dot{Q}_{21}^{t}$	731	$77 \% Q_{24}^{+}+* 4.3 \% Q_{21}^{t} Q_{21}^{t}$
2_{i}^{*}	1490 	2069	$\begin{aligned} & 9 \% Q_{2}^{+}+30 \% Q_{22}^{+}+11 \% Q^{+}+ \\ & +34.6 \% Q_{24}^{+}+6.8 \% \quad Q_{2}^{+Q_{+}^{+}} \end{aligned}$	1822	$\begin{aligned} & 11.6 \% Q_{21}^{+}+47.5 \% Q_{4}^{+}+9.7 \% Q_{21}^{+}+ \\ & +17.6 \% Q_{24}^{+}+8.9 \% Q_{21}^{+} Q_{41}^{\dagger} \end{aligned}$

structure of phonons themselves, as well, especially the noncollective ones, and, besides, diminishes slightly the strength of interaction between quasiparticles and phonons.

The numerical results are presented in Tables 2 (for states with $1^{\pi}=2^{+}$) and 3 (for those with $1^{7}=3^{-}$). The experimental data are taken from papers $14-19^{\prime}$. At first we will say a few words concerning the general properties of the results obtained. Mainly we shall speak about 2^{+}levels where we have more experimental information.

Inclusion of the noncollective components into the structure of wave function of the 2^{+}states, as was expected, results in a sensitive improvement of description of energies of the 2_{2}^{+}levels. For instance, in ${ }^{144} \mathrm{Nd}$ nucleus for the same parameters the energy of the second 2^{+}level appears to be equal to 2429 keV when we allow for the collective components in (1) only, and this one equals 1715 keV when switching on the noncollective components (experimental value for this level is 1556 keV). Analogously, also the description of probabilities of $E 2$ transitions $2 \frac{1}{2} \rightarrow 0_{\text {p, }}^{+}$. becomes better. However, the decrease of quantities resulting from the insertion of noncollective components into the wave function of 2^{4} states proves to be not always sufficient for correct description of experimental data. For a series of nuclei where the quasiparticle-phonon interaction is strong, the component $\mathrm{Q}_{21}^{+} \mathrm{Q}^{+}{ }_{2}$ appears to be suppressed in the structure of 2_{2}^{+}states that results in nonrealistically small value of $\mathrm{B}\left(\mathrm{E} 2,2_{2}^{+} \rightarrow 2_{\mathrm{j}}^{+}\right)$.

Now we discuss in more detail the structure of studied states in various nuclei, starting from the levels $\boldsymbol{1}^{\pi}=2^{+}$.

In the isotones $\mathrm{N}-82$ the structure of these states is rather simple and reduces, as a rule, to a single component $Q_{2 i}^{+}$. The reason for this is the high energy and weakened collectivization of the 2^{+}state in semimagic nuclei. On the one hand, the two-phonon pole of secular eq. (2) appears to be much higher that the two-quasiparticle ones, and, on the other hand, the quasiparticlephonon interaction proves to be weak. As a result, the intensive mixing of various types of excitations emerges

Table 2
Calculated results of the properties of excited states with $1^{\pi}=2^{+}$ in isotones $\mathrm{N}=80,82,84$

Nucleus	i	$E\left(a_{t}^{+}\right)$xer		$2\left(\leq 29^{2}-2 z_{i}^{2}\right) 0^{2} b^{2}$		$Q_{1}\left(2_{i}^{t}\right) e_{e \cdot b}$		$B\left(\varepsilon \varepsilon, \alpha_{i}^{2} \nsim a_{i}^{t}\right) e^{4} b^{2}$
${ }^{134} X_{a}$	I	847	919	-	0,36	-	0,27	0,075
	2	1613	1493	-	0,02		-0,17	
${ }^{33} B_{0}$	I	8 I 8	8I5	0,42	0,42	D,43	0.46	$\begin{aligned} & 0.042 \\ & 0.0002 \end{aligned}$
	2	1551	I7II	-	0.06		-0.12	
	3	2081	1858	-	0.0004	-	-0.15	
${ }^{13} \mathrm{Ce}$	I	789	792	-	0.46	-	0.58	0.02
	2	ISII	1825	-	0.07	-	-0.014	
${ }^{\text {No }}$ M ${ }^{\prime}$	I	755	73 I	-	0.46	-	0.63	0.014
	2	1490	1822	-	0.08		-0.016	
${ }^{34} 70$	I	1278	1262	-	0.17		-0.34	0.0002
	2	-	2030	-	0.007	-	-0.25	
" ${ }^{4}$ e	I	1313	1335	-	0.30	-	-0.12	$\begin{aligned} & 3 \times 10^{-5} \\ & 2 \times 10^{-4} \end{aligned}$
	2	?	2107	-	0.004		-0.23	
	3	2640	2265	-	0.008		-0.19	
${ }^{\prime N}{ }_{B 0}$	I	1436	1454	0.38	0.37	-0.07	0.II	0.001
	2	2218	2161	-	5×107		-0.13	
${ }^{* 3 C}$	I	1596	I569	0.29	0.40		0.23	$\begin{aligned} & 0.002 \\ & 4 \times 10^{-4} \end{aligned}$
	2	2348	2246		3510^{-5}		-0.03	
	3	2522	2269	-	0,0001	-	-0.05	
${ }^{* *}{ }_{\text {NGI }}$	I	1676	1576	0.39	0.47			$\begin{aligned} & \mathbf{I I I N}^{5} 0^{2} \\ & 0.002 \end{aligned}$
	2	2385	2380	-	0.003		0.02	
	3	2583	2405	-	0.002		0.08	
**S.	I	1659	I669	0,25	0.56		0.27	$\begin{aligned} & 0.002 \\ & 0.03 \end{aligned}$
	2	2450	2589	-	5×10^{-4}		0.07	
	3	2800	2652	-	0.33		0.34	
**Gd	,	1570	I567	-	0.73		-0.2I	0.13
	2	-	2571	-	0.002		0.1	
${ }^{\text {mas }} \mathrm{Ce}$	1	641	662	0.46	0.32	-0.12	-0.40	0.024
	2	1536	I665	-	0.16		0.14	
${ }^{\text {NF*Nd }}$ d	I	697	704	0.510 .31		-0.23-0.39		0.025
	2	1556	I715		0.16	-	0.17	
${ }^{* 5} \mathrm{Sm}$	I	747	73 I		0.29	-	-0.45	$\begin{gathered} 0.015 \\ +7 \times 10^{-5} \end{gathered}$
	2	1648	1903		0.19	-	0.24	
	3	2557	2438		0.03	-	0.06	

only in the structure of states corresponding to the high roots of eq. (2). The value of the component $\mathrm{Q}_{21}^{+} \mathrm{Q}_{21}^{+}$becomes noticeable ($10-20 \%$) only in the wave function of the 2_{3}^{+}state and only for ${ }^{142} \mathrm{Nd}$ and ${ }^{144} \mathrm{Sm}$ nuclei.

The theoretical and experimental values of energies of ${ }_{136}$ the 2_{2}^{+}levels are in satisfactory agreement, except for ${ }^{136} \mathrm{Xe}^{2} \quad$ nucleus where the 2_{2}^{+}state itself was not observed, (apparently it should have an energy of $2.1-2.3 \mathrm{MeV}$ as the analysis of experimental data on the neighbouring isotones $N=82$ evidences). Energies of the $2_{3}{ }^{+}$levels are systematically lower (by $100-300 \mathrm{keV}$) than experimental values which is due to inexactitude of the single-particle level scheme. Experimental knowledge on the electromagnetic characteristics of levels is rather poor. The data available (on the 2_{1}^{+}levels only) are in quite good agreement with our calculations. Note that the sign and magnitude which we have found for quadrupole moment of various 2^{+}levels for a single nucleus in the isotones $\mathrm{N}=82$, do not obey the rule stated by authors of the paper $/ 7 /$, viz: $\operatorname{sign} \mathrm{Q}_{2}\left(2_{1}^{+}\right)=-\operatorname{sign} \mathrm{Q}_{2}\left(2_{2}^{+}\right)$and $\left|\mathrm{Q}_{2}\left(2_{1}^{+}\right)\right|<\left|\mathrm{Q}_{2}\left(2_{2}^{+}\right)\right|$. No experimental data exist on the electromagnetic characteristics of higher 2^{+}levels. We have compared our results with theoretical calculations of the paper ${ }^{/ 13 /}$ There all 2^{+}leve's were treated as one-phonon, the Tamm-Dankoff methuu was used and effective forces were chosen eitber of a Gaussian type or in a form of the surface δ-interaction. As compared to our results the authors of ref. ${ }^{13 /}$ give much lariger probabilities of E2-transitions from the 2_{2}^{+}levels into the ground'state and very small transitions $2_{2}^{+} \rightarrow 2_{1}^{+}$. Besides, we have opposite signs of quadrupole moments of the 2_{1}^{+}-levels.

The structure of wave functions of states $1^{\pi}=2^{+}$in the isotones $\mathrm{N}=80,84$ is more interesting. The quasi-particle-phonon interaction is here rather strong so that the ratio $\omega_{21} / \eta_{21}=1.2-1.5$. As a result, the two-phonon pole is located very close to the two-quasiparticle ones and in the wave function of 2^{+}level a considerable admixture of both the noncollective components and two-phonon ones is observed. In the structure of 2_{1}^{+}level the main component is Q_{21}^{+}, from others only the two-phonon compo-
nent, $Q_{21}^{+} Q_{21}^{+}$, can be observed (it amounts to $10-15 \%$). The description of energies of 2^{+}levels should be recognized as satisfactory though for 2_{2}^{+}levels the energy values obtained are higher than experimental ones. For some nuclei there is an experimental information, though rather poor, on the quadrupole moments and electromagnetic transitions. Our results for the 2_{1}^{+}levels agree quite well with these data. The matter is worse with the 2_{2}^{+}levels. Here, of course, no direct experimental information is available on the transition probabilities but for the nuclei ${ }^{136} \mathrm{Ba},{ }^{134} \mathrm{Xe} . / 16 /$ and ${ }^{144} \mathrm{Nd} / 17 /$ the ratio $\frac{B\left(E 2,2_{2}^{+} \rightarrow 0_{\mathrm{g}, \mathrm{N}}^{+}\right)}{\mathrm{B}\left(\mathrm{E} 2,2_{2}^{+}, 2_{1}^{+}\right)}$
is known which equals approxinately 0.02-0.04 for all the three nuclei. Our results give correctly this ratio only for ${ }^{134}$ Xe. As to the nuclei ${ }^{136}$ Ba and ${ }^{1.14} \mathrm{Nd}$ our value is larger by an order, and even more, than the experimental one. For ${ }^{136} \mathrm{Ba}$-nucleus the reason is obviously that the description of the transition $2_{2}^{+} \rightarrow 0^{+}$in. is bad. This follows from comparison of our calculations with those performed by the Alaga model ${ }^{\text {/5/ }}$ viz; we obtain the same values for $B\left(E 2,2_{2}^{+} \rightarrow 2 \dagger\right)$ and the values differing by an order for $B\left(E 2,2_{2}^{+} \rightarrow 0^{+}\right.$. . . In this connection one should point out a rather strong sensitiveness of the results to a choice of the signle-particle level scheme. In Table 4 we present the calculations for some nuclei with $\mathrm{N}=80,84$ with changed single-particle schemes (for $N=80$ the scheme is taken from ref. ${ }^{\text {b }}$) ln this consideration not only the description of energies of the 2_{2}^{+}levels becomes much better but also the results have been distinctly improved for electromagnetic transitions and quadrupole moments in the isotones $\mathrm{N}=84$. Thus, the ratio $\frac{B\left(E 2,2_{2}^{+} \rightarrow 0_{2}^{+}, 5\right)}{B\left(E 2,2_{2}^{+} \rightarrow 2_{1}^{+}\right)}$in ${ }^{144} \mathrm{Nd}$ becomes six times smaller.

The present experimental information on 3^{-}states in the nuclei of interest is much more scanty than for 2^{+}levels. The second 3^{-}levels are known only in two nuclei, ${ }^{144} \mathrm{Nd}$ and ${ }^{144} \mathrm{Sm}$ (their energy agrees rather well

Table 3

Calculated results of the properties of excited states with $1^{\pi}=3^{-} \quad$ in isotones $N=80,82,84$

Nucleus	1	$E(3)$ kev		$B\left(E 3,0_{g s}^{+} \rightarrow 3_{i}^{-}\right) e^{2} b^{3}$		$Q_{2}\left(3_{i}\right) e \cdot b$ theor.
		exp.	theor:	exp.	theor.	
142						
	I	I653	1654	I.I3	0.15	0.70
	2	-	3114	-	0.001	0.34
${ }^{44} \mathrm{~N}$ Nd	I	1510	1505	0.26	0.18	0.68
	2	2776	2995	-	0.001	0.40
${ }^{46} \mathrm{Sm}$	I	I381	1399	-	0.2I	0.65
	2	-	2832	-	0.022	0.14
${ }^{434}$ Xe	I	3277	3288	-	0.035	0.68
	2	-	3575	-	0.0006	0.28
${ }^{\text {t3) }} \mathrm{Ba}$	I	2881	2857	-	0.089	0.64
	2	-	3419	-	0.0004	0.32
${ }^{440}$ Le	I	2464	2422	0.76	0.15	0.59
	2	-	3280	-	0.0005	0.39
142 Nd	I	2084	2041	0.44	0.19	0.59
	2	-	3149	-	0.0009	0.39
${ }^{* / 4} S_{m}$	I	1809	1846	-	0.24	0.52
	2	3227	3059	-	0.001	0.45
${ }^{146} \mathrm{Gd}$	I	1586	1614	-	0.32	0.38
	2	-	3031	-	0.001	0.53
338	I	2532	2510	-	O.II	0.67
	2	-	3230	-	0.002	0.32

Table 4

Calculated results of the properties of excited states with $1^{\pi}=2^{+}$in isotones $N=80,84$ for changed single-particle level scheme

Nucleus		$\begin{gathered} \mathrm{E}\left(2_{1}^{\prime}\right) \\ \\ \text { exp. } \end{gathered}$	k V theor.	(EE2, $\left.a_{0}^{+}-2_{4}^{+}\right) e^{-b^{4}}$		$Q_{2}\left(C_{i}^{2}\right)$ ec 6		$B\left(E 22_{1}^{+} \rightarrow 2_{1}^{t}\right) e^{2} b^{2}$ theor.
				exp.	tieor.	exp.	tneor.	
${ }^{138} \mathrm{Ce}$	I	789	771	-	0.38	-	-0.42	
	2	ISII	1444	-	0.18	-	0.23	0.07
${ }^{36} \mathrm{Ba}$	I	818	794	0.42	0.36	+0.43	-0.44	
	2	1551	I5IO	-	$0 . \mathrm{II}$	-	0.10	0.04
	3	2081	I689	-	0.003	-	0.29	0.004
${ }^{* 4} \mathrm{Nd}$	I	697	678	0.51	0.49	-0.23	-0.21	
	2	1556	1488	-	0.12	-	0.21	0.13
${ }^{*} \mathrm{Ce}$	1	64 I	656	0.46	0.48	$\bigcirc 12$	-0.23	
	2	1536	1469	-	0.II	-	0.19	0.12

with our calculation). However, in a number of cases we obtain the probabilities of $E 3$ transitions $0_{\text {g.s. }}^{+} \rightarrow 3_{1}^{-}$much smaller than experimental values, but these data are known with large errors and are not very reliable. For ${ }^{142} \mathrm{Nd}$, , e.g., in paper ${ }^{19 /}$ the value $\mathrm{B}\left(\mathrm{E} 3,0_{\mathrm{E} . \mathrm{s} .3_{1}^{-}}^{-}\right)=$ $=0.24 \mathrm{e}^{2} \mathrm{~b}^{3}$ is given. Note also should be made that the probabilities of these transitions calculated in paper /13/ appear to be even smaller by one order than our values.

The quasiparticle-phonon interaction influences the structure of 3^{-}states not less than that of 2^{+}states. The component $Q_{21}^{+} Q_{31}^{+}$is large in the wave function of 3_{1}^{-}level. Even in the isotones $\mathrm{N}=82$ it amounts to 10% and in other nuclei its value reaches $20-30 \%$. This results in a significant magnitude of $\mathrm{Q}_{2}\left(3_{1}^{-}\right)$which experimental measurement would be of interest. To the structure of $3 \overline{2}$ states the main contribution comes from the noncollective phonons Q_{32}^{+}and Q_{33}^{+}. The change of single-particle schemes does not practically affect the properties of 3^{-}states, therefore the correspondong results are omitted here.

Thus, we could see that the interaction of collective and two-quasiparticle excitations is considerable in the nuclei we have discussed. It complicates the state structure even at excitation energies $1.5-2.0 \mathrm{MeV}$. Insertion of the noncollective components into the wave function has made it possible to improve the description of energies and electromagnetic characteristics of the 2^{+}levels. The above improvement was sufficient not all the time. This is partly due to the inexact knowledge on the singleparticle level scheme; in other cases the more complicated wave function must be used. No doubt, the problem remains open concerning the role of residual forces of another type, e.g., of quadrupole interaction in the particle-particle channel : 20/. To analyze the noncollective components the study seems to be necessary of those processes which are more directly connected with the differential structure of states, e.g., of β-decay.

The authors express their deep gratitude to V.G.Soloviev for valuable advices and remarks, to R.V.Jolos for fruitful discussions.

1. V.G.Soloviev. Nucl.Structure, Dubna Symp., 1968, p. 101. IAEA, Vienna, 1968.
2.А.И.Вдовин, Ч.Стоянов. Изв. АН СССР, сер.физ., 37, 1750 /1973/.
2. А.И.Вдовин, Г.Кырчев, Ч.Стоянов. ОИЯИ, Р4-7374, Дубна, 1973.
3. В.Е.Митрошнн. Тезисы XXIII совещання по ядерной спектроскопии и структуре атомного ядра, Тбилисн, 1973.
H.Reinhard and F.Dönau. XIII совещание по ядерной спектроскопии и теории ядра, Д6-7094, Дубна, 1973.
4. Г.Алага. Структура ядра. ОИЯи, Д-6465, Дубна, 1972.
G.Alaga, V.Paar and V.Lopac Phys.Lett., 43B, 459 (1972).
5. N.Meyer-Levy, V.Lopac. Preprint LYCEN 73i5, March 1973.
6. Е.Б.Бальбуцев, Р.В.Джолос. ЯФ, 7, 788 /1968/. Р.В. Джолос. Оияи, 4-3757, Дубна, 1968.
7. S.R.Almoney and J.G.Borse. Nucl.Phys., A171, 660 (1971).
8. В.Г.Соловьев. "Теория сложных ядер", М., "Наука". 1971.
9. В.А.Чепурнов. ЯФ, 6, $955 / 1967 /$.
K.Takeuchi, P.A.Moldauer. Phys.Lett., 28B, 384 (1969).
10. Н.ю.щирнова. Сообщение ОИЯИ, Р5-3712, Дубна, 1968.
11. Л.А.Малов, В.Г.Соловьев, И.Д.Христов. ЯФ, 6, 1186 /1967/.
А.И.Вдовин, А.Л.Комов, Л.А.Малов. Сообщенне ОияИ, Р4-5125, Дубна, 1970.
12. M. Waroquier, K.Heyde. Nucl.Phys., A164, 113 (1971).
13. M.Sakai. Nuclear Data Tables, 10,511 (1972).
A.Christy, O.Häusser. Nucl.Data Tables, 11, 281 (1972).
14. C.W.Towsley, R.Cook, D.Cline and R.N.Horoshko. Proc. Int. Cont. of Nuclear Moments and Nucleus Structure, Osaka (Japan) 1972 v. 3.
15. J.R.Kerns and J.X.Saladin. Phys.Rev., C6, 1016 (1972).
16. P.A.Crowley, J.R.Kerns, J.X.Saladin. Phys.Rev., C3, 2049 (1971).
17. O.Hansen and O.Nathan. Nucl.Phys., 42, 197 (1963).
18. D.W.Madsen, L.S.Cardman, J.R.Legg and C.K.Bockelman. Nucl.Phys., A168, 97 (1971).
19. B.L.Birbrair, K.I.Erokhina, I.Kh.Lembegr. Nucl. Phys., A145, 129 (1970).
B.L.Birbrair. Phys.Lett., 32B, 165 (1970)
H.Toki and M.Sano. Preprint OULNS 73-6, Osaka University. Laboratory of Nuclear Studies, 1973.

Recived by Publishing Department on March 18, 1974.

