
E- 81-

S.Frauendorf, V .V .Pashkevich 

I ~ y.i - ''f-tl 

E4 - 7804 

THE INFLUENCE OF THE SHELL STRUCTURE 

ON THE MOMENT OF INERTIA. 

THE AVERAGE BEHAVIOUR 
OF THE MOMENT OF INERTIA 

1974 



E4 - 7804 

S.Frauendorf, V.V.Paehkevich 

THE INFLUENCE OF THE SHELL STRUCTURE 
ON THE MOMENT OF INERTIA. 

THE AVERAGE BEHAVIOUR 
OF THE MOMENT OF INERTIA 

Submitted to ЯФ 



I. Introduction 

The influence of the shell structure on the binding 
energy of the atomic nucleus has been extensively studied 
in many publications (see the references in the review n/). 
Strutinsky/2/proposed a method which allows one to take 
into account these effects in an accurate manner.In this 
approach the total energy of the nucleus is divided into two, 
parts. The first one, 0 , depends smoothly on the number 
of particles and, therefore, does not show any shell ef
fects. The second one, Ml , is the so-called shell correc
tion. It depends only on the level density near the Fermi 
surface and can be calculated from the shell model single 
particle energies. Within the shell model, it is impossible 
to calculate the smooth part of the energy with a reason
able accuracy. One rather substitutes the energy "j l ) M of 
the liquid drop model for U 

, , - ' , , I . D M + 6 U -

This method turned out to be sufficiently accurate and very 
convenient for the investigation of U as a function of the 
particle number and the shape of the nucleus, so it permits 
a study of the static properties of the nucleus. 

The investigation of the dynamical behaviour of the 
nuclear shape-is a very important but much more compli
cated problem, which has recently received an impact 
from-nuclear fission studies. Such calculations are usually 
carried out in the adiabatic approximation. The energy 
of the. collective motion is considered to be the sum of the 
kinetic energy T and potential energy U , W = T + U , 
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where T is a quadratic form whose coefficients are call
ed mass parameters. One possibility of calculating these 
quantities is the generalized cranking model /1 . 3 / , In this 
approach one enforces a slow change of the shell model 
potential and calculates W as the sum of the energies of 
non-interacting particles (or quasiparticles in the BCS 
approximation) in this time-dependent potential. In the 
adiabatic approximation one can introduce single-particle 
energies in this potential, which depend on time as a para
meter. In a number of papers it is shown that the shell 
structure has a significant influence on the mass parame
ters /ьз,4/ _ D u e t 0 t„g above-mentioned representation 
of W as the sum of the single-particle energies, it is 
possible to generalize Strutinsky's idea about the division 
of the energy U into two parts to the total energy W and 
therefore to T . The partition of T leads to the corres
ponding division of the mass parameter into a smooth 
part and another term which we prefer to call shell con
tribution, because it can amount to the same order of 
magnitude as the smooth part (see Section 4). 

One can hope to improve the accuracy of calculating 
mass parameters using different approximations for the 
smooth part and the shell contributions, because the motion 
of the' nucleons may influence the two parts in a different 
way. 

In the calculations of Baranger and Kumar / l i / an ana
logous idea is used. In their work the mass coefficients 
also consist of two parts. One part, which is similar to 
our shell contribution, is obtained by means of the cranking 
model with account of only th? states of about one major 
shell around the Fermi level. The other, smooth pari is 
a phenomenological expression. However, such a division 
becomes rather arbitrary at larger deformation, when the 
levels of different spherical shells are no longer separat
ed. Therefore a division by means of Strutiksky's avera
ging procedure seems to be preferable. 

In order to make a first step in this direction, we in
vestigate the suggested division in the simple case of the 
moment of inertia $ of deformed nuclei calculated by 
means of the cranking model / 5 / . We show that the division 
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into the smooth part $ and the shell contribution A') is 
unambiguous. We investigate the dependence of $ and 
S$ on the number of particles and the nuclear shape. 

We compare our expressions with the classical expression 
for the moment of inertia and the moment of inertia of a 
heated nucleus at different temperatures. The magnitude 
of S J at the equilibrium deformation is examined in 
detail. We suggest some conditions for the case where the 
influence of the shell structure on the moment of inertia 
is rather strong. 

2. Definition of the Averaged Moment of Inertia and 
the Shell Contribution to the Moment of Inertia 

In this work we consider only the moments of inertia 
of even-even axially symmetric nuclei rotating around an 
axis perpendicular to the symmetry axis. We do not con
sider the residual interaction between the nucleons. 

Let us consider a system of non-interacting nucleons 
in an axially symmetric external potential, the * -axis 
being the axis of symmetry. Within the с ranking model the 
moment of inertia ,'|SM with respect to the * -axis can 
be extracted from the energy !',„ in the body fixed 
frame of reference rotating with the angular velocity •>> 
around the * -axis. The moment of inertia is defined 
by the quadratic term of a perturbation expansion into 
powers of <•< 

" « ' , : o ^ 0 - i^'^SM • (1) 

The total energy V0> is simply the sum of the single 
particle energies <;' of tbe occupied levels. The energies 
</" are the eigenvalues of the single-particle Hamilto-
nian !!„, of the nucleons in the rotating frame of referen
ce 

" W

= I I S M -"'>* • (2) 

where j " denotes the x -component of the single particle 
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operator of the angular momentum, and HSM is the shell 
model Hamiltonian of the system in the absence of rotation. 
As we are interested only in the second term of expansion 
(1), we need >•" only in the second order of perturbation 
theory starting with the eigenvalues «? of HSM 

,«„,o + u ) 2±iL + . . . , j t i l . j J i i u J L . ( 3 ) 

The total energy Uffl can be written down in terms of the 
occupation numbers n?M , which are equal to 0 above the 
Fermi level and to 1 elsewhere. By making use of eq. (1) 
we obtain 

2 x 2 

j .22 » i ! L L = S („»..«, JilL.. 
S M Mj <° - « I M i ' J ( j

u -«» 

(4) 
This expression is valid only for small enough values of 
"\ when there is no crossing of levels with the Fermi 
level and nS M does not depend on <», We introduce, the 
averaged moment of inertia 5 in the following manner. 
The eigenvalues e f of the Hamiltonian Н и are charac
terized by their density g{fMU) • By means of Stru-
tinsky's averaging procedure we divide this density into 
a smooth part g s ( ( ) and a Shell correction Sgw(e ) . 
Thus we get the smooth energy и ш _ and the shell correc
tion 8Va

n>'. By expanding и ш into powers of » 
we define the averaged moment of inertia as a coefficient 
of the quadratic term. In order to calculate J . we use 
the occupation number representation of the Strutinsky 
procedure /v, which is especially suitable for our purpo
ses. Following ref. ' 7 we have 

The averaged occupation numbers n " can be expressed 
in terms of the function n ( x) defined in re f . / I / 

ft) ' t A € i \ 
l у (в) 
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and —s-are the solutions of eq. (7) and its derivative 

where у is the averaging width. The chemical potential 
is fixed by the particle number N 

Fi-N- (7) 
We substitute (3) into (6) and expand it into powers of w 

At" 

I • * I ' ' dJ • 

+ ^L(JiL L ) ( o U o n . 
Г Aat йа,2 ' ' 

~ A ° —€ ° 
In tE-Js expression n° stands for n(x) at x= —i—, 
M ' Is dn(x)/dx with the same argument, and A0 

dl° 
dl 

at <u = 0 , Differentiating (7) with respect to у and «•>2 

we obtain the derivatives of Л° and can express the third 
term in the following manner 

22с,шп?'=2 2 « 0 п 0 + 2 . « г ( 1 - , . - £ - ) 2 - i i l - n ? . (9\ 
i i i i i • dy i d w 2 • v ' 

By comparing (5) and (9) we obtain for the averaged mo
ment of inertia 

i . x >2 

5= _ 2 x i £ n ° =£ Гп? - n ? ) - ~ - U — - • (10) 
One gets an identical expression for $ as the linear 
term in the expansion of the averaged expectation value 
of the angular momentum operator. The shell contribution 
to the moment of inertia 8$ is definedas the difference* 

6-4 4 s M -i ( ID 

This expression can be written down in the same form 
as (4) or (11) using S a ,„£*•_„„ # 

i i 
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In addition, we define the moment of inertia 

It is interesting to compare 5 with the classical mo
ment of inertia of a system of non-interacting particles, 
which is given by the rigid body value 

K̂IC = M / d r ' 2 p / J d r P , (12) 

where M is the total mass, p denotes the density of 
particles, and r is the distance from the axis of rotation. 
We use the shell model value for the density 

p (r) = 2 n

S M | <M"r) | 2 , (13) 

where Ф- ( Ъ are the eigenfunctions of the Hamiltonian 
HS M . The respective moment of inertia is denoted by 

HIC 
J by means of eq. (12) and the averaged density 

RIG 
PCt), which is obtained from eq. (13) with the averaged 
occupation numbers n? instead of n?" . 

Without any special discussion we quote the known 
expression for the moment of inertia £)Tof a heated nucleus 
at the temperature T / I / . i t is given by expression (10) with 
the occupation numbers n J of a Fermi gas in a potential 
well instead of «° : ' 

n j = n F ( A T ~ 1 ° ) , „P(x) = ( U e x p ( x ) ) - 1 . ( 1 4 ) 

Here Л т is obtained from eq. (7) with the analogous substi
tution of the occupation numbers. The expansion (3) (and 
consequently (4)) is applicable only in the case where 
*и is small compared with the distance between the 
single particle levels. The expressions for J and $T are 
valid under the less stringent conditions 

tu <y «И <uQ . (15) 
and1ua<T > respectively, where *ш 0 means the inter-
shell distance. The condition (15) с an be derived in analogy 
to the case of statistics, which is discussed, e.g., in 
ref. i l ! . A similar discussion for 0 can be found in r e f . ^ 
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3. Numerical Investigation of the Plateau Condition 

The main part of our calculations is done with the 
Woods-Saxon potential. .The parametrization of the nuclear 
surface and the method of solving the eigenvalue problem 
are described in refs. /&<9/ . Thepotentialparametersare 
taken from ref . / , ( 4The calculations are carried out for 
the nuclei of the rare earth region. The energy levels 
are calculated for the basic nuclei 1 6 2 E r and ''"llg.The 
single particle spectra of neighbouring nuclei are obtained 
by interpolation assuming the same dependence on the 
mass number as that for the harmonic oscillator. In order 
to test our numerical method, we carried out some calcu
lations using the anisotropic harmonic oscillator as the 
shell model potential. The degeneracies of the oscillator 
levels did not permit a direct application of our computer 
code. To avoid these difficulties, we introduced a slight 
spin-orbital perturbation and a weak anharmonicity of the 
type R4 , II being the spherical radius coordinate. 

By means of Strutinsky's averaging procedure we 
introduced the averaged moment of inertia <f (10). Inorder 
that this conception be defined unambiguously, jj must be 
independent of the averaging width )• with ? reasonable 
accuracy when У takes on the order of the intershell 
distance. This is the plateau condition formulated by Stru-
tinsky for the averaged energy t; %. We calculated j\ as 
a function of у usi"«; fourth and sixth order correction 
polynomials for tht proton and the neutron systems, res
pectively. The results are-shown in Fig. 1. As regards the 
definition of the corrections polynomials, we refer to 
paper I .It can be seen that in the interval 1.0't>"'0

<y''-1.5 t>wn 

the averaged moment of inertia has a plateau indeed.When 
the number of particles is less than 100, the deviations 
from the constant value are of the order of 1%. When the 
particle number is about 114, the plateau becomes some
what worse, the deviation- amounting to 5%L This is con
nected with the approach of the Fermi level to the unbound 
levels, of the interpolated spectrum. The calculation in the 
transuranium region with the basic nucleus 2 4 ° Pu shows 
that for these nuclei the uncertainties of ,T at the plateau 
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Fig. 1. The averaged moment of inertia as a function of 
the averaging width у (int<u0 units). The lower part 
shows the moment of inertia of protons the number of 
which is indicated above each curve. A 4th order correc
tion polynomial is used. The upper part displays the mo
ment of inertia of neutrons the number of which is also 
indicated. The different curves refer to different correc
tion polynomials. The order of the polynomial is indicat
ed by the type of the curve and is shown at N= Ц4. The 
deformation of the average potential is t =0.28. 
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Fig. 2. Tbe moment of inertia of the neutron system as 
ж function of the neutron number N. Tbe different kinds 
of the moment of inertia are defined in tbe text, SO-0 
means that tbe spin orbit coupling of the average potential 
is set approximately equal to zero. The deformation of 
the average potential Is t « 0 . 2 8 . The averaging width 

II 



are smaller than 1%. By comparing with the large fluctua
tions of<JSM(see, e.g., Fig. 2) one can conclude that the 
averaged moment of inertia is determined with a good 
accuracy. 

4. Discussion of the Behaviour of the Averaged Moment 
of Inertia and the Shell Contribution 

In Figure 2 we compare the averaged moment of iner
tia 3 with the rigid body value дню. The calculations 
show that the difference between jffc and "TRIG (the 
definitions are given in Sec. 2) is so small that they would 
be difficult to distinguish on the scale of Fig. 2. The small 
difference between 5,|jG and $MG is due to the weak 
influence of the shell structure on the particle density. 
As can be seen from Fig. 2, the difference between 3 and 
f n l G is smaller than 1% for N<loo and it amounts to 3% 
for N>100 .Therefore the two moments of inertia coincide 
within the limits of accuracy of 3- This conclusion does 
not depend on the spin orbit coupling, as shown by the 
example with a negligible small constant of the spin orbit 
coupling ( SO = 0 ). The difference between $ and §жю а 
little bit increases and both moments increase with the 
particle number somehow more slowly. The calculations 
show, that with a further increase in the number of partic
les, 3 oscillates around 3RIG-

One can consider the averaged moment of inertia from 
another, physically more transparent point of view. Stru-
tinsky/ 2' suggested that the usual averaging over the 
spectrum of the basis nucleus is approximately equivalent 
to averaging over the particle number. In this sense we 
suggest to understand <J as the mean value of the moment 
of inertia of a number of adjacent nuclei of the same shape. 
The averaging interval is about the number of particles 
of one shell. .". 

Now we -discuss the deviation 8 3 "of the -moment of 
inertia from its mean value. Figures2and3 (the case with 
T=0 ) show the neutron and the proton parts of themoment 
of inertiaflsM a s a function of the number of neutrons N 
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Fig. 3. The moment of inertia of the proton system as 
a function of the proton number Z.The solid lines show 
the moment of inertia 5т calculated at different tempe
ratures. The value of the temperature measured in MeV 
is denoted by the numbers. The broken line displays 
the averaged moment of inertia?.The dash-dotted line is 
the moment of inertia in theBCS approximation. The 
expression for and the value of the strength of the pairing 
constant are taken from ret.'1'.. The deformation of the 
average potential is «= 0.28. The averaging width 
•ym l.<№ 0>„ • -
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and protons Z , .respectively. The intervals considered 
approximately correspond to one shell. It can be seen that 
the shell contribution s5'=3 S H- tf has a sharp maximum 
at the beginning of the shell, which is due to the states 
fi = 1/2 and П=з/2 descending from the spherical 
subshell h 1 1 / 2 in the case of protons and i 1 3 ,„ in the 
case of neutrons. (We denote by Я the projection of the 
angular momentum on the symmetry axis). At the end of 
the shell 5SM becomes smaller than <f .The examples 
shown correspond to a prolate deformation ( e = 0.28 ). For 
oblate deformations the maximum is shifted to the end 
of the shell and s<J becomes negative at the beginning. 
Consequently the shell contribution is an oscillating functi
on of the particle number with a period corresponding to 
the total number of particles in one shell * • 

The amplitude of the oscillations depends on the devia
tion from the spherical shape. With increasing defor
mation £<] decreases, because, as discussed in 
ref. I'l •', each state in the sum (4) couples with an increas
ing number of other states distributed over a larger and 
larger energy interval. On the other hand, with decreasing 
deformation fifl increases, because the selection rules 
for the angular momentum become approximately valid and 
the distribution of the angular momentum is reduced to 
only few states near the Fermi surface, i.e., the rotation 
loses its collective character. In the limit of vanishing 
deformation, S,<j becomes infinite reflecting the failure of 
the perturbation expansion (3) for the determination of 
3 SM • However <J remains finite and equal to the rigid 

body value. Similarly, in a deformed nucleus there exists 
a moment of inertia 5ц for rotation around the symmetry 
axis,as the corresponding moment also exists in a heated 
nucleus, which approaches the rigid body value ^HIG at 

* The moment of inertia may exceed the rigid, body 
value because the nucleus consists of particles with their 
own angular momenta, i.e., of quantal gyroscopes. 

Г4 
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high temperatures. We discussed the reasons for that 
analogy at the end of Sec. 2. The decrease of o'| with 
increasing deformation is also shown in some figures of 
ref. J' . The ratio 4м '$ RIG plotted there approximately 
equals l + S J / J . The fission of a nucleus into two 
nearly spherical fragments is a good example for studying 
the relation between the shape and the magnitude of s;j 
The results are shown in Fig. 4. It can be seen that 5;] is 
very small at large deformations, but it steeply grows 
when the fragments approach a spherical shape. 

In Figure 3 we show the dependence of the moment of 
inertia on nuclear temperature. One can see that in the 
case of T= 3 MeV the influence of the shell structure 
on the moment of inertia completely vanishes. This ref
lects the already mentioned result Л 2 / that in the limit 
of high temperature Зт - tends to the rigid body value. 
The difference between $ and 3 т at T = 3 MeV is 
connected with the fact that the high temperature limit 
of the moment of inertia is the rigid body moment corres
ponding to the particle density in the heated nucleus, 
whereas J corresponds to the cold nucleus, Therefore 
it is not quite accurate to call the shell contri
bution in a heated nucleus, but the difference between 
J and 5T=3MEV i s small and lies within the limits 
of the accuracy of determining J , 

It is known that heavy nuclei are no longer in the super-
fluid state at T>, 0.7 MeV' : In the case of rotating 
nuclei the transition temperature decreases with increas
ing angular velocity^ u /,In the region above the transition 
our calculations have a direct physical meaning. The 
magnitude of the shell contribution s 3 in the region 
of superfluidity can be estimated very crudely from the 
amplitude of the oscillations of 5т at the transition tem
perature. To illustrate this, we have plotted the moment 
of inertia in the BCS approximation in Fig. 2. An expres
sion for it can be found in re f . / , /

> from which we have 
also taken the parameters of the DCS model. The "average 
value" of the moment of inertia in the BCS approximation 
(this quantity is not determined in this work and should 
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Wig. 4. The moment of inertia of the neutron system as 
a function of the neutron number at different deformations. 
The solid line corresponds to <f the broken one to flcu . 
"'he deformation parameters are: f . 1.0 and upper left 
o 4 - -0.05; upper right 04 * 0.0; lower left «4 ,0 .05; 

lower right « 4 - 0.10. In the right corner of each figure 
a cross section through the symmetry axis of the nucleus 
is show». As for the definition of' and a see ref. 9 

The averaging width »• -1.0 ft ш . * 
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be understood in a heuristic sense) lies considerably 
below J . 

5. The Shell Effects at Equilibrium Deformation 

Now we shall discuss the relation between the shell 
contribution to the moment of inertia and the equilibrium 
deformation. In the case of the anisotropic harmonic 
oscillator potential one can prove that at those values of 
deformation, where the sum of the single particle energies 
of the occupied levels has a minimum or a maximum, the 
shell model value 3SM i s equal to the rigid body moment 

3 S M (a closed shell is an exception/ 1 2'. As the 
RIG 

differences between <L,_ . 5»,,. and jl are 
n i b KJli 

very small,we expect 5 5 to'be approximately equal toO at 
those equilibrium deformatijns.Figure 5 shows that this 
result of Bohr and Mottelsoc is obtained with a good accu
racy .The remaining differences should be connected with 
the slight perturbation of the oscillator potential and the 
uncertainties in the determination of E , The shell model 
value $ зм shows the typical jumps connected with the 
crossing of levels. In the case of the realistic Woods-Saxon 
potential the difference between the minimum of the sum 
of the single particle energies and the point where Sj va
nishes is somewhat larger than for the oscillator potential. 
According to ref. / x{ one should calculate the equilibrium 
deformation from the minimum of the shell correction 
to the energy S U for the neutrons and the protons plus 
the liquid drop energy. In Figure 5 SV for the neutron 
system is also shown. One can see that all the minima 
are shifted to a somewhat larger deformation. If the 
liquid drop energy is taken into account, this effect is 
compensated for to some extent. To summarize this, one 
can say that at the equilibrium deformation the shell 
contribution to the moment of inertia is finite though not 
very large. The pairing causes an additional reduction 
of the shell effects. Hence we can expect that the moments 
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Fit. 5- The averaged moment of inertia 3. the shell 
model value of the moment of inertia 3SM> the sum of the 
energies of the occupied levels и«1 and the shell cor
rection to the energy SV as a function of the deformation 
e. All quantities refer to the neutron system with N^100. 
The solid lines correspond to the («lightly disturbed) 
harmonic oscillator, the broken ones to the Woods-Saxon 
potential. The arrows indicate the .minima of u S J , and 
SI) and the crossing points 4 , « The averaging 
width y-1.01!u0. ляч 3 - ^ ^ 
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of inertia of the even-even nuclei in the rare earth and 
actinide region are mainly determined by the nuclear shape 
and the strength of the pair correlations, because for these 
nuclei the minima of the shell correction 8U of the neutron 
and proton systems are close to each other and U L D M plays 
a relatively insignificant role. 

There arises the question as when one can expect lar
ger values of $A • We would liice to point out to some 
possibilities. 

1) A classical example from atomic physics is the 
magnetic moment of the electron cloud of a rotating mole
cule. The magnetic moment can be calculated using the 
cranking model in analogy to the moment of inertia. It has 
been found experimentally that the moment deviates from 
the value corresponding to the rigid rotation of the electron 
cloud / I 5 ' , 

2} One can expect an increase of Si with increasing 
difference between the deformations, at which the shell 
corrections SV to the neutron and the proton systems 
have their minima. Such a situation may exist in the case 
of shape i s o m e r s / l 6 / . 

3) If two nuclei are very close, the Coulomb interaction 
polarizes the nuclei and their shape does not correspond 
to the minimum of <5 U This situation, which is somewhat 
analogous to case 1), can be encountered in the fission 
process or in the scattering of heavy ions. 

4)In the case of high spin states the equilibrium defor
mation deviates from the minimum ofSU ,and, in addition, 
the «Mir correlations are reduced by the rotation.Of course, 
one canntt introduce the moment of inertia by the pertur
bation theory, but rather one has to take nonadiabatic 
effects into account. 

5) In the case of large deformations (fissioning iso
mers), there are two compensating effects. On the ore 
hand, as the numerical investigations of ref/ v show, the 
zero points of H • (in'ref/^'dsM'/JJHiG* л + s ^ / f is 
plotted) and the extrema of SU become uncorrelated at 
large deformations. On the other hand, the magnitude of 
83 is strongly reduced i t these deformations (see above). 
For a more accurate estimate one should Carry out detail- ; 

ed calculations. 
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6. Summary and Conclusions 

By means of Strutinsky's averaging procedure we pro
posed a partition of the moment of inertia into an average 
part | and a shell contribution SJj. We carried out numerical 
calculations demontsrating that £ (and therefore si ) as 
a function of the averaging width у has a plateau. This 
means that the conception of the averaged moment of iner
tia E Is defined unambiguosly. This is a new result, 
because the expression for the moment of inertia deviates 
considerably from that for the binding energy. The moment 
of inertia has the form of a double sum containing an 
energy denominator, which restricts the sum only to 
states near the Fermi surface. Therefore it is possible 
to calculate ,14 M and f within the shell model with suffi
cient accuracy In order to be able to speak about their 
physical meaning.In this sense the situation with the mo
ment of inertia substantially differs from that with the 
averaged binding energy. 

By analogy with the binding energy, <j can be interpre
ted as the average value of the moment of inertia of 
a group of nuclei of the same shape. This mean value 
coincides with the rigid body value with a very good accu
racy. This coincidence permits the interpretation of the 
investigations, in which the rigid body value is used, as 
those relevant to the average behaviour. For instance, 
in ref. >7 the nuclear shape of a rotating nucleus is 
investigated. In this paper the energy is assumed to 
consist of the potential energy of a liquid drop and the 
kinetic energy corresponding to the rigid body moment of 
inertia. The equilibrium shape is found as the minimum 
of the total energy at a given angular momentum. In this 
way the yrast line Fan is found. Now we can interprete 
this calculation in the following way. The calculated 
yrast line describes the mean behaviour obtained by ave
raging over the large (1 shell) number of nuclei of the 
same shape. The real yrast levels in each nucleus may 
be widely scattered around this value l s . 

In this work we consider only the division of ,1SM cal
culated in the cranking model, into J andS<I, but we hope 
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that an analogous partition is also possible in other models. 
The coincidence of ^ with the rigid body value justifies 
the suggestion that one can calculate J with the usual 
approximations employed for a large system, e.g., for 
nuclear matter. It is known that the moment of inertia 
of a gas of non-interacting f ermions in a large cubic box 
equals the rigid body value/iV Long range correlations 
of the RPA-type do not alter the result 20{Oaly short 
range correlations of the pairing type considerably reduce 
the moment of inertia (re fs / 2 5 з / ), but the influence 
of the pairing correlations is not investigated in this 
work systematically. 

In a finite system the moment of inertia even without 
pairing differs from the rigid body value. The shell contri
bution 5<j is an oscillating function of the particle number, 
as well as of the parameters determining the nuclear 
shape. However this fluctuating behaviour is difficult to 
observe: it is shown for the anisotropic harmonic oscilla
tor that the difference j s -Aifo - *fl vanishes at the 

• ' / 1 2 / 
equilibrium deformation .Our calculations show that 
this is approximately valid also for the realistic Woods-
Saxon potential with spin-orbit coupling if the deformation 
is not too large ( с < 0.4). At large deviations from the 
spherical shape the correlation gets loose. But one can 
expect a significant influence of the shell structure on the 
moment of inertia under certain circumstances, some of 
which are discussed at the end of Section 5. 

As was mentioned in the introduction, we consider the 
investigation of the moments of inertia as a first, simple 
step in the study of the mass coefficients of other collec
tive modes. Finally, we would like to discuss the general 
conclusion that can be drawn for the mass parameters 
from our investigation of the moment of inertia. 

The main difference between the moment of inertia and 
the other mass parameters consists in the fact that the 
latter ones have the form of a sum whose terms are 
divided by the difference of the single particle energies 
in the third power. This leads to a more rapid reduction 
of the contributions of the levels with their increasing 
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distance from the Fermi surface.Therefore the shell cont
ribution becomes of still greater relative importance. 
However we hope that the averaging procedure is appli
cable to other mass parameters with the same success 
as to the moment of inertia. In the case of the moment 
of inertia the averaged value of <j is equal to the 
rigid body one. As regards the other types of mass para
meter. It Is unclear both what kind of average behaviour 
should be expected, and what role the interaction between 
the particles plays. / 1 / 

As Is shown, e.g., by the calculations In ref. , the 
oscillating dependence of the mass parameters on the 
particle number and nuclear shape is a general feature. 
However the oscillations of the mass parameter of the 
fission mode are.In another way correlated with the shell 
correction to the binding energy. 

In the case of the moment of inertia the amplitude of 
these oscillations rapidly decreases with inreaslng defor
mation, but after fission the magnitude of 5j is determin
ed by the deformation of the two fragments. This distinc
tion of the spherical shape is probably restricted to the 
rotational motion. The damping out of the shell effects 
with increasing temperature is certainly a common featu
re of all mass parameters. 

The authors would like to thank Professor V.G.Solo-
viev for his permanent interest in this work, as well as 
Professor Z.Bochnacki and Drs. R.V.Jolos, I.N.Mikhailov, 
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and remarks. 

References 
1. M.Brack, J.Damgaard, A.S.Jensen, H.C.Pauli, 

V.lf.Strutinsky, C.Y.Wong. Rev.Mod.Phys., 44, 320 
(1972). •••••:: 

2. V.M.Strutinsky. Nucl.Phys., ASS, 420 (1967); 
Nucl.Phys., A122, 1 (19M). 

3. H.C.Pauli and T.Ledergerber. Invited Paper at the 
Third Symposium on toe Physics and Chemistry of 
FisSion, IAEA-SM/174-206. 

4. K.Kumar, M.Bar anger. Nucl.Phys., A122, 241 (196S). 

22 



5. D.R.Inglis. Phys.Rev., 103, 1768 (1956). 
6. M.Brack, H.C.Pauli. Nucl.Phys., A207, 401 (1973). 
7. L.D.Landau, E.M.Lifshitz. Statistical Physics, Mos

cow, 1951; p. 114. 
8. V.V.Pashklevich and V.M.Strutinsky. Yad.Fiz., 9, 56 

(1969); 
Sov.J.Nucl.Phys., 9, 35 (1969). 

9. V.V.Pashkievich. Nucl.Phys., A169, 275 (1971). 
10. F.A.Gareev, S.P.Ivanova, V.G.Soloviev, S.LFedotov. 

Particles and Nucleus, 4, 357 (1973). 
11. A.Bohr and B.Mottelson. Nuclear Structure, vol. II, 

W.A.Benjamin Inc. New York (in press). 
12. A.Bohr and B.Mottelson. Dan.Mat.Fys.Medd., 30,no. 1 

(1955). 
13. V.M.Kolomietz, B.D.Konstantinov, V.M.Strutinsky and 

V.I.Khvorostianov. Particles and Nucleus, 3, 393 
(1972). 

14. L.G.Moretto. Phys.Lett , 35B, 379 (1971). 
15. G.C.Wick. Phys.Rev., 73, 51 (1948). 
16. W.D.Fromm, H.F.Brinckmann, C.Heiser, F.-R.May, 

H.Rotter, V.V.Pashkievich, JINR Communications 
E4-7422, Dubna, 1973. 

17. S.Cohen, F.Plasil, W.J.Swiatecki. Proc. of the Third 
Conf. on Reactions Between Complex Nuclei, Berkeley, 
1963; LBL-1502 (1972). 

18. J.R.Grover, Phys.Rev., 157, 832 (1967). 
19. R.D.Amado, K.A.Brueckner. Phys.Rev., A115, 778 

(1859). 
20. R.M.Rockmore. Phys.Rev., 116, 469 (1959). 
21. R.M.Rockmore. Phys.Rev., 118, 1645 (1960). 
22. A.B.Migdal. JETP, 37, 249 (1959). 
23. S.T.Belyaev. Nucl.Phys., 24, 322 (1961). 

Received by Publishing Department 
on March 14, 1974. 

23 

http://Dan.Mat.Fys.Medd

