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1. Introduction 

The problem of how the transition from the simple 
structure and small density of low excitations to the 
complex structure and large density of high excitations 
occurs seems to remain still unsolved theoretically. This 
is explained by the fact that the structure of intermediate 
and highly excited states is unknown and there i_ no 
unified nuclear theory.By tradition.the lower part of the 
spectrum is described, e.g., in the framework of the super-
fluid nuclear model / l / while highly excited states are 
treated by the statistical model ' 2 ' . The semi-microsco
pic approach of the superfluid nuclear model has proved 
to be good in the region of low excitations. It is important 
to generalize it so that it would be suitable for a quali
tative study of highly excited states. To this end, of 
much importance was the idea to express the complexity 
of highly excited states in terms of the operator wave 
function ' 3 * which was defined in such a manner that 
there was a hierarchy of its components with different 
number of quasiparticles. A systematic study of the new 
approach is given in ref. ^l . It has made a good start 
for creating models for the description of structure comp
lications with increasing excitations / r>-"/.Tne models 
mentioned above are based on the account of the quasi-
particle-phonon interaction. 

In r e t s / 5 - 7 / systems of the basic equations of the 
model are obtained for the solution of which it is necessary 
to diagonaiize matrices of the rank 10 '' and higher. This 
fact forces us to apply to approximate methods of solving. 
The approximate solution found in ref. /V, when the 
coherent terms alone were taken into account, was found 
to be rough. In addition, in this approximation there 
appeared superfluous solutions which are hardly separable 
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from the true solutions. A decisive step toward solving 
the basic equations of the model was made in ref. /'Я /' , 
where the so-called one-pole approximation was used to 
solve the problem in an analytic form. 

The aim of the present paper is to generalize the 
model suggested in ref. /' ,' , / to the description of highly 
excited states of doubly even deformed nuclei and obtain 
an approximate solution on the basis of the method deve
loped in ref. 

2. Formulation of the Model 
for Doubly Even Deformed Nuclei 

The model for the case of a doubly even deformed 
nucleus is formulated in the framework of the semi-
microscopic description in nuclear theory in just the same 
manner as in r e f s / 5 - 7 ' ' . Th« model Hamiltonian is taken 
in the form of the potential describing the average field 
of the neutron and proton systems, the interactions leading 
to superconducting pairing с ^'".tions and multipole-
multipole interactions. Taking . :_• account the secular 
equations for determining the phonon energies "'g 

(where g denotes hv- j . i being the number of the 
secular equation root) we can write the Hamiltonian in 
the form 

H = Hv + H v q = 2 B g Q +

g 0 g -

--L £ |J Y%{v,v") B( v,v') +r 8 U,OB(K,i , ' ) ](Q* + 
2 g,i',i> 6 

+ Q g ) + h. с ! . (1) 

The phonon operator Q is 

2 v,v' 
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v ,< ,,' 
Г ' М = = • f M r , i ' ' ) , I ' M i M - ' ) 

v i- v ' -t 
_ _ . Г ( i ; r ' ) . p - A ^ , 
2 v Y B 

(i'u)is the set of the quantum numbers characterizing 
the single-particle average-field level, a - t I , the 
remaining notation is the same as in refs/1'••>/. 

In the present model we take the following wave 
function 

•P. ( к",0 ) = C' (Q +

 + -L- X F 8 ) h Q + 0 +

 + 
0 s o «0 v"2T „ , „ g o ! g l B 2 

g, (5, 8, + + i 

' 3 ! в,.?., °з 

e l 8 2 g 3 g 4 + + + + 
R i 0 U 0 0 ) 4*0 

V 4 ! g l g 2 6 3 g 4

 B ° ' "' ** ** 6 " 

where 4'0 is the phonon vacuum, i is the number of 
an excited state, the functions I' •, P and R are complete
ly symmetric with respect to the indices g ] g 2 g, g 4 • 
The fact that tlie wave function (2) has many components 
makes it suitable for obtaining a model of the complex 
structure of highly excited states. For example 

i g гво 2 
( C s o K«o' ' 

defines the contribution of the two-phonon component 
gj g to the wave function (2) normalization. The latter 
has the following form 
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( Ф * * ) = 1 = ( С * ) 2 [ 1 + 2 ( F . 2 ; ) 2 + 
i i 8 0 G ° 

G G < 3 > 
+ 2 ( P 3 ) 2 + 2 ( R ,* ) 2 ] . 

G g ° ' С д

 8 0 
3 * 

Here G„ means g, , g„ . . . , g and the summation 
2 is a brief notation of X 
G n g l ' g 2 g n 

The average value of the Hamiltonian (1) over the state 
(2) has the form 

H ; " ' . ) = ( C ' ) ' [ » + 2 ilr ( F 2 ) 2 + 
1 g 0 B 0 C

2

 G 2 V 

2 n G (P °» )2 + £ 0 ( H ° 4 ) 2 _ 
с з з «о G

4

 4 V (4) 

- 2 2 U „ F„ i - 2 2 U r , P . i F . i -
C 2

 e 0 B 0 ' C 3 G ' 2 " 2 B 0 ' "0 

2 2 u ' ° H ; * , - 2 2 u £ R G

g

4 i P 
G 4 „ C 4 Gj 

С "4 « V G. ,C' 3 B 0 "0 
4 4 3 

H e r e Я G = w e + U>_, + ... + <u. , U r e p r e s e n t t h e m a t r i x 
n B l 6 2 B n 

elements of the second term H between the states 
with different number of phonons, e.g., 

G 3 1 + + 

Vr. = ( * * Q Q Q H Q , Q , 4> ) , 
G

2 JF.зГ ° «з g2 8i v q gi e2 ° 
G 

U 2 corresponds to the quantity U g' ( ej>) introduced 

in ref. 

2 c . . „_ „ g l 

/ 9 / . 0 ,„ , 2 
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U g

2 = " 4 = 2 |[ Г§1 („, , , ' ) ( / 2 4' ? 0 ч 

g 2 8 0 - «2 - s 0 - 62 - 60 
Ф , Ф + 4» ¥ , + Ф , Ф ) 

V V VV VV V V V V \'V 
2 2 2 2 2 2 

- g , В 9 _ В п g o - B n ~ g 2 K 0 

Ф 6 2 , Ф В ° ) + [ g . 1 • u ; / \ 

_ В B| _ g 2 - PJ s 2 - ц 2 i s l 
+ 1' ° ( t / , 1 - ' ) ( I ' - Ф + ¥ - Ф + Ф - Ф 

i' " ' 2 I-'I'Q l'21' v v 2 ' ' 2 ' ' ' '2 

2 - " 1 
(5) 

3 1 8, g , g, g , 
I , = 4 = ( U ,' 2 5 . + II ! 3 5 

C 2 V 3 ! 8 ' в * ' з g > 

6 2 F 3 . _ 
Г 1 БП fe I 1 B 3 5 1 s 2 
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g 2 g 4 1 G 4 g 1 в 9 
+ и . s , ) s ±- s c

3 ( и . I 2 s _- . ) 
62 g i 8 i V 7 T 2 ' 2 3 

(6) 
G 3 

S G - implies a symmetr iza t ion with respec t to the 
2 

indices s\ %\ and to indices g, g , g 3 . 

" с " = - = S G < V g g g S

g g > • (7) 
4 v ' 4 ! 4 ё 2 8 3 S 4 g l S 0 K > 

g 2 « 3 g 4 • / . * > , V"2 " "2 

^4 ^Я — ^Я — ^d — ^ 4. —B« 

v v 2 " v2 ^ 2 v v2 v v 2 " 2 

Г 2 ( , ' ,•/ ' ) ( «V 3 , Ф 4 + 4' ,Ф * +Y ,* Ф + 
V2 " " V2 V2V v v2 V "2 VV2 

- 6 4 ° 3 
+ * . . . , Ф.. „ > • 

(8) 
" 2

 v V2V 

Finally 

c 4 1 G 4 
U 

1 - * . - ^ 2 
с = — — 

3 V31 4! 3 

S „ , ( V К 18 , 3 , ) , со-, 
G „ в , 8 Л , g„ g „ W 

where 

g , g , Вт g / 8 2 • g / 8 2 
V , = 2 |[ I' U , i> ' ) (4> «P , + Ф , Ф + 

g, , vv v v v v vv 



_ 6i — &2 - §i — s 2 - S, 

( ш 1 Ч ' , + Ч' Ч" - + Ф - Ф +Ф -Ф )l 

1 6, g l 6 2 8 1 8 2 - B l - e 9 
+ _ [ Г ' ( i ; , / ) (4> ф - + Й - V i l f ft . 

s l _ g 2 _ g l g 2 
¥ , Ф +Ч 1 , Ф ) J | . (10) 

3. Exact Solutions for the Model 

The energies i- of nonrotational states and the 
'2 „ ° 3 G , G 3 . „ G 4 

functions С , г > P • a n d R „ i a r e determined 
Bo r g 0 i g 0 ' so" 

from the variational principle: 

MCP? HVj ) -I?; [(Ч»*4) ) _ 1 ] I = 0 . (И) 

After performing some transformations we get the fol
lowing system of basic equations 

G 2 - 1 G 2 ° 3 G 3 

»V=<% -^ < 4 + J "S V ' ' ( l 2 ) 

3 
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G 4 -1 «о G 4 <V 

Ч ; = ( % - " ; > ( ° с 4

+ ^ °Ч V > ' ( 1 3 ) 

' 3 

"3 G 3 

G 
( Q C , - ' » i > ' \ , - - 2 f S 

3 „ r „ 2 2 
+ 

u C " " 4 , 

_ J _ _ _ , p , i ( , , (14) 
P 0 • p 0 1 

v." П .... - „ . 

s s 
'/1 - K„ <4 i > - S I , «4 i ) P , i = 0 • 0 5 ) 

h 0 (; K 0 Ц О 

C t R 0 
where 

3 ? B 0 3 4 
I 3 ( , ) . v : ° _ _ , v ? L _ ( i6 ) 

1 1 2 • « 0 2 
M ; „ r i (;G ) 

к (,;.} . г — ^ s i . ( 1 7 ) 

0 S <V» c-« *4 " * 
The function C, is determined by the formula (3). 

The secular equation for finding ^ is written in the 
form (15). It is obvious that in order to solve it we have 

<;, 
at first to find P \ This coefficients obey the linear 

inhomogeneous system (14). Owing to a huge rank of the 
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matrix of this system (larger than 104 ) the solution 
according to the Krammer theorem is cumbersome. Wt 
have therefore to apply to an approximate method of 
solving (14). 

4. Approximate Solutions 

We rewrite the system (14) as follows 

( I V - - ) 2 ( r f . ) - c . 
[ H c - , r X -2- - 1 a | p \ 

3 (,"' П<;~~ Vi Г." «(•- -7,: '̂ 
2 2 ' 4 ' ' 4 ' 

3 
- 1 [ S — • ^ 1 • • | l ' „ , 

- L g ( 4 i ) . 
о 

where G3' ^ (;3 implies that in the sum over (^ only 
one term with Q' = f>4 is absent. c, 

The expressions of the type i ( , , 21) 
'n il (;' - if. 

s " 
contain the squared values of I ;

(_, and, therefore, 
'n 

such sums are called coherent, while the sums of the Л ,' 3 
1; г," type S — 2 — л —,(. ,^(^ 'are called noncoherent. When 

n n 
we neglect the noncoherent sums we get the function 
P ' which is, in this case denoted as P '? 
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s 
G 

p

s ' i - — • : • Ов) 

r. G' 
3 о 4 •? 

( i " G ; ) ( U G ? ) 
i V i 

П г.' - ''i G' B e ; - r ' i 
a 2 4 4 

Ь S ( r , ) 

° 2 "" "2 ' ' "4 "4 
-c„ (19) 

Inserting Pg j in (15) we obtain the secular equation 

in the explicit form. Such type solutions for an odd 
deformed nucleus were first obtained in ref. ' and were 
called coherent. They are undoubtedly invalid when the 

г г ' 
Ч*" l'c n" 

noncoherent sums ~ „ "——— contain at least 

one-pole term, and superfluous solutions appear in this 
case. 

In ref. the idea about the necessity of taking into 
account the pole noncoherent terms was suggested. This 
means that one does not reject the noncoherent sum as 
a whole but does reject its non-pole part alone. If we 
restrict ourselves to the one-pole approximation then the 

ligO UGo 
contribution of the term " " from the pole 

Q c o -r,. 

С G ' 

fi 0° in 2 i s considered essential 

and is taken into account. Following ref. ' , we shall 
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refer to i J c 0 as an n -phonon fundamental pole. For 
each fundamental pole we find its approximate expression 
for the system of equations (14) and solve it. 

We find an approximate solution for eqs. (14) corres
ponding to the functional pole J! c? - ш s « +w ,,.р . In 
eqs. (14) we reject all the noncoherent terms tor the 
exception of those which contain 'H (;g - ' / . ) - ' and after 
simple transformation we have 

с я 

p . . . 2 v (i 0 p 

_2L___!L__ 
k G 3 < , ° > 
b ( I7j ; (, , ) 

(20) 

where S , (:.» „ 

C ' 3 , , .o 2 я 

b {??. ; G , ) = S ! ( ; - , , . - _ 

S'*^" " S " " ' ' 1 С 4 П с 4 ^ 

(21) 
In what follows when the arguments of the functions 
I. , К and Ь contain in addition to n\ the quantity 
G» this means that the functions i- . к and >• do not 
contain pole terms ( C" - IJ, ) -• . 

To solve the system (20) we use the result obtained in 
ref. ' a / according to which the solution for the system 

X ( « . . - a. . ) x. = y. (22) 
I >) U 

under the condition 

a . . a . , . , * a . . , a.,. ( 22 ' ) 

reads 
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£ а у 

J , (23) X . = V. + 
1 M 

A 

where the determinant of the system (22) is equal to 
Л = 1 - S a„ . (24) 

i 

For the system of equations (22) the condition (22') 
holds. In fact, 

' ;з с з с з с з 

( " 0? - 4 , > b " 3 ( 4, i ' i° 2) (« ( ;0 - 4 , ) b ' % . ;(i°) 

( n ^ - , . ) ь ' 3 ( , . ; c ° 2 ) ( n о - ,. ) ь г ' 3 ( , . ; ( ;" ) 

therefore the system (20) can be solved in an analytic 
form. Taking into consideration (24) we get 

s 2 
( l ' G ° 2 5 

Л ( C° ; , ) = 1 2 _ - . 
« C S - Ч , G 3 Ь G 3 (г,; ;C°) 

(25) 
From eqs. (15) and (23) it follows that the poles of the 
secular equation (15) are determined from the condition 
Л = 0 from where 
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, ( и о Г 
Q „о - v р о 1 = S Ь G u - , • 

ь 1 „ (25') 
Ь 6 ( г/ ; G 2 ) 

The quasipart icle-phonon interaction has led to a shift 
of i Po] with respec t to the fundamental pole. In the 
expression for Ь 3(i/j;Cfi ) we replace ^ by i I ю 1 

and use the formula (25'). Then for the determinant we 
get the following expression 

Л ( G° ; , . ) = '— . (26) 
fic° - fi 

Utilizing eq. (23) we find the solution for eq. (20) in 
the form 

S 
с Lg ( , ) 

P g | . _ _ + _ ! . 

Ь 3 ( Ч , ; С ° 2 ) Ь 3 ( , . ; G ° ) 

2 2 . GJ 
L 3 ( r , > . (27) 

, p " - , . S ь сз ( , , ; o ° ) ° 

If e i ther g. o r g 2 or g 3 a r e not equal to (§ or 
g<> then from ( 6) it follows that the second t e r m s of 

(27) vanishes and then the function p 3 i s close to 
- c , 
P 3 defined by eq. (18). 

g > о 
We find the solution for eq. (15) corresponding to the 

fundamental pole ^сй and lying near the pole '/ p o 1 

* G 
defined by eq. (25). Inserting the function P ? in «3 
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the form (27) in eq. (15) we single out the pole terms 
G„ GQ 

"«:!' \ 
.0 . ( 2 8 ) 

] . „ I , , ) 4 ! - R Ч---Ь2 ) 

and after simple transformations we get the following 
secular equation 

G 

! L g

3

o ( V G ° ) ] = 

« 4 - " i ~ к « 0

 ( " i ; t ;

2 > ~l — 
Ч Ь 3 ( i,. ; G° ) 

i 2 

' ' • " - - ] 2 - о . 

(29) 

where к i iy. ;(;."", is defined by eq. (28). Perform a 
further simplification of eq. (29). In all the terms but 
'/i'" 1 - >it we repl-ce 17. by q P C I and obtain 

pol 

, ; r ° r. 
; 3 b ' 3 ( ^ P o l : ( , ° ) 

L B o

3 ( i j P D l ; C ! j ) ] 2 

P°l • , pol r 0 , v

 B 0 
1 " Ц l l '•'•'2'~± 

G 3 

[ L B ( , H ; G , ° ) ] 2 

G 3 ь С з ( , > " о 1

; c ° 2 ) 

(30) 
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The value of 4j found from eq. (30) should be conside
red as the first approximation. Then by the iteration 
method it is possible to obtain tLe solution for eq. (29). 

We find the approximate solution for eqs. (14) and (15) 
corresponding to the fundamental pole Q r 0 = <•> 0

 + 

" 4 ?! 

"g° + U J g ° , + Ше.1 ' w e perform the same trans-
formations as in the case of finding the expressions (26) 
and (27) and equation (29). As a result, we obtain 

r° 
* 

G 3 L ( , i ; G 4 ) 1 U G 6 o 

° b S ^ c " ) ,Р"- Ч, b G »( 4 l ;C») 4 

! ' 4 C£ 0 

H г ^J.—!£ ] , (31) 
C ; ( Л ( „ . ; О,". ) 

к ( 4 , ; G ° 4 ) - 2 

( ' 3 0 2 
[ L . ( 4 l ; G * ) J 

с з ь s { , c» 

4 "3 о 
l> G 3 b g f l ( , | ; С 4 ) 

2 
[ U c o + 2 c : ] = 0 

V '°
1-т,. 4 C 3 b ' ( , , ; G° > 

(32) 0 
G 4 2 

( U c ) 
pol 3 Q c o _ , = s ( 3 3 ) 

4 C3 b ^ ( ^ P " 1 ; G°) 
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In solving eq. (32) as the first approximation we can 
take the value v p ° - 4; similar to eq. (30). 

Consider the case when the solution for eqs. (14) and 
(15) corresponding to the three-phonon pole is derived. 
Since the system (14) contains no noncoherent thr te-
phonon poles then we keep only the coherent terms and 

obtain P in the form (18). The poles of the secular 
*,.' ч 0 

<' г. 

equation are found from the equation ь ' ( „P o 1 ) = о 
which we rewrite as 

<•; , 

* i ( . • > ( i ' ( . i -

! l ( .o - , , P u i - v 1 > X '± (34) 

The explicit form of the secular equation is as follows 

' • , „ ' * , ' 

4i 

l l . f I 

S ^ b , : M 4 i 

(35) 

For the sake of completeness we fjive the secular 
equation corresponding to the one-phonon pole 

' • 8 0 < 4 i ' 

"So " f i - К ^ J - I — ^ = о , (36) 
( ; 3 Ь 3 ( r,j ) 

S 

the function P ; is of the form (18). 

18 



Thus, the method of one-pole approximation allows 
constructing the operator wave function in the analytic 
form in all the cases of interest. The obtained secular 
equations differ mainly by the form of the pole terms. 

It is interesting to note that in the framework of the 
one-pole approximation it is not difficult to show that 

( 4 " V ) = 0 , i 4 i , , (37) 
1 2 

( f.» II V. ) •_- ». , ( 3 8 ) 

i.e. the orthogonality of the states (2) and the meaning of 
the Lagrange multiplier щ as the energy of an excited 
state remain valid in this approximation. 

S. Conclusion 

The main result of the present paper is the obtaining 
of rather good approximate solutions for the system of 
equation.' (14) and of the secular equation (15) in the 
explicit form. The approximate secular equations (29), 
(32), (35), and (36) contain no superfluous solutions and 
there is an effective method of solving them numerically. 
The approximate secular equations are also obtained for 
a simple case when in the wave function (2) the four-

phonon terms are absent, i.e. К = о , 
V 

In ref. fel the exact and approximate solutions are 
compared for the case of a small basis. It is shown that 
the large wave function components for the exact and 
apnroximate solutions are close to each other. The 
approximate solutions for eqs. (14) and (15) we have got 
are expected to be close to the exact ones, as far as we 
employ the same approximation as in ref. 
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The obtained approximate equations are applicable to 
the study of the structure of intermediate and highly 
excited states of doubly even deformed nuclei and, first 
of all, to the study of the fragmentation of one-, two-, 
three and four-phonon states over many nuclear levels. 

The authors express their deep gratitude to N.N.Bo-
golubov, A.I.Vdovin, R.V.Dzolos, L.A.Malov and CH.Sto-
yanov for fruitful discussions. 
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