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1. INTRODUCTION 

After the discovery of the drastic increase at high 
spins of the moment of Inertia J in the ground state 
rotational bands of even-even deformed nuclei by Johnson 
et al. / l / , which leads to the well-known back-banding 
behaviour of the moment of inertia J versus angular 
velocity squared <u2 curve, this phenomenon has been wi­
dely studied by several groups /2-10/ and observed not 
only for deformed nuclei and not only for ground state 
bands. Good reviews are to be found in refs. /11—13/. 

Two main mechanisms for explanation have been sug­
gested - one of them is the old Coriolis anti-pairing 
effect /•*/ leading to a phase transition from a super-
fluid to a normal state /is, 16/. There are also calcula­
tions of this effect using the projection method' 1 ^ 1 8 / . 
Another effect is the Coriolis decoupling effect ' , 9 ' lea­
ding to rotational alignment of the angular momenta of 
a pair of particles to the total momentum. There are 
applications of the self-consistent cranking model for 
treating the phenomenon as well /20/ . The decoupling 
of one particle is experimentally known in odd nuclei /21,22/ 
Both mechanisms lead to a qualitative agreement with 
experiment but both effects have not been experimentally 
distinguished as yet '"'.Also phenomenological fits to the 
back-bendir.g curve are known /**-M/ t м some cases 
supported by a band hybridization calculation /27/. 

The idea of this proposal has come from the observa­
tion that the two-parameter formula / 2 8 Л 

E , - L t v i + ciiiii2- -11 , (i) 



which describes rotational energies up to high spins / 2 B / 
(but below the transition point), working not worse than 
the well-known two-parameter Harris formula 

/ 29 / 
, can 

be deduced / 3 0 > 3 1 / from the reversed expansion /3i/ : 

1(1 + 1 ) . f(E)-bE + cE 2 + . . . ,b«2J (2) 
if we limit it to the first two terms, and apply the well-
known relation / " Л 

2J- li<£LUr(E). (3) 
This means that the reversed expansion (2) converges 
more rapidly and gives a better description of rotational 
energies up to high spins than the direct expansion 
E versus I (1 + 1). ' 

In the region around the transition point one cannot 
expect a good convergence even from (2). But from the 
fact that the level energy E increases with the spin 
I (though the transition energy с may decrease) it 

follows that the moment of inertia j remains a single-
valued function of E (though a multi-valued function of 
<"2). Therefore we can hope that we could find a simple 
good parametrization of f (E) in (2). In such a case 

E would appear to be a better argument for J than 
or „2 obtained from /U/ 

dE VK1+1) 

<wia+n J 

2. ROTATIONAL ENERGIES PARAMETRIZATION 

Inserting (2) with 2 parameters into (3) we obtain 
that below the transition point 2J-f'(E) is alinear function 
of E . In the region aroung the transition point it increa­
ses more, or less rapidly towards nearly its rigid-body 
value ' '• Therefore f"(E) will possess a resonance-
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like form with a maximum in the transition point. What 
should be its exact form is difficult to guess since 
the transition is a complicated and not well understood, 
phenomenon. Even in the solid state, where phase tran­
sitions are studied by many people (but where they can 
be due to different physical causes) there is little 
information about this point. There are some theoretical 
models leading to formulas of the type "ch" x 0 r 
~[chx+l]~ (x-E-Eo. Eo - the transition point energy). 

We decided to limit ourselves here to the simplest 
resonance-type form, the Lorentz-form, which added to the 
term following from (2) gives: 

f"(E)-2c+ 2 ;=2c+yS(E-E 0 ) for/3=0 (5) 

H ( ^ - ) 2 

(We denote y=nap), wherefrom: 

2J = f ' ( E ) - b + 2 c E + i - [ a r c t g £ l £ i +arctg——°] j 
u p p 

- b +2cE + y 0 ( E - E o ) for /3=0 (6) 

with the notations: в(х) - I * ' *>jj , b-2J f l . 

Further on: 

E 

2 v E-Eo Eo. f(E) = bE + cE + -£-(E-E 0 )(arctg— +arctg- s -) + 

+ %й(п -J-- ;ЬЕ+сЕ + у ( Е - Е о ) 0 ( Е - Е о ) 

l+ (—и ) 
P for /3-0 . (7) 

This parametrization is not intended to describe the 
"down-bending"/ 1 1 / of J (its decrease) which occurs 
in some of the nuclei after the back-bending. One more 
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parameter changing the slope 2c of the straight line 
after the transition point could take it into account, but 
it hardly makes sense in a phenomenological description 
since this phenomenon is usually observed only at the 
highest-spin point of the curve. 

Thus we have a two-parameter (Ь, с) smooth component 
(straight line) - the first two terms of (6), and a three-
parameter (Eo, /8 , у ) step-like component - the last 
term of (6). Our parameters have the following physical 
meaning: Ь is twice the moment ot inertia 2}0 at 
zero energy E=0, с gives half the slope of the smooth 
component and measures the usual smooth non-adiabatic 
deviations from the rigid-rotor. Eo is the transition 
point energy, P is the half-width and у - the amplitude 
of the step-like component. This is illustrated in fig. 1. 

The experimental value for the moment of inertia 
of the transition I-.1-2 is obtained from /•>/: 

2j - jllfl— (8) 
E| - E | _ 2 

at an energy defined from: 
f(E,)-f(E, ) ( 9 ) 

E l _ E I - 2 

which is better than the simple definition: 

E = E i + E i -2 (10) 

for our representation (fig. l), or at an angular velocity 
squared ш2 defined from: 

a.JML{El-Blt) (ID 
2 1 - 1 l ' i 

with E obtained from (9), which is hotter than the 
usual definition / " / ; 

V i 2 - i + i 
<•> - -д _ i (E| -Ei_ 2 ) (12) 

С 
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Fig. 1. 2 J versus E representation from (6), and 
meaning of the parameters in (o). 



for the usual back-bending representation in the following 
respect. (12) gives an interpolated °> for the transition 
1-.1-2. ц is obtained from (4) for 1(1+1) changed to 
l / 2 l i a+D + (I-2) a-D]=I 2-l +1 • This value of the spin 

has come from the condition that 2 J obtained from (8) 
for the transition I -» I - 2 should coincide with 2 J , 
obtained from (3) at the so chosen value of the spin, but 
with an additional assumption: the direct expansion of 
E in 1(1+1) should be limited to the second quadratic 

term in the interval l->I-2 . Similarly, (10) is an inter­
polated value of E obtained from the same condition: 

2J from (8) for the transition Ei -> E]_2 to coincide with 
2 J from (3) at the energy E , with the additional assump­
tion: 'he reversed expansion (2) is limited to the second 
quadratic term In the interval I -1-2 • Both assumptions 
might work badly around the transition point. Therefore 
we propose (9) instead of (10) and (11) instead of (12), 
(9) and (11) being obtained from the same condition, but 
with the more realistic dependence 1(1+1) - ((E) taken 
from the formula (7). However the difference is usually 
very small and becomes significant only in some cases for 
the points near to places of strong bending of the curve. 

3. FITTING PROCEDURE 

To fit the parameters to the experimental data we 
have applied the least-square method, minimizing the 
expression: 

S = 2 p , [ f ( E , ) - i a + l ) ] 2 , (13) 

where E i is the experimental energy of the level with 
spin i . The weights p, could in principle be chosen 
different because of the varying experimental accuracy 
of the different level energies E | : to a higher I would 
correspond a lower accuracy of E| and therefore -
a lower value of Pi • But such levels are most important 
for the description of the transition. Moreover the 
theoretical description gives differences with experiment 
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still several times higher than the experimental errors. 
Therefore we choose simply p t = 1. 

To find the experimental accuracy of our fit we can 
estimate the error of S by: 

Imax Imax ,, « I/ 
AS =| S [ 2 2[f(E;.)-rtt'+l)]f'(V ) At, I , (W) 

1-9 1 '=1 * 

where с ( «E[-Ej_2 is the transition energy and д f , 
its dispersion which can be accepted to be approximately 
the same for different Г: A7f = Д f

 2 and a rough esti­
mate could be A f • 0.3 keV. Thus we can regard two 
sets of parameters as distinct outside experimental 
errors if they would give a difference of s higher than 
4 S from (14). 

To estimate the quality of our fit, we can apply a pro-
cedure similar to the x2 -test. We will compareV2/I „js, 
which measures the mean square error of f(E) due to 
our fit, i.e., its mean square deviation from 1(1 + 1), to 
i / ( ^ / l m „ )Sij"", where s i d would be the value of s if 
our fit would be ideal and the deviation f(E)-l(I+l).f'(E|)AE, 
would be due only to experimental random deviations of 
с j , which would mean: 

S i d - ' T [ 'i '-f 'CE.OlXTT (15) 
1 - 2 I - I ' ' 

Thus their ratio X -VS/Sidis the ratio of the errors of 
f(E ) in the cases of the real and of an ideal fit. The best 
quality would be represented by X = 1 and worse quality 
would mean x> ' l . 

..'e shall also separate the most important half-width 
parameter P to study it in greater detail, and in parti­
cular to see if we have a zero or finite transition width. 
Therefore we shall first minimise over the rest of 
the parameters, obtaining S(J9), and find at the end its 
minimum over jS. 
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4. NUMERICAL RESULTS 

We have chosen 4 nuclei in the rare-earth region, 
which until recently (there have been new contributions 
in Miinchen) were the nuclei with the best expressed 
S -shape Of the curve 2 J versus a>2 / " • 1 2 / ! 

16ЧГЬ / S / , 162 Er/2,11/ , 160ЕГ / 2 , 3 / , 158 & / з / . 

The results of studying S as a function of P are 
shown in fig. 2. The highest level in the cases of 16еУЬ , 
162 E, > :З8ЕГ n a s n o t b e e n m c i u ( j e ( j у, уз) since it 
exhibits a "down-bending" which our formula, as we 
have mentioned already, does not reproduce. 

The experimental accuracy and quality of the fit can be 
seen from Table 1. If one compares AS from Table 1 to 
the changes of s with P from fig. 2, one finds that 
in the cases of l 6 0Er , '58 Et the experimental accuracy 
does not allow us to distinguish the half-width /8 from 
0, and in the cases of >«oYb l62Er /3 is finite. 

By comparing the errors of the fit v'(2/Im<II)S with the 
purely experimental errors of an ideal fit V(2/lm , ,)S i d 

one sees that the errors of the fit are near to the experi­
mental ones, but still exceed them several (\ ) times. 
If one looks upon the different terms of S from (13) 
one will find that the errors of the fit come mainly from 
the highest levels above the transition point, the rest 
of the levels below and just around the transition being 
fitted with almost the experimental accuracy. 

The fit can be seen in detail for all the 4 nuclei in both 
representations: the usual one 2 J versus u , and our -
Б versus ш2 , in figs. 3-6. The representation 2J ver­

sus E shows clearly both component of the curve: the 
smooth one - a straight line below the transition,: and 
a' step-like one, describing the increase of 2 J in the 
transition region. 
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Table 1 
Estimates of Experimental Accuracy and Quality of the 

Best Fit 

Nucleus s 
: .. (13) 

AS 

(14) 

Nucleus s 
: .. (13) 

AS 

(14) 
V<2/ l .„ )S 

(13) 

V ( 2 / I m a x ) S i d 

(15) 

x =vs / s i d 

l 6 S b 
1 f i 2 K r 

Er 

Ез? 

0.35 

0.46 

o.6a 

1.90 

0.029 

0 .025 

0 .027 

0.0J6 

0.198 

0.225 

0.276 

0.48h 

0.071 

о.обе 

0.067 

0.06 J 

2.78 

4.14 

7.73 



J» <M«V) 

Fig. 2. S« S (0) from (13) with pi - 1 , minimized over all 
other parameters at fixed values of p • AS from Table 1 
and the corresponding errors of P are also indicated. 
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5. DISCUSSION 

The parameters for our 4 nuclei are compared in 
Table 2. One can make the following points: 

1. The moment of inertia Jo takes usual values 
(around 30 M e V - 1 ), and as usually decreases with 

A, i.e., when going into the transitional region. 
2. The coefficient of the smooth non-adiabatic 

deviations с also takes usual values (around 5 M e V - 2 / 2 8 ^ 
and shows the expected increase when going into the 
transitional region. 

3. The transition point E 0 remains almost at the 
same place for all 4 nuclei. Its position in energy Eo is 
compared to its position in spin l o , (obtained from Eo 
ЬУ ( 2 ) , (?) a n d in angular velocity (obtained from E 0 , 
lo by (4), (6)). The relative variation ДЕ 0 / E 0 = 

=+0.056/2.90 =± 0.019 can be compared to the relative 
variations Дю0 / w 0 = ± 0.012/0.27 =± 0.045 or Д 1 0 / 1 0 = 

" ±0.77/13.88=* 0.055 which shows that the transition point 
energy Eo is more stable than its angular velocity 

MJ or spin I o' 
4. The amplitude у of the step-like component of the 

transition varies by a factor of about 2 decreasing in the 
cases in which the back-bending seems weaker ( ' 6 2Er , 
160 Er ). It gives about half of the increase of the moment 
of inertia from the zero-point E~0 to its value above the 
transition. The other half is giv.en by the smooth compo­
nent. Both components make the total increase of J 
nearly equal to its zero-point value / и / . 

5. The half-width /3 of the transition is rather small. 
In some cases it cannot be distinguished from 0 ( 1 6 0 E r j 
1 5 8 Er )> b u t increases in other cases ( 1 а у ь , 1 И Е г ) , in 
one of them the back-bending seeming weaker (>6 2Er). 

This fit can be applied to study the systematics of the 
parameters in all the back-bending nuclei and to try to 
correlate them to their microscopic (e.g., single-par­
ticle) properties. 

Thanks are due to Dr. I.N.Mikhailov for helpful 
discussions. 
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Table 2 
Best Fit Parameters 

Nucleus b-2J 0 

Mev" 4 

С 
Mev * 

E 0 

Mev 

<u0 

Mev 
lo У 

Mev Mev 

1 б 2 Б г 

1 б 0 Е г 

1 5 a

E r 

58.88 • 

58.50 

48.76 

34.72 

5-98 

6.24 

7.77 

8 .80 

2.88 

2.84 

2.P6 

2.92 

0 .265 

0.279 

0.279 

0 .255 

14.33 

14.34 

14.07 

12.80 

• 37-39 

24.93 

19 .Ю 

36.09 

0.0059 

0.1150 

0.0000 

O.OOOO' 

b=2Jo - initial (atE«0) doubled moment of inertia; 
с - non-adiabatic deviations parameter; 

Е0,ш0,1о - transition point resp. in energy, angular ve­
locity and spin; 

у - transition amplitude; 
p - transition naif-width. 
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