СООБЩЕНИЯ
 OБbЕАИНЕННOГO ИНСТИТУТА
 ЯАЕРНЫХ ИССАЕАОВАНИЙ
 АУБНА

E4-7746
A.M.Kurbatov, S.S.Lapushkin

SOME THEOREMS FOR FREE ENERGY OF MODEL SYSTEMS

OF STATISTICAL PHYSICS

^AБOPATOPИА
ТЕОРЕТИЧЕСНОЙ ФИЗИНИ

E4 - 7746
A.M.Kurbatov, S.S.Lapushkin

SOME THEOREMS FOR FREE ENERGY OF MODEL SYSTEMS
of statistical physics

Asymptotically exact methods of studying of many-particle aystans vere developed in Bogolubor's papers $[1,2]$ in the course of creating mioroscopical theory of guperconductivity. Mathematically rigorous background of the offered methods was essentially pointed in paper [3]. The problems which admit exact soIution in limiting thermodynamical sense $(\sqrt{ } \rightarrow \infty, \infty, \infty$, $\frac{\mathscr{P}}{V}=$ const, where V, volume of the system, \mathcal{N} - the number of particles) occupy particular place among the model problems of modern statistical physics. Later on rigorous from the mathematical point of view methods of proving asymptotical exactness of the results obtained for such model systems have been suggested by N.N.Bogolubov (Jx.), and there has been also constructed a general method of stadifing asymptotical behaviour of auch values as free energy (and its derivatives), one-time and many-time correlation functions, and Green's functions $[4,5]$.

These methods, originally developed for studying BardinBogolubov model systems $[1-5]$ with Hemiltonian ${ }^{1)}$:

1 Here and further we use the following notations: $f=(\vec{p}, s) ;-f=(-\hat{p}, s)$ ρ-momentum, g-spin, $T_{t}=\frac{p^{2}}{2}-\mu ; \mu$ being the chemical potential; a_{f}^{+}, a_{f} are the Ferni operators. Poaitive value T_{c} means the constant of interaction; $\sigma_{p}, \sigma_{p}+, \sigma_{C}{ }^{2}$ are Pauli operatora; Ω - pairstates number; \mathcal{N} is the number of parti. cles, and N - external magnetic field.
got successful application in the studies on quasi-spin models [6-7] with Hamiltonian of the Chirring type:

$$
\begin{equation*}
H=\sum_{p=1}^{\Omega} \mathcal{E}\left(1-\sigma_{p}^{z}\right)-\frac{2 T_{c}}{\Omega} \sum_{p=1}^{\Omega} \sigma_{p}-\sum \sigma_{p}^{+} \tag{2}
\end{equation*}
$$

and on the Using model $[8,9]$

$$
\begin{equation*}
H=-I / N \sum_{i, j} \sigma_{i}^{z} \sigma_{j}^{z}-\mu_{0} M / \sum_{i=1}^{N} \sigma_{i}^{z} \tag{3}
\end{equation*}
$$

Later on we shall show that for model problems with Hamiltonian of more general type such as in case of the superconductivity type system, inhomogeneous in spin variables
our method [1-5] gives a possibility to find asymptotically exact expressions for correlation functions, onetime and many-time ones, and Green's functions as well.

Further development of mathematical methods for studying model problems is undoubtedly very interesting.

Here we shall consider the expression with Hamiltonian of a general type:
where dynamical operators $T, \mathcal{F}_{\alpha}, \mathcal{F}_{\alpha}^{+}$are not concretized but the fulfillment of the following conditions is demanded

$$
\begin{gathered}
T=T^{+} \quad\left\|\mathcal{F}_{\alpha}\right\| \leqslant A_{1} \quad\left\|T \mathcal{F}_{\alpha}-\mathcal{F}_{\alpha} T\right\| \leqslant A_{2} \\
\left\|\mathcal{F}_{\alpha} \mathcal{F}_{\beta}-\mathcal{F}_{\beta} \mathcal{F}_{\alpha}\right\| \leqslant \frac{A_{3}}{r} \quad\left\|\mathcal{F}_{\alpha} \mathcal{F}_{\beta}-\mathcal{F}_{\alpha} \mathcal{F}_{\alpha}^{+}\right\| \leqslant \frac{A_{4}}{r}
\end{gathered}
$$

where $V_{\text {is a }}$ finite volume of the system, A_{i} are some positive constants under $V \rightarrow \infty\left(\frac{N}{V}=\right.$ const). Coefficients
g_{α} in (5) are taken positive in connection with the fact that only the systems with negative interaction are discussed in this work.

As "approximative" system for the model with Hamiltonian (5) we suggest the system, described by Hamiltonian

$$
\begin{equation*}
H_{a}(c)=T-2 V \sum_{\alpha} g_{\alpha}\left(c_{2} z_{2}^{+}+c_{\alpha}^{2} z_{\alpha}\right)+K(c) \tag{7}
\end{equation*}
$$

which depends upon the parameter C, representing the vector $C=\left(C_{1}, C_{2}, \ldots, C_{l}\right.$ in C dimensional complex space $E_{C} ; \mathcal{K}(C)$ constant and, if it is necessary, can serve as parameter of normalization.

We must note that for Hamiltonian (7) free energy per unit volume ${ }^{2)}$ is a function of the parameter C, determined on space E_{ℓ} of all points C. Later on the expression $\min _{(c)} f(c)$ will denote absolute minimum of the function (c) $\left(H_{a}\right)$ in E_{l}.

Note, that the procedure of minimization of free enertay per unit volume for Hamiltonian (7), as function of the parameter C,allows one to get conditions determining the set of points $\bar{C}=\left(\bar{C}_{1}, \bar{C}_{2}, \ldots, \bar{C}_{\ell}\right)$ in which absolute minimum of $f_{r}\left(H_{a}\right)$ is reached, ie., the equality

$$
\begin{equation*}
\operatorname{fr}\left\{H_{a}(\bar{C})\right\}=\min _{(c)} \operatorname{fr}\left\{H_{a}(C)\right\} \tag{8}
\end{equation*}
$$

is correct.
2) Under free energy per unit volume for system with arbitrary Hamiltonian H we mean the expression $f_{r}=-\frac{\theta}{V} \ln S_{p} e^{-\frac{H}{\theta}}$, where parameter θ is temperature (in energetic units).

$$
\begin{equation*}
g_{2} \rightarrow g_{\alpha}+\frac{\pi_{n}}{2}, \quad \alpha=1,2, \ldots, l \tag{12}
\end{equation*}
$$

In this paper we shall show that the expression for free energy per unit volume for Hamiltonian (5) is asymptotically close to the corresponding expression for free energy of"approximative system"with Hamiltonian (7) under the assumption of fulfillment of conditions (6).

For our investigation it is more convenient to treat the so-called Hamiltonian with sources:
in which including -source parameters are proportional, accordingly, to $\bar{C}_{\alpha}, \bar{C}_{\alpha}^{*}$ with positive coefficients of proportionslite:

$$
V_{\alpha}=\eta_{\alpha} \bar{C}_{\alpha} \quad V^{*}=\zeta_{\alpha} \bar{C}_{\alpha}^{*} \quad \zeta_{\alpha}=\eta_{\alpha}^{*}>0, \alpha=12 \ldots, l . \text { (10) }
$$

As it is shown in [5], the choice of these parameters in form (10) allows one to avoid difficulties under true definition of quagi-averages for considered model systems.

In order to have a possibility of true selection of quasiaverage for "systems with sources" (9) it is necessary to choose a corresponding approximative Hamiltonian [5]:

$$
\left.h_{a}=T-2 V \sum_{\alpha} g_{\alpha}\left(\bar{C}_{\alpha} z_{\alpha}^{+}+C_{\alpha}^{*} F_{\alpha}\right)-\sqrt[V]{\alpha} z_{\alpha}\left(\bar{C}_{\alpha}^{*} F_{\alpha}^{+}+\bar{C}_{\alpha}^{+} F_{\alpha}\right)+\mathcal{K}(C)\right)^{(11)}
$$

which evidently corresponds to approximative Hamiltonian (7) for model Hamiltonian (5) under alteration of parameters g_{α} in the latter according to the rule

Therefore only "renormalization"3) of g_{α} constants in expression (9) for h with necessity results in that Hamiltonian (11) becomes approxdmative for primary Hamiltonian (5). We emphasize that term K was not necessary for $1 t$,obviously, does not contain itself neither in motion equation nor in finite expression for average $<\ldots\rangle h$. Hence, we have the right to add arbitrary but constant part to a model Hamiltonian which will be

The choice of corresponding constant term in the form $V \sum_{\alpha} \eta_{\alpha} \vec{C}_{\alpha} \bar{C}_{\alpha}^{*}$ gives us an opportunity to rewrite (13) as

$$
\begin{aligned}
& h=T-2 V \sum_{\alpha}\left(q_{2}-\frac{x_{\alpha}}{2}\right) \eta_{\alpha} 7_{\alpha}^{+}-\sqrt{\sum_{\alpha}} \tau_{\alpha}\left(\bar{C}_{2}+7_{2}^{+}+\bar{C}_{\alpha}^{*} y_{\alpha}\right)+{ }_{(14)} \\
& +\sqrt{\sum_{\alpha}} \zeta_{\alpha} \bar{C}_{\alpha} \bar{C}_{\alpha}^{*}=H+\sqrt{\alpha} \eta_{\alpha}\left(7_{\alpha}-\bar{C}_{\alpha}\right)\left(7_{\alpha}^{+}-\bar{C}_{\alpha}^{*}\right) \text {, }
\end{aligned}
$$

where H is the primary Hamiltonian (5). Positive coefficients τ_{α} and dispersion σ_{α} according to the rules:

$$
\begin{align*}
& \tau_{\alpha}=2 \tau_{\alpha} g_{\alpha}, \quad \tau_{\alpha}>0 \tag{15}\\
& \sigma_{\alpha}=\left(\frac{7}{q_{\alpha}}-\bar{C}_{\alpha}\right)\left(7_{\alpha}^{+}-\bar{C}_{\alpha}^{*}\right), \quad \alpha=1,2, \ldots, l
\end{align*}
$$

give us a possibility to rewrite (14) in the form convenient for us:

$$
\begin{equation*}
h=H-2 \sqrt{\sum_{\alpha}} \tau_{\alpha} g_{\alpha} \sigma_{\alpha} \tag{16}
\end{equation*}
$$

3) i.e., transformation according to the rule:

$$
g_{\alpha} \rightarrow g_{\alpha}=g_{\alpha}-\frac{r_{\alpha}}{2}
$$

Let us start obtaining asymptotical behaviour of free energy for Hamiltonian (16). First of all,we state Theorem 1, which confirms the possibility for asymptotically exact describing the model system (5) with the help of Hamiltonian (7).

Theorem 1.
If the operators T, \mathcal{F} in Hamiltonian (5) satisfy condition (6) and free energy for Hamiltonian T is limited

$$
|f r(T)| \leqslant A_{0}=\text { const }
$$

then we have the inequality

$$
\begin{equation*}
0 \leqslant \min _{(C)} f_{r}\left\{H_{a}(C)\right\}-f_{r}(H) \leqslant \varepsilon\left(\frac{1}{r}\right) \tag{17}
\end{equation*}
$$

in which positive constant $\mathcal{E}\left(\frac{1}{V}\right) \rightarrow 0$ in thermodynamical limit $V \rightarrow \infty$ uniformly with respect to Q in the interval $0 \leqslant Q \leqslant \theta_{0}$, where θ_{0} is an arbitrary fixed temperature.

The proof of Theorem 1 is given in [4]. We mention here that Theorem 1 does not answer the question whether the limited expression

$$
f_{\infty}(H)=\lim _{r \rightarrow \infty} f_{r}(H)
$$

exists.
The answer is in
Theorem 2.
If in Hamiltonian (5) the operators T and F are defined for all points of $\quad P$-space and the set of discontinuities of the functions is a set of measure zero, then under the fulfillment of condition (6) the asymptotic free energy
for Hamiltonian (7) exists and for all C_{α} from set $\left\{C:\left|C_{\alpha}\right| \leqslant \bar{A}=2 A_{1}\right\}$, inequality

$$
\begin{equation*}
\left|f_{v}\left\{H_{a}(C)\right\}-f_{\infty}\left\{H_{a}(C)\right\}\right| \leqslant \delta_{v} \tag{18}
\end{equation*}
$$

is correct. Here $\delta_{\gamma} \rightarrow 0$ uniformly with respect to θ in the interval $0 \leqslant \theta \leqslant \theta_{0}$ and $f_{\infty}\left\{H_{a}(C)\right\}$ possesses continuous partial derivatives of all orders with respect to variables

$$
C_{1}, C_{2}, \ldots, C_{e}, C_{1}^{*}, C_{2}^{*}, \ldots, C_{e}^{*}
$$

for all complex values of these variables. This function reaches in space E_{ℓ} absolute minimum realized on a set $\{\bar{C}\}$, i.e.,

$$
\min _{(C)} f_{\infty}\left\{H_{a}(C)\right\} \equiv f_{\infty}\left\{H_{a}(\bar{C})\right\}
$$

and here will be fulfilled the inequality

$$
\begin{equation*}
\left|f_{r}(H)-f_{\infty}\left\{H_{a}(C)\right\}\right| \leqslant \bar{\delta}_{r} \equiv \varepsilon\left(\frac{1}{r}\right)+\delta_{r} \tag{19}
\end{equation*}
$$

where $\bar{\delta}_{V} \rightarrow 0$ uniformly with respect to θ in the interval $0 \leq \theta \leq \theta_{0} \quad$.

Proof:
Let us estimate the difference

$$
\delta f=f r\left\{H_{a}(C)\right\}-f_{r+v}\left\{H_{a}(C)\right\}
$$

i.e., the difference of free energies, corresponding to one and the same approximative Hamiltonian (7), but chosen for the systems with different values V and $V+V$, where V is the value, finite in the framework of this proof, and V is
some arbitrary value. After some simple transformation and having made the limit transition $V \rightarrow \infty$ (in general statictical sense) we get the inequality (18) which together with the inequality (17) results in (19)

$$
\begin{aligned}
& \left|f_{r}(H)-f_{-}\left\{H_{a}(\bar{C})\right\}\right|=\left|f_{r}(H)-\min _{(C)} f_{\infty}\left\{H_{a}(C)\right\}\right|= \\
= & \mid f_{r}(H)-\min _{(C)} f_{r}\left\{H_{a}(C)\right\}+\min _{(C)} f_{r}\left\{H_{a}(C)\right\}-\min _{(C)} f_{0}\left\{H_{a}(C)| | \leq\right. \\
\leqslant & \left|f_{r}(H)-\min _{(C)} f_{r}\left\{H_{a}(C)\right\}\right|+\left|\min _{(C)} f_{r}\left\{H_{a}(C)\right\}-\min _{(C)} f_{0}\left\{H_{a}(C)\right\}\right| \leq E\left(\frac{1}{r}\right)+\delta_{r}
\end{aligned}
$$

Thus, we proved limit theorems for free energy functions and got corresponding estimates for a model problem with the Hamiltonian of a general type without concretizing the dynamical operators $, T, 7$.

We must mention that in the case of concrete systems exact expressions for limit values of free energy can be obtained. For example, in $[10]$ it was shown that the expression for free *energy per unit volume V,answering Hamiltonian (1)preliminarily diagonalized with the help of Bogolubov-Tiablikov canonical transformation, could be found in the form:

$$
\begin{equation*}
f_{r}\left\{H_{a}(C)\right\}=2 \sum_{\alpha} g_{\alpha} C_{a} C_{a}^{*}-\frac{1}{2 V} \sum_{f}\left(E_{f}-T_{f}\right)+\frac{\theta}{V} \sum_{f} \ln \left(1+e^{-\frac{B}{*} / k}\right) \tag{20}
\end{equation*}
$$

and under $V \rightarrow \infty$ will be approximated by the following asymptotic expression

$$
f_{\infty}\left[H_{a}(C)\right]=2\left[g_{\alpha} g_{a} C_{\alpha}^{*}-\frac{1}{2(2 \pi)^{3}} \int\left\{E_{-}-T_{f}-2 \theta \ln \left(1+e^{-\xi / 2}\right) d \vec{f},(21)\right.\right.
$$

where

$$
\begin{equation*}
E_{f}=\sqrt{T_{f}^{2}+\Delta_{f}^{2}} \quad \Delta_{f}=2\left[g_{\alpha} c_{\alpha} \lambda_{\alpha}(f)\right. \tag{22}
\end{equation*}
$$

are standard notions and $\lambda_{\alpha}(f)$ are "constant of interaction" and satisfy conditions

$$
\lambda_{\alpha}(-f)=-\lambda_{\alpha}(f), \quad \alpha=1,2, \ldots, l
$$

Further we discuss the problem of asymptotical proximity of free energies, obtained on the basis of hamiltonian \mathcal{L} and H, correspondingly:

$$
\begin{align*}
& f_{r}(h)=-\frac{\theta}{r} \ln S_{\rho} e^{-\frac{h}{\theta}} \tag{23}\\
& f_{r}(H)=-\frac{\theta}{r} \ln S_{p} e^{-\frac{H}{\theta}}
\end{align*}
$$

Evidently, under $\tau=1$, i.e., under $\tau_{1}=\tau_{2}=\ldots=\tau_{l}=1$ we obtain

$$
\begin{equation*}
h_{\tau=1}=T-2 \sqrt{\alpha} g_{\alpha}\left(\bar{C}_{\alpha} 7_{\alpha}^{+}+\bar{C}_{\alpha}^{*} F_{\alpha}\right)+2 \sqrt{\sum_{\alpha}} g_{\alpha} \bar{C}_{\alpha} C_{\alpha}^{*}=H(\bar{C}) \tag{24}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
h \leq H(\bar{C}) \tag{25}
\end{equation*}
$$

so far as $\sigma_{\alpha} \geqslant 0$ always.
On the other hand, $h>H$ under $0<\tau_{\alpha}<1, \alpha=1,2, \ldots, l$ and we can affirm that the inequalities
are valid if: $0<\tau_{\alpha}<1 \quad \alpha=1,2, \ldots, l$.
Then

$$
\begin{aligned}
0 \leq & \operatorname{fr}\left\{H_{a}(\bar{C})\right\}-f_{v}(H) \leq\left|f_{\infty}\{H(\bar{C})\}-f_{v}(H)\right|+ \\
& +\left|f_{\infty}\{H(\bar{C})\}-f_{v}\{H(\bar{C})\}\right|
\end{aligned}
$$

or taking into account theorem 1:

$$
\begin{equation*}
0 \leq f_{r}\{H(\bar{C})\}-f_{r}(H) \leq \bar{\delta}_{r}+\delta_{r}, \tag{27}
\end{equation*}
$$

and, correspondingly,

$$
\begin{align*}
& 0 \leq f_{r}(h)-f_{r}(H) \leqslant \bar{\delta}_{r}+\delta_{r} \equiv \eta \\
& 0 \leqslant f_{r}\{H(\bar{C})\}-f_{r}(h) \leqslant \bar{\delta}_{r}+\delta_{r} \equiv \eta \tag{28}
\end{align*}
$$

The application of these inequalities for obtaining of carespounding estimations for correlation averages is based on Hogolubov's (Jr.) majorizing inequalities [5].

For a system described by the Hamiltonian linear in parameter τ :

$$
\begin{equation*}
H_{\tau}=H_{0}+\tau H_{1} \tag{29}
\end{equation*}
$$

we can determine the expression

$$
\begin{equation*}
f_{v}(H \tau)=-\frac{\theta}{V} \ln S_{p} e^{-\frac{H \tau}{\theta}} \tag{30}
\end{equation*}
$$

as a function of free energy per unit volume for a given model system.

It is easily seen that

$$
\begin{equation*}
\left.\frac{d}{d \tau} f_{v}(H \tau)=\frac{1}{v}<H_{1}\right\rangle H_{\tau} \tag{31}
\end{equation*}
$$

and, correspondingly,

$$
\frac{d^{2}}{d \tau} \operatorname{fr}\left(H_{\tau}\right)=-\frac{1}{\theta V} \int_{0}^{1}\left\langle\tilde{H}_{1} e^{-\frac{H \tau}{\theta} \xi} \tilde{H}_{1} e^{\frac{H_{\tau}}{\theta}(1-\xi)}\right\rangle H_{\tau} d \xi(32)
$$

is permissible, where $\tilde{H}_{1}=H_{1}-<H_{1}>H_{\tau}$.
But it is known that

$$
\frac{d^{2}}{d \tau} f_{r}(H \tau) \leqslant 0
$$

and, correspondingly,

$$
\begin{equation*}
\left\{\frac{d}{d \tau} \operatorname{fr}_{r}(H \tau)\right\}_{\tau=1} \leqslant \frac{d}{d \tau} \operatorname{tr}(H \tau) \leqslant\left\{\frac{d}{d \tau} \operatorname{fr}_{r}^{\prime}(H \tau)\right\}_{\tau=0} \tag{33}
\end{equation*}
$$

and free energy difference may be taken in the form

$$
\begin{equation*}
f_{r}\left(H_{0}+H_{1}\right)-f_{r}\left(H_{0}\right)=\int_{0}^{1} \frac{d}{d \tau} f_{r}\left(H_{\tau}\right) d \tau \tag{34}
\end{equation*}
$$

where $0 \leq \tau \leq 1$.
Thus we obtain the inequality

$$
\begin{equation*}
\left\{\frac{d}{d \tau} f_{r}(H \tau)\right\}_{\tau=1} \leqslant f_{V}\left(H_{0}+H_{1}\right)-f_{r}\left(H_{0}\right) \leqslant\left\{\frac{d}{d \tau} f_{r}\left(H_{\tau}\right)\right\}_{\tau=0} \tag{35}
\end{equation*}
$$

with the help of which we simply obtain:

$$
\begin{equation*}
\left.\left.\frac{1}{r}<H_{1}\right\rangle_{H_{0}+H_{1}} \leqslant f_{r}\left(H_{0}+H_{1}\right)-f_{r}\left(H_{0}\right) \leqslant \frac{1}{r}<H_{1}\right\rangle_{H_{0}} \tag{36}
\end{equation*}
$$

Definite choice of parameters in the inequality (36)

$$
\begin{equation*}
H_{0}=H \quad H_{1}=h-H=2 V \sum_{\alpha} \tau_{\alpha} g_{\alpha} \sigma_{\alpha} \tag{37}
\end{equation*}
$$

with the account of the first of inequalitites (28) permits one to obtain the following estimate for binary correlation function $\left\langle\sigma_{d}\right\rangle h$:

$$
\begin{equation*}
2 \sum_{\alpha} \tau_{r} g_{\alpha}\left\langle\sigma_{\alpha}\right\rangle_{n} \leq \bar{\delta}_{r}+\delta_{r} . \tag{38}
\end{equation*}
$$

Thus, is proved
Theorem 3.
Under the fulfillment of condition of theorem 2 for Hamiltonian h in form (14) the following inequalities hold:

$$
\begin{align*}
& 0 \leqslant f_{r}(h)-f_{r}(H) \leq \eta \tag{39}\\
& \sum_{\alpha} g_{\alpha} \leqslant\left(y_{\alpha}-\bar{c}_{\alpha}\right)\left(y_{\alpha}^{+}-\bar{c}_{\alpha}^{*}\right)>_{h} \leq \frac{\eta}{\tau_{0}},
\end{align*}
$$

here $\eta=\delta_{r}+\delta_{r}$ and it tends to zero as $\gamma \rightarrow \infty$ and wis the minimal of the quantities $\tau_{1}, \tau_{2}, \ldots \tau_{C}$ which satirefy the conditions $0<\tau_{\alpha}<1 \quad, \alpha=1,2, \ldots, l$.

The inequalities (39) confirm the possibility for asymptoticaliy exact describing model ny stem with Hamiltonian (5) with the help of Hamiltonian (14), because from Theorem 3 it follows

$$
\lim _{r \rightarrow \infty} f_{r}(h)=\lim _{r \rightarrow \infty} f_{r}(H)
$$

In the next papers we shall developmethodics of calculation of a correlation function and quasi-averages for model system of such a general form, and an application to concrete system of statistical physics will be made.

In conclusion the authors would like to acknowledge Academician N.N.Bogolubov for valuable remarks and Professor N.N.Bogolubov (Jr.) for helpful discussions.

REFERENCES

1. N.N.Bogolubov. Soviet Phys. (J.E.T.P.), 34, 58, (1958); 32, 120, (1960).
2. N.N.Bogolubov. Preprint JINR P-511, Dubna, 1960.
3. N.N.Bogolubov. Preprint JINR D-781, Dubna, 1961.
4. N.N.Bogolubov (Jr.).Physica, 32, 933, (1966).
5. N.N.Bogolubov (Jr.). A Method for Studying Model Hamiltonians, International series of monographs in natural philosophy, Volume 43, Pergamon Press, Oxford, 1972.
6. N.N.Bogolubov (Jr.), A.S.Shumovsky, Indian J. of Pure and Appl.Phys., 8, 121, (1970); Phys.Ietters, 35A, 380, (1971).
7. A.S.Shumovsky. Thesis, Moscow Univ., 1971.
8. I.G.Brankov. Preprint JINR P4 -6998, Dubna; 1973;

Preprint JINR P4-7000, Dubna, 1973.
9. V.A.Zagrebnov, I.G.Brankov. Preprint JINK P4 -7097,

Dubna, 1973.
10. N.N.Bogolubov (Jr.). Soviet Phys. (TMP), 12, 131, (1972).

Received by Publishing Department on May $22,1974$.

