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"A simple way of exploiting the analytic nature of
scattering data is to try to get information on the nearest
singularity of the amplitude in the z=cosé plane at fixed
energy - - . The possxblhtxes for this were greatly extended
by the introduction of the optimal conformal mapping
technique - 2+%. It was proposed that such methods could
- be useful in nuclear physics, too - 4.5/

_The basic ideas have been repeatedly presented in the
above-mentioned references, therefore wegive onlyavery .
concise summary of certain points which we think to be
of importance. The reaction ‘amplitude is an analytic
function of the =z -cos0 variable, the singularities of which
correspond to certain Feynman graphs, i.e. to certain
“reaction mechanisms /1", The strength of these singulari-
ties provides 1nformat10n on the structure of nuclei involved
in the reaction. It is possible to define an analytic function,
~ which is equal to the square of the absolute value of the

-amplitude (i.e.,to the differential cross section) on that
interval of the real axis whichliesinthe analyticity domain
of the amphtude This function is analyt1c in the same do-
main.

The nearly tr1v1al way of determinmg the strength of
the nearest singularity is to continue the experimental data.
up to this point after removing itbya suitably chosen fac-
tor.The powerful techmque of optimal conformal mapping
made it possible- to apply successfully this contmuatlon
method in- nuclear physms ‘100 . 4, s5/, despite the obv1ous
-difficulties in getting error 11m1ts /6/. in practlce



Another poss1b111ty is to subtract the nearest singu-
larity after the mapping w1th a guess strength. It is possib-
le to determine when the guess strength is equal to the

correct one 2/, We modified the :subtraction: method of .

- Cutkosky and Deo/ / , hamely, we avolded‘the introduc-
tion of any model assumptlon and thus made the method
exact.

The reactlon we chose for checkmg the applicability
of the method was the d(d,p)t reaction. As a successful
peripheral model fit showed, the ‘forward and backward
peaks are dominated by the neutron transfer mechamsm
and good experimentaldata are availableat Eg25.3MeV’ /
our choice was motivated by these facts. Besides, in this »
case an exact.treatment-is. poss1ble in a si /plf way. We

notice that: neglectlng Coulomb.effects in ref. -~ makes
the result for the “He->d+p- . vertex constant questlon-
- ‘able, despite the fact that .its ‘numerical value is near to
other results * The resulting information on the struc-
ture of the tr1ton is -important;: this problem is: w1dely
discussed in the literature /16/. ,

The singularity structure of the amplltude 1s as follows
There is a neutron-exchange pole near to the physical re-
gion (at Ed_ 25.3-MeV.at zZp= 1.334), the next singularity
(atz - 3.37) corresponds to the proton knock-out mecha-
msm It generates a‘branch’point singularity of- logarith-
mical character. The location” of these singularities canbe
‘calculated according to ref.’ .Due' to:-the-identity: of
the deuterons-these s1ngular1t1es lie symmetrically about
z=0 - and only even powers- of the var1ables enter into
any expression describing the data.

* The differential cross section has a second order pole
which comes from the square of the amplitude, and a. first
order pole from the interference with the. background
terms. The location of the branch point was taken as the
parameter determlnlng the X= x(7) conformal mappmg

* The Coulomb s1ngular1ty on: the edge of the phys1cal
reglon makes’ any . expansion series, which is convergent
inside the physical region, divergent outs1de it. Therefore
any extrapolation procedure w1thout taklng 1nto account
the Coulomb singularity is doubtful
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After ‘the mapplng the - locatlon of the s1ngu1ar1t1es is
changed the’ pole lles at X "—vl 36 whlle the branch pomt
at x;, = '6.63. :
Now the experlmental data could be descrlbed as:
da P P C - N
10 = + >+ Q + -9 + E b x 20
(z —zf (z: +z) Zp"‘z Z otz n=1
where due to tfle statistical errors inthedata only a finite
number of the b, coefficients is significant'in the sense
that they are larger .than their errors: The optimal confor-
mal ‘mapping used by us minimizes the number. of terms
needed in ‘the ‘sum. AS ‘we are not interested in the first
order pole, -we removed 1t mult1ply1ng with ‘a factor of

(Z) @

m(x)= (x —x2)/(2xx (z )) ' R (2)'

where X (Z) “denotes the derivative of x(z). This factor
does not alter the residue at the pole and it is of practlcal .
importance that it be lmear in x2'. Then one has

do P Pl
(4% =) o x
do e (( R R N

. vy :
By a least squares procedurewe fitted m(x)do/ d Q accord-

ing to the well known orthonormal polynomials which are
3rthonormal w1th the welgths of the. least squares proce-
ure: : . e o

FRCU
A

'W(X)dﬂ %An,Bn(x ) o T g (4) -

The B, (x2) polynomials have the advantage that the
An.coefficients are-uncorrelated,; -their- rms- erroris -1.
This also means that-one can take superfluous terms in.
the sum,. their presence has no effect -on the significant
terms at all. As the pole lies nearer than the other singu-
larities, it determmes the A, coefficients with suff1c1ent-
ly. large n - It can be understood easily asthe B, (x ) po-
lynomlals are regular. functlons ‘a finite number of them

- is.unable to reproduce the pole, therefore the asymptotlcs

of the coefficients: is determined by the location and the
strength of the pole. If the experimental dataare accurate
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enough one can always reach this. asymptotic\region If

the pole is- subtracted . from the data with the correct o

strength, then these coefficients disappear. Therefore we.
extracted the .pole w1th a guess strength and analysed the
result, i.e.:

. ,G - N 'G

'“(x’(do G 22T G

-3ABD  ®

and determlned the G value at wh1ch the (N+ 2) ~-th and'

hlgher order coefficients . d1sappear, (see also eq. (3)).

- One-has to determine the value of N. For this purpose
we. multiplied . the experlmantal data by a factor of m2 (x)
:and analysed them, From (3) it follows

m-(x)‘—9—= Z d.Bn (x ) EONE (6)
dQ - ‘

therefore, determlnlng the 51gn1f1cant terms one can find
~the value of N as well. Strictly speaking the B (x2) -po-

lynomials in (6) differ from the polynomialsin (5) because
the weights are d1fferent but thrs does not alter the value
of 'N.

The method proposed by us is similar to the : subtrac— -

tion method of Cutkosky and Deo /2/. We, however, deter-
mine the correct strength of the subtracted pole diffe-
rently. Cutkosky and Deo made a model assumption about
the behaviour of the A, coefficients in (5) when the pole

is correctly subtracted. They defined a’ convergence test

function, which is the measure to which extent the pole

not being correctly subtracted destroys the expected be-

haviour of the coefficients. The strength of the pole’is
determined by the minimum of-this- funct1on ‘In thls way
'the exactness of the method was spoiled. -

~“We "also" determined the strength of the pole by the _

contlnuatlon model, i.e.; by: inserting x=xp into-the right-
hand: side of (6). It is- obvious ‘that ‘this procedure has a
serious shortcoming. -Without-additional information on the
properties of the other singularities nothing assures that
the neglected terms are small not:only in the physicalre-
gion but in the pole, as well. To have-bound estimates for
them one needs certain information, which comes comple-

6

"tely out51de from the d1fferent1a1 cross sectlon to be
analyzed (see/6 /) To be clear; here we speak not of the

. error dom1nated sum 2‘, d B (x ) but of as1m1lar sum |

om= N+3

w1th the ”true”‘ value of the d coeff1c1ents As in the
subtract1on ‘method we all the time work in, the physical
region, moreover we con51der only certain coeff1c1ents
in the series (5), therefore ‘our results are free of any

o systemat1cal error of this kind.

‘Once " the - streng'th of the’ pole 1s found one has to
calculate ‘the' spectroscoplc 1nformat1on from it. For thls
purpose .the formulae of- the perlpheral ‘model can be-
used /10,12/ with no cut-off one gets back the pure pole.The
1dent1ty of the deuterons can be taken into account accord-
1ng to the general formulae of ref /1‘5/ the result 1s
(zf—z)2(7p+z) do s m2c4 _k—"G G2 - (7)‘7

T 4z2 4 ,,+,l'j_ 242 E(Er Kyt T

~ where Tk k,and E,,Ef are the relative momenta and

k1net1c energles in the initial and final channels;, er and
Gt are the deuteron and triton vertex constants in square
root’ of fermi, while dv / dd Q is in'mb/sr. The informa-
tion on the structure of the trlton is represented by the
'G2, vertex constant." If the- wave function of the bound
system ‘has‘an asymptotlc form of ‘A. e-"'/ r m the cor-
respondmg channel then S Ty ';*f !

A‘h \/n /#C , A"' e

where u is the reduced mass. Later on we use the notat1on
G 2. B TR St \‘~; -
In ’Ifable ‘1 we present the expansmn coeff1c1ents for
m(x)de./~dg -and m2(x)do/ dQ. From: (6) the surprising
result follows: that N= 2, i.e, two’ terms are:enough to
represent the background in (1) to the accuracy given by
the data. The differential cross section contains four para— '
meters at all, though judging :-by the data at lower ener- -
gies / ks .a Legendre polynom1als fit would requ1re seven
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terms. This demonstrates the power of the optimal con= _

formal mapping technique in eliminating superfluous para-
- meters which are correlated by the common physical in-
formation they correspond to. It follows that the n=4,5,6
terms can be used for determining G, the results are pre-
sented in Table 2. The weighted .average is G= 0.4942 +
+0.0069 f2. The result of the continuation method is
Practically the same, G=0.4943 +0.0069 f2 The error
comes only from the s1gn1flcant terms in (6). The coin-
cidence of the results shows that in this case the truncat-
ed terms are small in the pole, though in the pole with
n the B (x2) polynomials increase véry fast, while their
values remam approxlmately the same in the phys1cal
region.
our result is subject to an addltlonal error of 2. 5% due
to the uncertainties in the absolute value of the cross
sectlon 8/.1f one assumes G2 = 040 f /117, then
= 1.235£0.035f is the t - d+n vertex constantde-
'rlved by us. It is in very good agreement with other re-
sults, a review of which (exc })t the peripheral model
results) can be found in ref. _There different notations
and units are used, D2 is, however proportional ‘toour.
(;'2 The D2value given in ref. /16 corresponds to G2
28 +0.24 f. As per1pheral model results are not pre-
sented in ref. /16 e quote two of them:i)from the compa-

r1son of (p,d) and (d,t) reactions on 830 we got

GZ= 1.35 £ /12/ ; ii) from a peripheral model fit to
the neutron transfer peaks in the d(d,p) t reaction at
E4= 6,8,12,14 and 25 MeV wegottheaverage (-11 22 f /13/
Further references can be found in ref. /14/,

‘We conclude that we have proved in practice the apph-
cablhty of the singularity .subtraction.. method by the
example of the d(d, f)t reaction at E4= 25 MeV. The
numerical value of G4%= 1.235 *0.035f forthe t-»d+n
vertex constant is in.an excellent agreement with other
results, none of which has such a smallerror. We empha-
size that we " have arrlved at it in a completel/ model
lndependent way, it is' free of any systematical error:
(if the experimental data are free, of course). The:only
assumptlons made by us were. about the analytic structure

of the . amplltude -We-also used -an - exphclt express1on_ '
for ‘the nearest - smgularlty These are however general -

and exact properties.

- An early variant’ of this work was completed m the
Central Research Institite for Physics in Budapest, ‘and
thanks-are due to O.Dumbrais, who called our attention
to the analytlc ‘continuation’ method and who later provided
us with a subroutine for the calculatlon of the mappmg
based on formulae of ref./2/ .
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Table 1
The expansion coefficients in formulae (4) and (6) w1th |
the first and second order pole removed |

n m(x) da/dQ m2(x) do/ dQ
Ty T 175.2 168.9
2 -21.6 -50.7
3 -44 11.8
4 67.0 70.8
5 13.1 0.4
6 3.8 1.2
7 0.8 0.2
: ~  Table 2 .
Pole strength (see (5)) when the correspondmg coeff1c1ents
dlsappear .
e T G f2 (2 AG . %
4 0.4937 0.0071 1.4
5 0.5006 0.0383 7.2
6 0.7341 .0.193 34
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