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. A simple way of exploiting the analytic nature of 
scattering data is to try to get information on the nearest 
singularity of the amplitude in the Z=cosO plane at fixed 
energy· I,. The pOssibilities for this were greatly extE~nded 
by the introduction of .the optimal conformal mapping 
technique· 2 ,:l/. It was proposed that such methods could 
be useful in nuclear physics, too ... 4,5/ • 

. The basic ideas have been repeatedly presented in the 
above-mentioned references, therefore we give only a very 
concise· summary of· certain points which we think to be 
of importance. The reaction ·amplitude is an analytic 
function of the z -,cos 0 variable, the singularities of~hich 
correspond to certain Feynman graphs, i.e. to certain 
·reaction mechanisms / 7:'. The strength of these singulari­
ties provides information on the structure of nuclei involved 
in the reaction. It is possible to define an analytic function, 
which is equal to the square of the absolute .value of the 
amplitude (i.e., to the differential cross section) on that 
interval of the real axis which lies in the analyticity domain 
of the amplitude. This function is analytic in the same do­
main. 

The nearly trivial way of determining the strength of 
the nearest singularity is to continue the experimental data. 
up to this point after removing it by a suitably chosen Jac­
tor. The powerful technique of optimal conformal mapping 
inade it possible· to apply successfully· this continuation 
method in nuclear· physics too . 4;5/, despite the obvious 
difficulties .in :getting er"I'~r limits /6/. in practice~ 
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Another possibility is to subtract the nearest singu­

larity after the mapping with a guess strength.lt is po.ssib­
le to determine when the guess strength is equal to the 
correct one /2/. We modified the :subtraction\ method of 
Cutkosky and Deo/21, namely, we avoided the introduc­
tion of any model assumption and thus made the method 
exact. · 

. The reaction we chose for checking the applicability 
of the method was the d (d, p) t reaction. As a successful 
peripheral model fit showed, the forward and backward 
peaks are dominated by the neutron transfer mechanism'

13
{ 

an·d good experimentaldataareavailableat. EtF25.3Mev
18i; 

our choice was motivated by these faCts. Besides, in this 
case an exacL treatment is. possible in a sini_Rl[ way. ,We 
notice that neglecting Coulonib.effects in ref. 

5 
·. "'makes 

the result for the 3 He :+d+p· .. vertex constant question:­
able, despite the fact. that its ·numerical value is near to 
other results *. · The resulting information on the,struc­
ture of the triton is important, i)lis problem is widely 
discussed in the literature (16/. . . ·· .· 

The singularity structure oftheamplitudeisasfollows. 
There is a neutron· exchange pole near to the physical re­
gion (at Ed= 25.3 MeV. at z P ;= 1.334), the next singularity 
(at z ,., 3.37) corresponds to the proton knock-out mecha­
nism~ It generates a branch·poiilt singularity of logarith­
mical character. The location· o~ these singularities can be 
calculated according to ref. ·J9

l. Due to: the identity of 
the deuterons these singularities lie symmetrically atiout 
z=O · and only ·even powers of the variables enter into 
any expression descril)ing the data~ · 

The differential cross section has a second order pole, 
which comes from the square of the amplitude, and a first 
order pole from the interference with the background 
terms. The location of the branch point was taken as the 
parameter determining the x=x(z) · conformal mapping/2,3! 

--*-Th~-c~~i~;;b-;i~i~~~iti-~~:the edge of the physical 
region makes any. expansion series, which is convergent 
inside the physical region, divergent outside it. Therefore 
any extrapolation procedure without taking into account 
the Coulomb singularity is doubtful. · · 
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After the ' mapping the location of the singularities is 
changed, the pole lies at x ~=-1.36, while the branch point . 
at x 1 "" 6.63. · · . · · . . . ·· . .·· 

Now the experimental data could be described as: 

d a P p ''Q Q N 2n_:2 
- = --+ + + +I b x (z) (1) 
dO ( 2 ( )2 Z -i . z +Z n=l n ' · Zp -Z) . Z · +Z . p p · ... 
where due to the statistical errors in the data only a finite 
number of the bn coefficients is significant in the sense 
that they are larger. than their errors; The optimal confor­
mal mapping used by us minimizes the number of terms 
needed in the sum>As we are not interested in the first 
order pole, we removed it multiplying with a factor of 

'-:· ;-"'~ 

m(x)=(x 2 -,x 2 )/(2x x '(z )), 
p p p 

(2) 

where x '(z) ·· denotes the derivative of x (z ). This factor 
does not alter the residue at the pole and it is of practical 
importance that it be linear in x2 • Then one has 

. da .. . p : p N+l 2n-2 
m(x)-=m(x)(-'2+ 

2
) + I c x ... 

dO (z -z) (z +Z) . n=l n 
p ., ,, ~ p 

(3) 

By a least squares procedure we fitted m(x) da I d 0 accord­
ing to the well known orthonormal polynomials which are 
orthonormal with the weigths of the. least squares· proce-
dure: ~. 

' 
m(x)da ·=I A B (x2 ) 

dO n n n . 

~. ' 

(4) 

The Bn (x 2 ) polynomials have the advantage that the 
An coefficients are uncorrelated; ·their· rms· error is 1. 

This also means that one can take superfluous terms in. 
the sum, their presence has no effect on the significant 
terms at all. As the pole lies nearer than the other singu-:­
larities, it determines the An coefficients with sufficient­
ly large n ·. It can be understood easily as the Bn (x 2 ) po­
lynomials .are regular functions, a finite· number of them 
is.uriable to reproduce the pole, therefore theasymptotics 
of the coefficients. is determined by the location~ and the 
strength of the pole. If the experimEmtal.dataare accurate 
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enough, one can always reach this · asymptotic region. If 
the pole _is • subtracted ._from the data w.ith. the correct 
strength, then these coefficients disappear~ T}!erefore, we 
extracted the pole with a guess strength and artalysed the 
result, i.e.: · 

da 'G- 'G 
m(x) (- - - --- ) = IA B (x 1 (5) 

dU (z -z)2 (z +Z) 2 n n n 
p p 

and determined the 'G value. at which the (N+ 2) -th arid 
higher order coefficients disappear (see also __ eq. (3)). 

, One- has to determine the value of N. For this purpdse 
we multiplied the experimantaldata by a factorof m2 (x) 
and analysed them. From_(3) it follows: 

2 . d N+2 2 
m (x)--0 - = I dnBn(X ) , 

d n n=l 
(6) 

th~refore, determining the significant· terms one can find 
the value of N as well. Strictly speaking the Bn (x 2) po-
lynomials in (6) differ from the polynomials in (5) because 
the weights are different, but this does not alter the value 
of N. · · 

The method proposed by us-is similar to the ,·subtrac­
tion method of Cutkosky and Deo 121. We, however, deter­
mine the correct strength of the subtracted pole diffe­
rently; Cutkosky and Deo made·a model assumption about 
the behaviour of the An coefficients in (5) when the pole 
is correctly subtracted. They d-efined a· convergence test 
function, which is the measure to which extent' the pole 
not being correctly subtracted· destroys the expected be­
haviour of the coefficients. The strength of the pale is 
determined by the minimum of--this·function:·In this·way 
the exactness of the method was spoiled. ' ·. - ·· 

"We also determined the strength 1>f the pole 'by the 
continuation model, i.e., by: inserting x=xp into the right­
hand side of (6). It is obvious that ·this procedure has a 
serious shortcoming. -Without-additional information on the 
properties of the other singularities nothing assures that 
the neglected terms are small not only in the physical re­
gion but in the pole, as well. To have bound estimates for 
them one needs certain information~ which comes comple-
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tely outside from th~ . differential cross section to be 
analyzed: (see~6 1). To ·be clear(here we speak nof of the 

error-dominated sum f ~0 B 0(x 2 ),but of asimilar~um 
n=N+3 · 

with the "true" value of the. dn coefficients. As in .the 
subtraction _method we all the time work.in_the physical 
region, mbreover, we consider _only certaihcoefficients 
in. ~e _series (5), therefore our results are free of _any 
systematical' error of this kind.. · · . 
- ' Once the ·strength of )he· pole is" found, one has to 
calculate· the 'specfroscopie information from it. For this 
purix>f?e the formulae -·of the· peripheral model can ·be 
used /10,121'-with no cut-off one gets back the pure pole.The 
identity of the deute-rons can be taken into account accord­
ing to the . general formulae of ref. /15/, the result is: 

(~P-z)2(zptz) 2 da __ 2 
4z2 dQ z•+'z{ 2417 2 

(I' - I • 

2 4_kr 2G2 
~--G,J t-• 
Ei Er ki 

(7) 

where_.. ~ i, k rand E i'>Er are. the reiative· momenta and 
kinetic energies iri the initial and final channels, . G d and 

Gt are the deuteron and-triton vertex constants in square 
root of fermi, while·· dil.! d dQ is in ·mbjsr. The informa­
tionon the structure of the triton is represented by the 2 . . . '. . _, .. 

G 1 vertex constant. If the wave furiction of ~the bound 
system has an asymptotic forni of A. e -kr l r 'iin the cor-:-
respo~dirig channel,' then : · ,-{': 

G = A 'h 'v;-;; I 1-L c -
t 

·' 

(8) 

where_ 1-L is thtreduced mass.Later on we use the notation 
G - G·. 2- G- 2 . ·•. . . , ". 

' - d t. . . 
In Table ·1 we present the expansion. coefficients for 

m(x) dir-/<IO and m2(x)da/dQ. F~om (6) the surprising 
result follows that N =; 2, i.e., two terms are·-enough to 
represent- the background in (1) to the ac~uracy given by 
the data. The differential cross section·contains four para:­
mete:t:s ~t all, though judging. by the data at lower ener­
gies 1 1 7-· • a Legendre polynomials fit would require seven 
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terms. This demonstrates the power of the optimal con.::. 
formal mapping technique in eliminating superfluous para­
meters which are correlated by the common physical in­
formation they correspond to. It follows that the n=4,5,6 
terms can be used for determining G, the results are pre­
sented in Table 2. The weightedaverage is G= 0.4942 ± 
± 0.0069 f2. The result of the continuation method is 

practically the same, G =. 0.4943 ± 0.0069 f2. The error 
comes only from the . significant terms in (6). The coin­
cidence of the results shows that in this case the truncat­
ed terms are small in the pole, though in the pole with 
n the B ( x2) polynomials increase very fast, while their n . . 

values remain approximately the same in the physical 
re~on. . . . 

Our result is subject to an additional error of 2.5% due 
to the uncertainties in the absolute value of the cross 
section 18 1. If one assumes G j = 0.40 f I II I, then 
G j = 1.235 ± 0.035 f is the t ~ d+ n vertexconstantde-

. rived by us. It is in very good agreement with other re­
sults, a review of which (except the peripheral model 
results) can be found in ref. II6/. There different notations 
and units are used, D 2 is, however, proportional ·to our. 
G 2 . The D 2value given in ref. /I6/ corresponds to · G ~= 
= l.28 ± 0.24 f. As· peripheral model results are not pre-

sented in ref. II6£Ne quote two of them: i) from the compa­
rison of ( p, d) and ( d, t ) reactions on I8 0 we got 
G ~ ;, 1.35 f II2 I ; ii) from a peripheral model fit to 

the neutron transfer peaks iii the d (d 'p) t reaction at 
Ed"' 6,8,12,14 and 25M.eVwegottheaverage G~L22 f /13/. 
Further references can be found in ref. /I41. 

We conclude that we have proved in practice the appli­
cability of the singularity .subtraction. method by the 
example of the d(d,f)t reaction at Ed= 25 MeV. The 
numerical value of ·G t = 1.235 ±o.035 f for the t-+ d+ n 
vertex constant is in an excellent agreem-ent with other 
results, none of which has such a small error. We empha­
size that we have arrived at it in a complete 11 model 
independent way, it is free of any systematical error. 
(if ~e experimental data are free, of course) .. The only 
assumptions made by us were.about the analytic !:.~ructure 

8 

of the ,amplitude. We also used an explicit expression 
fo-r the ·nearest singularity. These are; however; general 
and exact properties.. · · ·· · · _ 

An early' variant' of this work was completed ·in' the 
Central Research Institite for Physics in Budapest,.and 
thanks are. due to O.Du!llbrais, who .. called our attention 
to the analytic ·continuation ·method, and who later provided 
us with a subroutine for the calculation of the mapping 
based on formulae ofref/2/ 
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Table 1 
The expansion coefficients in formulae (4) and (6) with 

the first and second order pole· removed 

-------------------------~---------------------------
n m(x)da/d!l m2(x)da/d!1 

-----------------------------------------------------1 
2 
3 
4 
5 
6 
7 

175.2 
-21.6 

-4.4 
67.0 
13.1 

3.8 
0.8 

168.9 
-50.7 

11.8 
70.8 
0.4 
1.2 
0.2 

-----------------------------------------------------
Table 2 

Pole strength (see (5)) when the corresponding coefficients 
,, disappear 

n G £2 f 2 t\ G % 
-----------------------------------------------------

4 0.4937 0.0071 1.4 
5 0.5006 0.0383 7.2 
6 0.7341 . , 0.193 . .. 34'. . 

-----------------------------------------------------

-:~ h; • 
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